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Abstract
A new learning machine based on neural network (NN) and its hardware accelerator are successfully built in this study for

predicting the luminance decay of Organic Light Emitting Diode (OLED) displays. It is known that although OLED

displays has become the mainstream in the current high-end display market, OLEDs tend to degrade in emission as used

extensively for a long time. The operable voltage also rises with the usage time increasing, which causes the operating

point to drift. To compensate the OLED degradation, a NN model is successfully built with favorable accuracy. Fur-

thermore, the built NN model is implemented in FPGA hardware platform with a high-performance computing archi-

tecture, which uses registers to access inputs, integrates the multiplication, addition operations for weights and activation

function into the same combinational logic circuit, and a pipeline architecture to improve maximum operation per unit

time. The hardware architecture is designed via Verilog, and further verified by Xilinx Artix-7. Its operating frequency can

be as high as 55.6 MHz, while resource consumption is only 1.0k LUTs, favorable as opposed to all the other past, related

studies. Experiment shows that the computation of the built NN by the proposed accelerator can be completed 55.6 million

times per second. In addition, the degradation prediction errors by the accelerator are as small as 2.08%, 5.51% and 4.36%

for red, green and blue OLEDs, respectively, while the figure of merit, the product of computation time and area is as low

as 109.86 (Time*Area), the lowest compared to all the past reported works.

1 Introduction

Organic Light Emitting Diode displays (OLED displays)

offer many advantages, such as active light emission, high

reaction speed, low power consumption, wide viewing

angle, wide color gamut, low operating voltage, thin panel

thickness, and simple manufacturing that can be applied to

flexible panels. Thus, it has become the mainstream of

high-end display applications in recent years. However,

there are common shortcomings with OLED displays,

including inevitable drifts of threshold voltages of OLEDs,

which lead to performance degradation of an OLED dis-

play panel, such as brightness non-uniformity, mura phe-

nomenon and burn-in of caused by the long-term usage

under high temperature stress. Since the degradation of

OLED is difficult to eradicate from re-design and

alternating manufacturing process, efforts by many studies

were dedicated to establish a prediction model on OLED

degradation, i.e., a Neural Network (NN) model. Based on

the model, the strategy of emission compensation for

OLEDs used over an extensive time period can be distilled

to overcome the degradation effectively via adjusting drive

current for OLEDs to required levels.

A few studies in recent years were dedicated to degra-

dation modeling of OLEDs. Liu et al. (2017) employed an

NN to model LED’s photo-electro-thermal (PET) behavior,

with temperature and current as the inputs of the NN to

predict the luminance drop, efficiency and lifetime of

LEDs. Liu et al. (2019) in 2019 proposed a two-stage NN

to estimate the lifetime of LEDs, yet it can only be used in

high-powered modules with 150 mA input present. Lu

et al. (2017) proposed a different NN in 2017, which

considered LED’s current, temperature, lumens and the

chromaticity coordinate to predict LED degradation, where

the back propagation (BP) NN was employed for realizing

the afore-mentioned NN. It requires a collection of training

data with ‘‘input features’’ and ‘‘target results’’ to find a set

of linked weights that allow input data to travel through
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this set of weights to achieve the target value. The lifetime

of the LED is then estimated by the inputting current,

temperature, luminance and other data to the neural net-

work built. Since the characteristics of LED and OLED are

similar, the idea of this approach can also be used in this

study to predict degradation OLED degradation. Note that

all the aforementioned models are machine-learning mod-

els, while the method of compensating luminance degra-

dation has not yet been suggested. In this study, not only is

a BP-NN algorithm similar to that presented in Lu et al.

(2017) built towards minimized errors, but also effective

compensation schemes orchestrated successfully, and, most

importantly, the degradation model is implemented in an

hardware accelerator with minimized resource consumed.

It is pertinent to note herein that none of all the above past

studies on degradation modeling ever completed the real-

ization of the model into a hardware accelerator, not to

mention on OLED displays. In fact, the present work is

dedicated to design and implement a hardware accelerator

of the degradation model by the technique of field pro-

grammable gate array (FPGA) to drive and compensate an

OLED display. The platform of Xilinx-XC7Z020-

1CLG400C SOC with the capability of 50 million opera-

tions per second is utilized for this FPGA implementation.

The performance of the built accelerator is compared to

other most recent works on the hardware implementation

of NN (Oliveira et al. 2017; Medus et al. 2019; Zhai et al.

2016; Nedjah et al. 2012).

This paper consist of five sections as follows. Section 1

gives the motivation and purposes. Section 2 introduces the

method of building a NN model to predict OLED degra-

dation. Section 3 designs the architecture of the built-in

feedforward NN model in FPGA. Section 4 present the

performance verification. Section 5 concludes this work.

2 Establishing NN models

To establish a NN model to predict OLED degradation,

experiments are first conducted on an OLED panel lit upon

different conditions and then observing its luminance

decay over time. With varied current and temperature,

three NN models are established via the software of Ten-

sorflow, for red, green and blue OLEDs. These models

consists mainly of multiple identical Multilayer Perceptron

(MLP) units connected each other in a network, as shown

in Fig. 1. The inputs of the models are operation time

period t, drive current I, temperature T of OLEDs consid-

ered, while the output of the models is the predicted

luminance. Measurements on OLED degradation are

shown in Figs. 2 and 3. Figure 2 shows the degradation

data of OLEDs at 26 �C, while Fig. 3 shows does 60 �C.
The ‘‘relatively aging gray level = 1’’ refers to the case

that, the lit OLEDs are at the maximum luminance. The

initial luminances of red OLED at relatively aging gray

level = 1 for measuring degradation as presented in Figs. 2

and 3 are 282, 928 and 99 nits for red, green and blue

OLEDs, respectively.

For each of three models for red, green and blue OLEDs,

360 different combinations of (t, I, T) are randomly

selected within their corresponding operations ranges for

training while 840 combinations of (t, I, T) for testing. The

selected combinations of (t, I, T) are normalized before

being input to the NN model seen in Fig. 1 for training and

testing. The normalization is carried out by

xnorm ¼ ðx� lÞ
r

; ð1Þ

where l is the mean of all considered (t, I, T)’s while r is

the standard deviation. Figure 4 show the evolutions of loss

during training on the OLED degradation model. It can be

clearly seen from these figures that as the number of epochs

rises, the losses stabilizes to very low values, and further-

more, the evolutions in losses of training and validation are

consistent, indicating that the models do not overfit during

the training process. Having the NN models successfully

built, the prediction by the models are carried out with

results shown in Fig. 5, while the accuracy of three

degradation prediction models in values listed in Table 1,

where mean absolute percentage error (MAPE) is adopted

to evaluate the accuracy. It can be seen from this table that

all the models lead to favorable accuracies, though the

accuracies are slightly different among three models. The

model for red OLED delivers the highest accuracy, while

the model for green OLED renders the worst accuracy. It

should be noted at this point that the prediction accuracy

for the established models does drop over time, but being

very limited. For the example of green OLED, the pre-

diction accuracy of degradation over 400 h is 94.72%,

while that of degradation over 1000 h is 93.45%, kept close

to 94.72%. For red OLED, the prediction accuracy of

degradation over 400 h is 97.83%, while that of degrada-

tion over 1000 h is 95.62%, kept close to 97.83%. As for

blue OLED, the prediction accuracy of degradation over

400 h is 95.84%, while that of degradation over 1000 h is

95.43%, kept close to 95.84%. It is strongly shown that the

decreases in accuracies over time up to 1000 h for three

color LEDs are very limited.

Based on the accurate models successfully built on

OLED degradation, effective schemes for compensating

OLED emission to their originally-designated greys can

easily be orchestrated. Seen from Table 2 are significant

reductions in errors of displayed grey level by compensa-

tion at greys of 123, 168, 202 and 230. The reductions by

compensation averaged over red, green and blue OLEDs in

grey are 5.33 (= 7.58–2.25), 7.08 (= 9.49–2.41), 8.05
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(= 10.79–2.74) and 7.92 (= 11.89–3.97) at levels of 123,

168, 202 and 230, respectively, leading to an overall

averaged reduction in error as low as 7.1 greys out of 255

(8 bits) over three colors of red, green and blue. Thus, the

performance of the proposed three NN model for estimat-

ing OLED degradation is proven very effective for OLED

luminance compensation.

3 Hardware design of NN model

The architecture of the feedforward NN used to predict

OLED degradation is shown in Fig. 1. The input data,

weights and biases of this NN are obtained off-line via

training using the software of Tensorflow. The computation

for training is conducted in the format of floating-point

values, while fixed-point values are used for the hardware

design (Aoyama et al. 2002). If the selected number of

fractional bits is less than 12, it will cause a non-negligible

error. Therefore, we decide to use 16 bits of data width (2

bytes) as the input data and weights of hardware compu-

tation, including one sign bit, two integer bits and 13

fractional bits. The conversion between floating- and fixed-

point data is shown in Fig. 6. First, the decimal represen-

tation of the original data is multiplied by 213. Next, round

down the decimal part of the data, and then convert it to

binary representation in signed 2’s complements. Finally,

having divided it by 213, the data in fixed-point format is

obtained.

The conventional process for implementing feedforward

NN in hardware generally takes hardware consumption and

computing speed into account. Thus, external memory of

ROM (Read-only Memory) or RAM (Random Access

Memory) is utilized to store the weights and biases (Hao

1711; Pearson et al. 2007). However, it takes too much

time for data reading and writing. To solve the problem, a

centralized controller is designed to control the order of

computations. Also, to complete the computation of a

feedforward NN in a fast speed in hardware, a register

array is employed to store the weights and biases, which

can be accessed immediately. Effort in the next is paid to

optimize the architecture of NN models towards minimum

computation, via reducing the numbers of neurons and

hidden layers. With the register array, a new configuration

of hardware including pipeline architectures is proposed to

implement the feedforward NN in hardware, using its

feature of real-time data access to achieve accelerated

computation. The proposed new configuration is illustrated

by Fig. 7 and elaborated in subsections below.

3.1 Finite state machine (FSM)

A new scheme of finite state machine (FSM) is first pro-

posed to control the computation flow by hardware, as seen

in Fig. 8. This FSM adopts a neuron counter or a layer

counter to switch among various states (Oliveira et al.

2017; Medus et al. 2019), while the designed FSM has only

one active state at any given time for computation. When

the reset signal is active, the FSM enters the state of S0,

which can be regarded as an idle state, waiting for valid

signals of weights and biases to be pulled high to enter the

S1 state. In the S1 state, the weights and biases of the

model are set. Then, the signals of weights and biases are

pulled down while entering the S2 state. The FSM remains

S2 until the input valid signal is pulled high. Then, it enters

the S3 state, which is the part of computation for NN. Since

the built-in NN models are in a five-layer structure, the

input data must go through four layers of operation to

arrive at the final output. Therefore, once the input counter

reaches four in the S3 state, the computation results are

continuously out until computations of all input data are

finished. Finally, the FSM returns to S2 to wait for new

input data.

Time

Temperature

Lpredicted(t)

t

I

T

3 neurons
4 neurons

Current

4 neurons

Hidden Layer 1 Hidden Layer 2

4 neurons

Hidden Layer 3

1 neuron

Fig. 1 The proposed NN model

for predicting OLED

degradation
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Fig. 2 Luminance degradation of OLEDs at T = 26 �C, a red;

b green; c blue (color figure online)

Fig. 3 The luminance degradations of OLEDs at T = 60 �C, a red;

b green; c blue (color figure online)
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3.2 Combinational logics of layer calculation
module

The approach of improving computational efficiency

adopted herein is to optimize the allocation of

combinational logics. The Layer Calculation Blocks shown

in Fig. 7 can be considered as an independent combina-

tional module, which can adopted in multiples to complete

a whole layer of neuron operations belonging to the hidden

Fig. 4 The loss of training on OLED degradation models (MSE) for

a red; b green; c blue (color figure online) Fig. 5 The prediction results by the established OLED degradation

models, a red; b green; c blue (color figure online)
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layer or output layer. As shown in Fig. 9, all the input data

of the hidden layer are combined into a signal with a width

of j � 16 bits. The width of the combined weights becomes

i � j � 16 bits, while the width of the combined bias

becomes i � 16 bits. Having multiplication and summation

(sigma) conducted, the output width of each neuron

becomes ð16þ 16� 1Þ þ j bits, which is obtained by

multiplying one signed value with another and then accu-

mulation. Finally, all neuron outputs are combined into a

wider signal with a width of i � ½ð16þ 16� 1Þ þ j� bits.

Table 1 Resulted accuracies

and errors by the established

OLED degradation models

Degradation prediction model Red OLED Green OLED Blue OLED

Mean absolute error (MAE in nits) 3.33 23.75 2.85

Mean absolute error (MAE in gray level) 1.85 7.28 2.56

Standard deviation of error (nits) 4.66 33.85 3.08

Standard deviation of error (gray level) 1.15 2.80 1.99

Accuracy in MAPE (nits) 97.83% 94.72% 95.84%

Table 2 Pre- and post-

compensated degradations in

gray levels

Gray level Red OLED Green OLED Blue OLED Averaged

123

Pre-compensation 2.19 18.84 1.70 7.58

Post-compensation 1.42 4.18 1.15 2.25

168

Pre-compensation 2.58 23.64 2.25 9.49

Post-compensation 1.06 3.88 2.30 2.41

202

Pre-compensation 2.84 27.06 2.47 10.79

Post-compensation 1.06 5.36 1.80 2.74

230

Pre-compensation 3.07 29.89 2.72 11.89

Post-compensation 1.75 7.91 2.26 3.97

Decimal to Binary
(Signed 2's complement)

Round down

1 0 1 1 0 1 01 1 0 1 01

5 6- 3 9 132

2 9- 5 0. 2 8 84

2 9- 5 0

0 1 0 1 1 0 1 01 1 0 1 01 0

Floating input * 2^(fractional_bits)

Divide by 2^(fractional_bits)
 to Fixed-point

Signed Integer bits(2) Fractional bits(13)

01 0

1

1

1.

1

Fig. 6 The flow of data conversion from floating- to fixed-points

1074 Microsystem Technologies (2023) 29:1069–1081

123



In the operation of the hidden layer, it contains multi-

plication, summation (sigma), and activation function for

each neuron. Figure 10 shows the designed combinational

logics of single neuron computation, the hardware

description of which in a pseudo-code is given below.

MUL

SIGMA

Activation
Function

Layer Calculation 
Block

MUL

SIGMA

Activation
Function

Layer Calculation 
Block

16

Network Output

MUL

SIGMA

FSM 
Control Unit

Input I

 Input T

 Input t

Weight

Bias

16

16

16

16

16

clk

Register
Array

16

16

clk

clk

Registers 

16

Weight

16

Bias

Outvalid

16

16

16

Pipeline Architecture

Output 
Calculation Block

W_valid

B_valid

 Invalid

reset

MUL

SIGMA

Activation
Function

Layer Calculation 
Block

Fig. 7 The proposed hardware architecture for improving the efficiency of computing NN

S0 S1

S2S3

rst

Weight_valid or 
Bias_valid 
pull high

weight bias

Weight_valid and 
Bias_valid 
pull down

Input_valid 
pull high

Input_valid 
still high

After Input_valid 
pull down 3 cycles

Input data
(I,T,t)

Continuous output
If counter 3

(Complete calculation after three Layers)

Fig. 8 The finite state machine (FSM) for FPGA hardware

implementation

The number of inputs : j = 3
The number of output neurons : i = 4

Layer Calculation 
IP

(3-4)

j*16 bits
Inputs

Weights

Biases

i*j*16 bits

i*16 bits

48

192

64

i*[(16+16-1)+j] bits

136
Outputs

Fig. 9 Input and output formats of the layer calculation module
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Input[47:32]
weight[191:176]

MUL

Input[31:16]

weight[175:160]

MUL Input[15:0]

weight[159:144]

MUL

+

+

+

bias[63:48]<<13

0 (Tied Low)

Mul_result[0]
Mul_result[1]

Mul_result[2]
add_result[0]

add_result[1]

add_result[2][33]

MUX

COMP
0 (Tied Low)

add_result[2][33]=0

Output[135:102]

ReLU

32

31
31

33

34

1

34

Fig. 10 The implementation

logic of the calculation for a

single neuron in the module of

layer calculation
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Hardware description: Layer Calculation

Input: [15:0] data[0:2], [15:0] weight[0:11] 

Output: [15:0] network_result[0:3] 

1. for each neuron i do: 

2.  for each input data j do: 

3.   mul_result[j] = data[j]*weight[i*3 + j]; 

4.   if (j != 2) then

5. add_result[j] = mul_result[j] + mul_result[j+1];

6.   else

7.   add_result[j] = add_result[j-1] + (bias[i] << 13);

8.  end for 

9.  output[i] = (add_result[2][33]=0) ? add_result[2] : 0; 

10. end for

ReLU is selected as the activation function which is not

only capable of accurate prediction results, but also

reducing hardware consumption during the implementation

of the feedforward NN (Medus et al. 2019). The traditional

method for realizing the activation function in hardware is

to build a large Look-up Table (LUT) in the circuit to

reflect the output of the activation function accurately. It is

replaced in this study by the combination of a comparator

and a multiplexer to complete the operation of ReLU,

which consumes much less resources.

3.3 Pipeline architecture

The aforementioned Layer Calculation module uses com-

binational logics to compute the output of each neuron in

the hidden layer. Moreover, the pipeline architecture is

adopted to improve the computational efficiency of the

entire circuit, which can complete a NN computation in

each clock cycle as shown in Fig. 11. At the positive edge

of each clock, all registers send inputs to Layer Calculation

modules. Each Layer Calculation module outputs the

computational result to a register, reducing its width during

transmission. Although each input needs four clock cycles

to complete the computations of the entire NN, with the

designed pipeline architecture, a piece of data can be cal-

culated in every clock cycle, which leads to high compu-

tational efficiency.

4 Experimental validation

Having finished the hardware implementation of the

established models in an FPGA board, experiments are

conducted to verify the accuracy of the established FPGA

architectures calculating the built feedforward NN, as

shown in Fig. 12. Prior to synthesizing Verilog code for

FPGA, the Python-equivalent codes for realizing fixed- (C-

model) and floating-point NN models were first built via

the software of Tensorflow for performance assurance

based on the comparison between the two models. In this

way, the correctness of the computation by FPGA based on

Verilog code can be ensured.

The design kit Xilinx Vivado was used to conduct the

simulation of FPGA. The synthesized FPGA code is

implemented in a circuit board Artix-7, with a core chip

xc7a200tfbg676. Shown in Fig. 7 are the control pins of the

user input interface, such as clock, reset, valid signals,

current, temperature and time. On the other hand, the

output interface includes the output of NN and the validity

signal. In the designed FPGA code, the lock cycle is set up

as 18 ns, prescribing the timing constraint of the code

execution; that is, the delay time due to input and output

are both 9 ns for each, which is half clock cycle. Having

implemented the overall architecture in FPGA, another

system of an Arduino board and its accompanying software

is orchestrated to validate experimentally its correctness of

predicting OLED degradation, as shown in Fig. 13. To this

end, the input data is stored in ROM first and then read one

by one. With inputs read, the FPGA code is executed to

predict OLED degradations, which are next output to four

pins based on the SPI protocols of MOSI, MISO, SCLK,

SS, as seen in Fig. 14. Thus the data of predicted degra-

dation was relayed to the SPI slave pin of the Arduino

board, and further to a personal computer with both CPOL

and CPHA set up as one for calculating the OLED pre-

diction errors and showing results.

Having setting up experiment, the data of predicting

OLED degradation was collected while degradation pre-

diction errors by the hardware operation were obtained via

the designed procedure seen in Fig. 12. For the three built-

in OLED degradation models, 100 randomly selected

combinations of operation time period t, drive current I,

temperature T of OLEDs, (t, I, T)’s, are considered for

evaluating the performance of compensation based on the

built NN models. Mean absolute percentage error (MAPE)

and Mean absolute error (MAE) are two indicators chosen

to evaluate the performance of the models. Figures 15 and
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Fig. 12 The design and testing flow of the NN model implemented on the FPGA board
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16 show the prediction errors of degradation for red, green

and blue OLEDs in 2 different scales, grey levels and nits,

respectively. The abscissa represents the numbered com-

binations of different (t, I, T) as inputs to the neural net-

work in Fig. 1, while the ordinate represents the error

between the calculated degraded OLED luminance Lpre-

dicted(t) based on the accelerator implemented in the FPGA

accelerator and the Python-equivalent code via Tensorflow

in percentages. It can be clearly seen from Figs. 15, 16 that

the resulted errors are well within 0.488 grey and 0.013

nits, showing the effectiveness of the Verilog algorithm

implemented in the FPGA board. The errors are also

evaluated from the perspective of mean absolute errors

(MAE), the result of which is shown in Table 3. It can be

found from this table that the resulted errors for the

degradation of the red OLED by FPGA are more accurate

than green and blue OLEDs in MAPE. Of most importance

are the errors by the FPGA accelerator as small as 2.08%,

5.51% and 4.36% for red, green and blue OLEDs,

respectively. On the other hand, the OLED degradation

models for green and blue result in very small errors, while

the fixed-point truncation operation renders larger errors.

Table 4 presents the performance achieved by the proposed

FPGA hardware architecture implemented in the FPGA

Artix-7 xc7a200tfbg676-2 board. The maximum frequency

reaches 55.6 MHz, while the total number of LUTs is

1035.

Table 5 shows the comparison among the architectures

proposed by this effort and those in other past works

(Oliveira et al. 2017; Medus et al. 2019; Zhai et al. 2016;

Nedjah et al. 2012). Since the architectures of the imple-

mented NN model for comparison are different, the cal-

culation time per neuron and area consumption per neuron

PC

Arduino

FPGA

Fig. 13 Experimental setup for performance validation

Fig. 14 The protocol of serial

peripheral interface (SPI)
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Fig. 15 Error in greys for predicting OLED degradation between

those by FPGA (hardware) and fixed-point model by software (tensor

flow). a Red; b green; c blue OLEDs (color figure online)
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are considered as performance indices for evaluation. Note

that there is always a tradeoff between computing time and

the consumption of resources. Hence, the architecture with

the smallest product of computation time and area can be

considered for identifying the highest performance, there-

fore, serving as the figure of merit (FOM). It is clearly seen

from Table 5 that the FOM of the product of computation

tine and area achieved by the present work is as low as

109.86 (Time*Area), the lowest compared to all the past

reported works; apparently, the proposed hardware archi-

tecture leads to the best performance.

5 Conclusion

A machine learning model in the structure of neural net-

work (NN) is established herein to predict well OLED

degradation for compensation, with the currents and tem-

peratures of OLEDs on each pixel sensed as references. To

realize the NN, a new hardware architecture via FPGA is

proposed and implemented successfully. This FPGA

architecture can conduct a vast amount of calculations in a

short time, with moderate consumption of hardware

resources. With this architecture, the calculation by the NN

can be executed efficiently based the built-in OLED

degradation prediction models established. The proposed

hardware architecture has been implemented successfully

and verified on Xilinx’s Pynq-z2 and Xilinx’s Artix-7. In

these FPGA implementations, the operating frequency in

Artix-7 is 55.6 MHz, with data calculation time per neuron

as 0.077 ns and LUTs consumption per neuron as 79.61.

The errors of degradation prediction by the accelerator are

as small as 2.08%, 5.51% and 4.36% for red, green and

blue OLEDs, respectively, while the figure of merit,

defined as the product of computation time and area, is as

low as 109.86 (Time*Area), the lowest compared to all the

all past reported works.
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Fig. 16 Error in nits for predicting OLED degradation between those

by FPGA (hardware) and fixed-point model by software (tensor flow).

a Red; b green; c blue OLEDs (color figure online)

Table 3 The errors by the

implemented hardware

accelerators by FPGA

Degradation prediction model Red OLED Green OLED Blue OLED

Mean absolute percentage error with software prediction 0.069% 0.292% 0.299%

Mean absolute error with software prediction (greys) 0.019403 0.10426 0.029277

Mean absolute error with software prediction (nits) 0.000372 0.001002 0.001010

Mean absolute percentage error with experimental data 2.083% 5.517% 4.363%

Table 4 Achieved performance of the FPGA accelerator implemented

Device f max
(MHz)

LUTs Registers DSP Blocks MLP

Artix-7 55.6 1035 1178 48 3-4-4-4-1

Available 133,800 267,600 740 –

Utilization (%) 0.77% 0.44% 6.49%
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