
TECHNICAL PAPER

A differential evolution modified quantum PSO algorithm for social
welfare maximisation in smart grids considering demand response
and renewable generation

Sandip Chanda1 • Suparna Maity2 • Abhinandan De3

Received: 22 March 2022 / Accepted: 30 October 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The power grids worldwide are changing both policy and infrastructure and are becoming Smart each day in order to

support renewable energy sources (RES). These Smart Grids are offering interesting modern techniques like demand

response (DR) for more profitable and sustainable operation of the grids in presence of RES. Traditionally demand

response concentrates on electricity price which may invite many other technical challenges such as limit violation of vital

system parameters like voltage, line flow, Power factor and security issues. To address this problem this work proposes an

optimisation framework which tries to achieve security constrained social welfare optimisation by a novel application of

DR technique, taking into account several operational issues such as intermittency of Renewable Generation, lowering of

system inertia due to RES, degradation of bus PF, line stability,deviation of voltage etc. for all the Load Dispatch Centres

(LDC)/consumers by the virtue of optimised curtailment, reduction of network losses, improvement of operating power

factor and mitigation of line congestion. The proposed method uses Differential Evolution modified Quantum Particle

Swarm Optimisation (DEQPSO) to achieve the proposed objective. When tested on modified IEEE 30 Bus system the

proposed algorithm produced encouraging results.

Abbreviations
CR Crossover probability

DISCO Distribution Company

DR Demand response

GUF Generation uncertainty factor

GENCO Generation Company

ISO Independent system operator

LUF Line utilization factor

RES Renewable energy sources

SCOPF Security constrained optimal power flow

TRANSCO Transmission Company

List of symbols
an Generation cost coefficient in Rs./

Mw2 of generation

ai Coefficient of consumer cost

benefit function in Rs./Mw2 of

demand of electricity

bn Generation Cost coefficient in Rs.

/Mw of generation

bij Susceptance of line ij

bi Coefficient of consumer cost

benefit function in Rs./Mw of

demand of electricity

Cn Generation cost of nth generating

unit

cn Generation cost coefficient in Rs

c1 Coefficient of self confidence

d The dimension of the state

variables

di Coefficient of consumer cost

benefit function in Rs
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dij Power (Phase) angle between ith

and jth bus voltage

e A random number between 0 and

1

f r Rotor frequency

f 0 The frequency before the loss of

active power

gid tð Þ : Gbest of the particle flock at tth

iteration

gij Conductance of line ij

J The moment of inertia in kg-m2

LQp Transmission stability index

mbest The average best position of all

the particles

ng Number of generators

n The number of particles

Plmaxj The maximum power flow in jth

line

p1ij The penalty in Rs./ Mw of excess

flow of power

p2ij The penalty in Rs./ Mw of trans-

mission loss

p3 The penalty in Rs./ unit of voltage

Pgn The generation of the nth unit

PD The forecasted demand

p4 The penalty in Rs./Mw of gener-

ation and demand imbalance

Pij Power flow in line ij in Mw

Pgi Generation in Mw of bus i

Pgj Generation in Mw of bus j

Pdi,Pdj Requested or scheduled demand

in Mw at bus i and j respectively

Pri Price of Electricity in ith node

Pgsurplus Generation Surplus in Mw

Pgimax Maximum limit of generation of

the ith generator unit

Pgimin Minimum limit of generation in

Mw for ith generator unit

Pci Allowable load curtailment limit

of ISO in Mw for ith Bus or node

Pdimax Maximum limit of demand set by

the consumer/ LDC in Mw at ith

bus

Pdimin Minimum limit of demand

requested by the consumer/ LDC

in Mw at ith bus

P No. of poles

DP Loss of generation in Mw

Pgn0 Base Case active power genera-

tion of the nth bus in Mw

Pr1q,Pr2q ;P
T
r3q; P

T
r4q The four personal best positions

randomly selected excluding

global positions

Pi;Qj The bus injection active and

reactive power in Mw and MVAr

for ith and jth bus respectively

Pdi0 Base case active power demand

of the of the ith bus in Mw

Pgn;Pdi Generation of the nth generating

unit and demand of the ith bus

respectively in the present state in

Mw

pid tð Þ Pbest of the particle at ith iteration

Pbest and Gbest Best positions of the solution

particle in the solution plane

personal and global respectively

PK The initial random position of the

particle

Pbesti The best position of kth particle

in its own well. mbest Tð Þ
Qgi Reactive Power generation in

MVAr at ith bus

Qdi Reactive Power demand in MVAr

at ith bus

q 1,2,3,………N

Rs. Rupees (Indian currency)

Sb Volt Ampere rating of the

machine in MVA

T The iteration number

Tm; Te The mechanical torque input and

electrical torque output respec-

tively in Nm

TLmaxj The maximum limit of active

power loss of jth transmission

line

TL The total transmission line loss

TLijmin Minimum possible active power

loss of the line between Bus i and

j in Mw

tTþ1
k

Replacement of state variable

xTþ1
k after calculation of cross-

over probability

vTþ1
k

State variable of solution particle

after mutation

Vi Sending end voltage

Vi Receiving end voltage

Vmin The minimum limit of voltage pu

x : Inertia constant

w The angular velocity of the rotor

in rad/s (mech)

W0 The angular velocity of the rotor

at synchronous in radian
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xTþ1
k

State variable of kth solution

particle

xid tð Þ Position of the particle in tth

iteration

Yij Admittance of line ij

Zij Impedance of line ij

U1;U2 Uniformly distributed random

number

hij Impedance angle for the line

between bus i and j

£
T
jq

A state variable of general dif-

ference vector

k The contraction and expansion

factor

1 Introduction

Integration of Renewable Energy Sources (RES) is

important from both environmental perspective and

prospective scarcity of fossil fuel to be witnessed in near

future, for running the traditional thermal power plants

(Weitemeyer et al. 2015; Owusu and Asumadu-Sarkodie

2016; Swain et al. 2017). The RES can strengthen the

Power Grid through local generation and Micro grids

which lessens the burden of power transmission, minimises

subsequent losses and investment involved (Alsaif 2017).

The incorporation of RES, however has certain drawbacks

like intermittency of generation, degradation of power

quality, reduction of storage energy of the grid and high

investment associated with these projects (Dilshad et al.

2020; Hossain et al. 2018). The advancement of electronics

and cyber physical sensor technology has already however

opened a lot of scope of improving the existing power grid,

fostering it to be compatible with RES (Butta et al. 2021).

The new Smart Power Grid is now utilizing these tech-

niques like advanced metering infrastructure, Real Time

digital Monitoring and control, Demand Response, data

analytics, high speed communication between the power

market players, Phasor Measurement Units (PMUs)etc.

(Nafi et al. 2016; Touzene et al. 2019). Demand side

management through proper implementation of data ana-

lytics and demand response is one of these potential areas

which can ensure optimisation of the hindrances of inte-

gration of RES in the power grid (Nigam et al. 2019;

Huang et al. 2019). Use of demand response is of utmost

importance since the RES is highly intermittent in nature

and efficient and optimal demand management is necessary

for maintaining the supply demand balance and the same

also need to be implemented at optimal price of electricity

(Tahir et al. 2019). In smart power market, thus the

generation of generators and load demands of Load Dis-

patch Centres/ consumers are scheduled with the avail-

ability of generator cost characteristics and consumer cost

benefit function data, a typical demand response (Yang

et al. 2015; Arias et al. 2018), so that RES can be incor-

porated in the grid. The demand response programs are

objected towards delivering maximum load as per will-

ingness to pay of the LDCs/ Consumers and to provide

incentives to the consumers who volunteers for load cur-

tailment through demand response (Yu et al. 2018).

Implementation of demand response is not free from

challenges. Since it is a new concept, there is lack of

knowledge and a lot of assumptions are to be made for its

modelling and subsequent design of its objective and

algorithm (Thoelen 2019). Absence of a perfect framework

for all the conceptualized demand response is also an

obstacle of its implementation. More over effects of

demand response on vital parameters of the power grid also

need to be studied and ways of mitigation of undue changes

need to be devised. In a works presented in Chai et al.

2019a; Narimani et al. 2015; Bajool et al. 2017; Gao et al.

2020; Stawskaac et al. 2021), it has been proven that the

implementation of demand response can influence the

voltage stability, maximum line flow that is line congestion

and distribution and transmission line active power loss.

These difficulties arise from the fact that demand response

characteristics of the LDCs/ Consumers are traditionally

price based and its social or grid level impact is not esti-

mated and compensated. The Independent system Operator

(ISO) however has to ensure no limit violation as the same

may be detrimental to Transmission Companies

(TRNSCOs) and in long run the same may affect the

operation of Distribution Companies (DISCOs) and Gen-

eration Companies (GENCOs). Hence ISO must have the

regulatory monopoly to allow the techniques like innova-

tive demand response algorithm in the optimisation pro-

gram up tothe extent that it ensures benefit of all the power

market players for Social Welfare (Balamurugana et al.

2015; Chanda and De 2014; Sen et al. 2015). This work

presents such an algorithm and a supporting demand

response framework to schedule both generators and

LDCs/Consumers to optimise the price of electricity and

operating condition of power system networks.

1.1 Literature survey

Some recent contributions in the same field (Shigenobu

et al. 2017; Chai et al. 2019b; Dong et al. 2018; Jabir et al.

2018) was found in incentive-based approaches, where the

customer / LDC was given incentives for choosing its own

demand response for sustenance of power grid system

parameters within specified limit contributing to Social

Welfare. The work presented in Hirotaka et al. (2018)
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shows a synergism of social Welfare optimisation and

incentive-based demand response. But in the work, the

incentive was only calculated as per customer’s comfort

not on deviation of system parameters. Works reported in

Long et al. (2019) concerning system parameter optimi-

sation for social welfare but the same used FACTs devices

support. The work in Nainar et al. (2021) addresses the

issue and resolves the same by Battery Energy storage. The

work presented in Mosaddegh et al. (2018); Viet et al.

2018) depicts the concern of limit violation and how smart

loads can help in producing optimal solution to system

operation. Through the review of these works, it has been

found that an appropriate framework for data analytics of

Social Welfare optimisation only has not been developed

yet (Zhang et al. 2018) which can assess each of the

GENCOs and DISCOs/LDC/consumers as per their ability

to deliver or modulate consumption respectively for

reaching a particular solution or schedule of the state

variables of the grid, at minimal price and with no limit

violation and which will provide incentives to the market

players in terms of maximising the dispatch of power and

appropriate nodal pricing of each of the LDCs/Consumers

for keeping system vital parameters within limit. The

Independent system Operator (ISO) is generally responsi-

ble for this Social Welfare analytics while the Market

Players (GENCOs, TRANSCOs and DISCOs) are respon-

sible for Individual Welfare Analytics (Munshiab and

Mohameda October 2017; Lucas Melo et al. 2019; Pal-

mintier et al. 2017). All the market players are thus, in this

scenario, are presumes of data (Both producer and con-

sumer). ISO however as per the bids and characteristics

received from the participants executes an optimisation

programme which ensures maximum possible dispatch of

power at minimum price and cost of generation (Alotaibi

et al. 2020). For the hour ahead market, in presence of RES

it is important that the market players not only maximise

their own benefit but also, they should contribute to the

benefit of all the participants that is to cause Social Welfare

and the same is possible only when the system parameters

are also given the same importance in scheduling and load

management (Mahanty and Singh 2018). Table 1 presents a

summary of the related works in this field and the scope of

developing the proposed Social Welfare optimisation

algorithm.

In pursuit of developing such an algorithm, this work

enunciates in Sect. 2 about the present framework of the

power market and the proposed framework of security

constrained social Welfare. In Sect. 3, the mathematical

model of the proposed framework has been presented in

contrast to the traditional Security Constrained Optimal

Power Flow (SCOPF) (Mohammadi et al. 2018). The case

studies in IEEE 30 bus system, considering worst possible

contingencies and loading scenarios has been presented in

Sect. 4, using the proposed DEQPSO (Liu et al. 2019)

based Security Constrained Social Welfare Optimisation

algorithm and its performance has been presented against

traditional SCOPF. The major contributions of this

research work can be summarised as follows:

i. A novel Framework for Security Constrained Social

Welfare maximisation has been proposed in the paper,

introducing various penalties and incentives from

price responsive demand response for small deviation

of operating point to encourage LDCs/Consumers to

shift their demands from peak to lean periods.

ii. A novel method of determination of minimum load

curtailment has been proposed for the LDCs based

on generation uncertainty imposed by RES and the

prevailing price of electricity decided by the DR of

consumers.

iii. A novel method for maintaining required level of

system inertia has been proposed through additional

incentive to the consumers to maintain optimal

dependence on grid power and RES.

2 Present and proposed social welfare
optimization framework

This section presents the prevailing framework of social

welfare optimisation and develops the proposed framework

and its mathematical model.

2.1 Present frame work of social welfare
optimisation in smart grid

The present framework for Social Welfare maximisation is

presented in Hwang et al. (2018) as shown below in Fig. 1.

Here the distribution Energy management (DEM) section

optimises the benefit of both GENCOs and DISCOs or End

Users (EU) for optimal pricing.

All the actions however in this framework is by virtue of

price-based demand and generation response of the grid

and the consideration of limit violation and security issue is

only to the extent of willingness to pay of the LDCs. Thus,

this framework is to be modified for the proposed Security

Constrained Social Welfare Optimisation to ensure

required level of security margin.

2.2 The proposed social welfare optimisation
framework for smart grids

The Fig. 2 shows the proposed framework and its mathe-

matical model. The proposed optimisation model of secu-

rity constrained social welfare optimisation is crucial in

presence of RES. The ISO in this model is the central data
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analytics authority and the market players like GENCOs,

DISCOs submit their cost, consumption hour ahead char-

acterises to ISO. In this dynamic market, ISO in this

optimisation, as shown in fig., can consider the security

constraints of social welfare.

3 Mathematical modelling of the proposed
framework

In this section the mathematical model of the proposed

Security Constrained Social Welfare optimisation has been

developed compared to SCOPF model. This section also

Table 1 Summary of previous works justifying the need of the proposed Framework and Algorithm

References Proposal Findings Limitation

Palmintier

et al.

(2017)

To develop An Integrated ISO-to-

Appliance Scale Grid Modelling

System which will take the

characteristics of all the power market

players in account to cause overall

benefit

Integrated Grid Modeling System (IGMS)

simulation platform to develop the

system that simultaneously models

hundreds or thousands of distribution

systems in co-simulation with

Independent System Operator (ISO) of

various markets

The work identifies the physical

constraints of optimization but does not

quantify in terms of demand response

(DR)

Hirotaka

et al.

(2018)

A Design Method for Incentive-based

Demand Response Programs Based on a

Framework of Social Welfare

Maximization

Authors evaluate the negative consumer

surplus, and convert it into the incentive

payment in the DRs. Quantification of

decrement of the consumers’ comfort,

which is caused by the DR cooperation,

is calculated to provide appropriate

incentive payment to consumers

The work quantifies consumer’s

discomfort but does not quantify

operational standard (viz. voltage,

congestion, stability) maintenance cost

in terms of DR

Dong et al.

(2018)

Demand-Response-Based Distributed

Preventive Control to Improve Short-

Term Voltage Stability

a novel approach aiming to counteract

short term voltage fluctuations and

transient instability by employing

centralized emergency demand

response

Does not incorporate congestion,

transmission line active power loss and

their influence on DR

Mahanty

and

Singh

(2018)

Social welfare maximization for

congestion management in multiutility

market using improved PSO

incorporating transmission loss cost

allocation

The algorithm Quantified Transmission

line active Loss and congestion Cost in

terms of DR to maximise Social

Welfare in a typical Smart power

system

Did not estimate the penalties for

stability, load curtailment etc. for

obtaining appropriate results of

optimisation

Long et al.

(2019)

An Effective Method for Maximizing

Social Welfare in Electricity Market via

Optimal TCSC Installation

Implementation an OPF algorithm which

is formulated as a nonlinear

optimization problem with equality and

inequality constraints in a power system

for social welfare maximization via the

optimal installation of TCSC devices

Involvement of additional devices like

like FACTs (TCSC) will associate

additional expenses

Alotaibi

et al.

(2020)

Proposed a new framework of DR

modelling by surveying all the available

Smart Grid Models

A perfect framework associating all the

power market players is still absent in

the present Smart Grid markets round

the globe

Presents a suitable framework but does

not highlight how the same framework

can be implemented in Smart Grid

scenario

Nainar

et al.

(2021)

Incentive Price-Based Demand Response

in Active Distribution Grids

Utilization of battery energy storage

system (BESS) by DSOs for

maintaining the grid voltages within

limits

Battery Energy Storage System (BESS)

will increase costing to address the said

problem

**The framework and Demand Response based algorithm proposed in this paper addresses all the above limitations of the previous works in the

same field and quantifies all the constraints of optimization in terms of DR so that optimal schedule of both generators, renewable energy sources

and LDCs/controllable loads obtained can cause benefit of all the market players simultaneously. The proposed work in this paper does not use

devices like FACTs or BESS so that it can be a low cost optimal solution
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depicts some novel methods for estimation of penalties and

incentives for transmission line Congestion, uncertainty of

Generation due to RES, increase in power loss of the net-

work and poor power factor. The incentives and penalties

formulated in this section directly relates the consumers

with the Social Welfare optimisation problem.

3.1 The traditional security constrained optimal
power flow (SCOPF) in smart grid

The fundamental objective of any optimal power flow

program is to minimize the total generation cost as shown

in Eq. 1.

Minimize f Cið Þ ¼
Xng

n¼1

Cn Rs./hour; ð1Þ

where Cn ¼ anP
2
n þ bnPn þ cn

In Smart Grid along with minimizing the generation

cost, the operational standard in terms of reliability, effi-

ciency and quality of power has to be maintained. Combing

all the constraints, the objective function for security

constrained optimal power flow (SCOPF) is given by

Minimize f ðCn;PlmaxjTLmaxj;VminÞ

¼
Xng

n¼1

Cn þ
Xnlns

ij¼1

Plmaxij:p1ij þ
Xnlns

ij¼1

TLmaxij:p2ij þ Vmin:p3

þ
Xng

n¼1

Pgn � PD � TL

 !
:p4

ð2Þ

3.2 Limitations of SCOPF in representing
constraints of optimization

In SCOPF only the maximum line flow is considered for

the penalty to be applied to the objective function. This

makes all the line flows below the maximum limit but

makes the other lines underutilized. Similar in case of

Transmission line loss, in SCOPF, a single limit of trans-

mission line loss is traditionally assumed. Thus, the scope

of SCOPF becomes confined and fails to motivate the

solution with optimal demand side management. Hence,

general expression for the limits also to be estimated.

Considering lumped circuit model Fig. 3, the power loss

in transmission line is given by (Eq. 3)

Fig. 1 Present framework of Social Welfare Optimisation with

demand response

Fig. 2 Optimisation model of

proposed security constrained

social welfare optimisation
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TLij ¼ gij V2
i þ V2

j

� �
� 2ViVjCosdij ð3Þ

If Eq. 3 is differentiated with a change in Vi (Eq. 4)

dTLij

dVi
¼ 2Vigij � 2VjCosdij ð4Þ

For minimum transmission line active power loss in line

i–j (Eq. 5)

Vi ¼
VjCosdij

gij
ð5Þ

Substituting the value of Vi, the minimum possible

active power loss in transmission line i–j (Eq. 6)

TLijmin ¼ V2
j gij �

Cos2dij
gij

� �
¼ gij V2

j � V2
i

� �
ð6Þ

Considering Fig. 3 the expression for line flow is given

by (Eq. 7)

Pij ¼ ViVjYijCos hij þ dij
� �

� V2
i YijCoshij ð7Þ

Differentiating the equation with respect to Vi (Eq. 8)

dPij

dVi
¼ VjYijCos hij þ dij

� �
� 2ViYijCoshij ð8Þ

For maximum line flow as shown below (Eq. 9)

Vi ¼
VjCos hij þ dij

� �

2Coshij
ð9Þ

Substituting the value of Vi (Eqs. 10, 11 and 12)

Pij ¼
V2
j Cos

2 hij þ dij
� �

Yij

4Coshij
ð10Þ

¼
ViVjCos hij þ dij

� �
Yij

2
ð11Þ

¼ PlmaxijCos hij þ dij
� �

ð12Þ

where

Plmaxij ¼
ViVjYij

2
ð13Þ

This expression can be treated as maximum line flow

limit for general conditions (irrespective of no. of buses

and lines). This formula can be however approximated as

Surge Impedance loading (SIL) of the line as Vi, Vj are the

maximum values and if the rms values of the bus voltages

Vi;Vj should be assumed as 1 pu. Hence the line flow limit

for testing congestion may be assumed as (Eq. 14)

Plmaxij ¼ Yij Mw ð14Þ

3.3 Augmenting demand side management
in the proposed optimization framework

In the model expressed in Eq. 1, in traditional SCOPF, the

distribution companies were participating with a fixed

forecasted demand. This mode of participation can how-

ever be changed if LDCs can participate with a flexible

demand which are depicted (Huang et al. 2019). In the

present work such a demand response model is proposed

and implemented where as per the price of electricity in

every hour, the LDCs alter their consumption for staying in

the market with their willingness to pay characteristics or

price responsive characteristics.

In this market, electricity price is discovered by the

intercepting point of aggregated generation cost curve and

individual cost benefit function curve of each LDC or

consumer. As willingness to pay of different customers are

different, the load curtailment and the price at different

node or LDC will be different. (Fig. 4).

3.3.1 Incentive on line utilization through DR

In demand response scenario, it is expected that all the

transmission lines will be used to their fullest capacity

without exceeding the maximum allowable line flow limit.

Vi<00 Vj<δij
Z=rij+jxij

jbij
jbijYij=1/Zij

Yij=gij+jbij
= Yij<θij

 

Fig. 3 Lumped circuit model
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For the measurement of this ability for each and every load

bus the transmission line utilization factor may be proposed

as (Eq. 15)

Line utilizationfactor ðLUFÞ ¼ Pij

Plmaxij
ð15Þ

The maximum value of this utilization factor is obvi-

ously unity. For offering this incentive, nodal pricing

should be influenced in the power system by LUF. The

buses which are responsible for the improvement of the

factor should be eligible for this incentive.

Considering Fig. 5 The active power flow in transmis-

sion line i–j is (Eq. 16), Eqs. 17 and 18 can be obtained

Plij ¼ Pgi � Pdi � Pgj þ Pdj ð16Þ
Plij

Plmaxij
¼ Pgi � Pdi � Pgj þ Pdj

Plmaxij
ð17Þ

d
Plij

Plmaxij

dPdi
¼ � 1

Plmaxij
ð18Þ

Considering Pdj constant. As the effect of demand

response has been considered, Pgi and Pgj have been

assumed to be constants.

Now, Considering Pdi and its characteristics (Fig. 6)

with the price of electricity. The base case refers to an

operating point where there was balance between genera-

tions and demand and Pdi was constant. Considering small

change in demand a tangent can be drawn about the

operating point and from the slope of the tangent DPri

DPdi
can

be calculated.

Considering quadratic price responsive demand, as per

willingness to pay, the price responsive demand charac-

teristics of LDCs / Consumers, can be assumed as (Eq. 19)

Pri ¼ aiP
2
di þ biPdi þ di ð19Þ

where ai; bi, di are the coefficients of consumer cost benefit

function as shown in the Fig. 8 for the LDC or consumers

of ith Bus. For a small variation of the demand the slope of

the quadratic curve can be found as (Eq. 20)

dPr

dPdi
¼ 2aiPdi þ bi ð20Þ

Penalty for change in price due to change in line uti-

lization factor

PLUFð Þ ¼ dpri
dLUF

ð21Þ

¼ dPr

dPdi
:
dPdi

dLUF

¼ ð2aiPdi þ biÞð�
1

Plmaxij
Þ ð22Þ

Thus, the DR program proposed, in every iteration will

be calculating the PLUF using equation no.21 to 22 and will

appropriately move the solution towards the best solution

where the consumers / LDCs that are more responsible for

line utilization through DR will be provided incentives by

reduced nodal pricing.

3.3.2 Penalty imposed to minimise load curtailment

The weather dependant unpredictable generation capacity

of RES may create immense difficulty in balancing power

generation with demand. The uncertainty of generation can

Fig. 4 Nodal pricing with price elasticity of demand

   Bus i   Bus j

Pgi Pgj
Line ij

Pdi
Pdj

Fig. 5 Elementary power system

P
ri

ce
 o

f 
E

le
ct

ri
ci

ty
(P

r)
(R

s/
H

r)

Demand in ith Bus in Mw

Operating point of Pdi(Base Case)

ΔPri

ΔPdi

 

Fig. 6 Small variation in demand characteristics
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be measured by generation surplus of the upcoming hour.

The generation surplus for the upcoming hour may be

given as (Eq. 23).

Pgsurplus ¼
Xng

i¼1

Pgimax �
Xng

i¼1

Pgi ð23Þ

The factor of generation uncertainty can be represented

as Generation Uncertainty factor (Eq. 24)

ðGUFÞ ¼
Png

i¼1 Pgimax �
Png

i¼1 PgiPng
i¼1 Pgimax �

Png
i¼1 Pgimin

ð24Þ

The proposal for load curtailment in each LDC/customer

in this work is that when the generation uncertainty factor

is zero, the load curtailment should be minimum that is the

dispatch should be Pdimax and when the GUF is 1 then the

curtailment can be maximum (Pdimax–PdiminÞ that is where
Pdimax is the maximum value of dispatch requested by the

consumer in ith bus when the price of electricity is

appropriately low and Pdimin is the sum of minimum dis-

patch. Thus, the expression for allowable curtailment in the

ith bus can be written as (Eq. 25)

Pci ¼ Pdimax�Pdiminð Þ � GUF ð25Þ

Thus, the higher of the GUF, the higher is the curtail-

ment. During intermittency of generation, the maximum

value of generation of RES reduces and subsequently the

GUF increases. Thus, this load curtailment strategy ensures

minimum despatch for ith bus if the value of GUF remains

between 0 and 1. If however, the value increases above

unity due to uncertain generation the curtailment may

increase accordingly.

The change of allowable curtailment Pci in the ith bus

with respect to Pdi is given by (Eq. 26–28)

dPci

dPdi
¼ d

dPdi
Pdimax�Pdiminð Þ �

Png
i¼1 Pgimax �

Png
i¼1 PgiPng

i¼1 Pgimax �
Png

i¼1 Pgimin

� �

ð26Þ

¼ d

dPdi
Pdimax�Pdiminð Þ �

Png
i¼1 Pgimax �

Png
i¼1 Pdi � TLPng

i¼1 Pgimax �
Png

i¼1 Pgimin

� �

ð27Þ

¼ Pdimax�Pdiminð Þ � 1Png
i¼1 Pgimax �

Png
i¼1 Pgimin

� �
ð28Þ

It has been assumed under small variation change of active

power transmission line loss is TL with respect to small

change in TL is negligible.

Considering small variation of demand from the oper-

ating point, the change in charge for demand with respect

to the change in load curtailment can be expressed as (p5Þ
(Eq. 29)

dPr

dPci
¼ 2aiPdi þ bið Þ

� Pdimax�Pdiminð Þ � 1Png
i¼1 Pgimax �

Png
i¼1 Pgimin

� �

ð29Þ

This penalty in every iteration may be applied to the

curtailment of ith bus in order to guide the solutions

towards optimality.

3.3.3 Incentive for maintaining bus power factor

The bus power factor may get affected by the changes in

demand as suggested in optimal solution. This may affect

the bus voltage, and in turn may increase the losses and

regulation of bus voltage may be lost. The power factor for

a particular ith (Fig. 7) bus can be represented as (Eq. 30)

PFi ¼
Pgi � Pdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPgi � PdiÞ2 þ ðQgi � QdiÞ2
q ð30Þ

Change in the value of PFi with respect to change in Pdi

can be expressed as (Eq. 31)

dPFi

dPdi
¼ Pgi � Pdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPgi � PdiÞ2 þ ðQgi � QdiÞ23=2

q ð31Þ

The penalty for change in power factor can be expressed

as Eq. 32 (p6Þ

dPr

dPFi
¼ 2aiPdi þ bið Þ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPgi � PdiÞ2 þ ðQgi � QdiÞ23=2

q

Pgi � Pdi

ð32Þ

This penalty will be reflecting for the consumers / LDCs

with reduced nodal pricing and will motivate them to keep

a good power factor in order to get lower nodal priceas they

manage demand.

3.3.4 Incentive for improving line stability

To secure a stable operation of power system, the line

stability index should be maintained below unity. The

Eq. 33 shows the relation between line stability index and

power system parameters.

Pgi Qgi

Pdi Qdi

ith Bus

Fig. 7 Elementary bus power flow
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LQp ¼ 4
x

V2
i

� �
x

V2
i

:P2
i þ Qj

� �
ð33Þ

where the line reactance of the line is x; connected between

bus i and bus j. Vi is the bus voltage of the ith bus.

Now bus injection power;

Pi ¼ Pgi � Pdi ð34Þ

LQp ¼ 4ð x
V2
i

Þð x
V2
i

:ðPgi � PdiÞ2 þ QjÞ ð35Þ

dLQp

dPdi
¼ 4

x

V2
i

� �
x

V2
i

� �
:2: �1ð Þ ¼ �8x2

V4
i

ð36Þ

Now considering Eq. 37,

dPr

dPdi
¼ 2aiPdi þ bi ð37Þ

Thus dPr

dLQp
=Penalty for change in price, due to change in

LQp due to change in demand (considering Eqs. 34–37,

Eq. 38 can be obtained)

p7 ¼
dPdi

dLQp
:
dPr

dPdi
¼ � V4

i

8x2
: 2aiPdi þ bið Þ ð38Þ

Hence determination of this penalty is necessary in order

to penalise the calculated value of LQp in every iterations

to reach its optimal value in the given set of constraints. As

stated earlier this technique will influence the nodal pricing

in a way that the LDCs / consumers responsible for poor

values of LQp

3.3.5 Incentive for power utilities to maintain high inertia
constant

The operation of the grid and the corresponding optimal

generation and demand schedule should be able to maintain

substantial or optimal value of the inertia constant in order

to combat unexpected disturbances or contingencies. From

Newton’s law, the force balance equation in a rotational

system is given by (Eq. 39),

J
dw

dt
¼ Tm � Te ð39Þ

The inertia constant is expressed as the ratio of kinetic

energy stored at synchronous speed to the volt Ampere

rating of the machine (SbÞ, with W0 is the angular velocity

of the rotor at synchronous speed (Eq. 40)

H ¼ 1:Jw2
0

2:Sb
ð40Þ

Now, the synchronous frequency is given by (Eq. 41)

f ¼ P

2
f r ð41Þ

where P ¼ No. of poles and f r = Rotor frequency and

w ¼ 2:p:f r
From these equations, an expression for the change in

frequency is given by (Eq. 42)

df

dt
¼ �DP

2:H:Sb
f 0 ð42Þ

DP is the change of active power due to loss of intermittent

renewable energy source and f 0 ¼ the frequency before the

loss of active power. For the nth generator unit this change

or loss of active power generation will be reflected in

change in the generation surplus and thus the minimum

limit of load curtailment as expressed in (25). The loss of

active power can be expressed as

DP ¼
Xng

n¼1

ðPgn0 � PgnÞ �
Xnd

i¼1

ðPdi0 � PdiÞ ð43Þ

The lowest or optimal value of inertia constant may be

assumed from the base case operation of the grid. The

optimal power flow objective function should be motivated

towards minimum value of DP, corresponding to maximum

value of inertia constant. This will maximise the generation

of other generators which are not subjected to intermittency

and will try to minimise the demand of each bus to retain

the inertia constant of the base case. Thus, penalty should

be added in the objective function to motivate the solutions

towards a higher inertia constant, even in case of inter-

mittency of generation.

3.4 Formulation of the proposed security
constrained social welfare optimisation
objective function

For the benefit of all the power market participants, Social

Welfare Optimisation could be taken as the objective

function of the grid with the suitable modifications as

explained in previous section. A more potential objective

function is explained in (Eq. 44).
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The left part of this objective function contains the

consumer /LDC cost benefit function. This characteristics

or function can be derived from the willingness to pay of

the LDCs and their bid data. The right-hand side is the

operational standard constrained generation cost function.

The first term of it is the total generation cost of all the

generators or GENCOs participating. The second term is

the transmission line congestion management cost, the

third term is the transmission line power loss cost, the

fourth term is the cost for maintenance of bus voltage at a

minimum value (0.95 PU), the fifth term is the generation

and demand balance management cost, the sixth term is the

optimal load curtailment cost, the seventh term is the

power factor management cost, the eighth term is the line

stability index management cost, the ninth term is the

higher inertia maintenance cost and the 10th term is for

transmission line utilization.

4 Implementation of the proposed
optimization framework—case study
on IEEE 30—bus system

In this section of the work, the proposed Differential

Evolution modified Security Constrained Social Welfare

Optimisation Algorithm has been described step by step.

This section also depicts the case studies conducted to

demonstrate the efficacy of the proposed algorithm with

respect to the traditional SCOPF. The mathematical model

of DEQPSO algorithm and description of modified IEEE

30 bus System have been presented in the Appendix

section.

4.1 The proposed DEQPSO based social welfare
optimisation framework

The step-by-step descriptions of the proposed optimisation

algorithm are as follows:

Step 1. Appropriate parameters of DEQPSO, error

gradient (0.01X 10–25), Dimension of the swarm (27 (6

generator bus, 19 load bus)), number of iterations

(T = 300), Population size(35), random numbers

(e ¼ 0:35Þ, Contraction and Expansion factor

(k = 0.25) are chosen. For the first iteration arbitrary

values of penalties are assumed.

Step 2. Position of the solution particles which are

random combinations of 6 generation in Mw and 19

Load in Mw within the maximum and minimum limit is

calculated by equation no. 3A and 4A.

Step 3. For each of the solution particle, the fitness

function or the Social Welfare objective function is

calculated as per Eq. 44. For the 1st iteration positive

arbitrary values of penalty is assumed. The base case

data is either available or assumed to be same as 1st

iteration random data.

Step 4. The average of all the best positions is calculated

using Eq. 5A as available in appendix section. As the

objective is maximisation of social welfare, solution

particles with maximum values of objective function are

the best values.

Step 5. All the positions of the particles are updated as

per Eqs. 6A and 7A with the knowledge of mbest in the

next iteration. Before moving to the next iteration, the

penalties for present iteration is calculated which are

applied in the next iteration.

Step 6. In each iteration the fitness or the objective

function as in Eq. 44 is calculated. The maximum value

of the objective function corresponds to the best solution

and the pbest, gbest and mbest are calculated corre-

sponding to this best solution. In the next iteration, the

optimiser looks for better solution particle with respect to

the previous best solution. The error gradient between

two consecutive iterations is also calculated which is the

stopping criteria.

Step 7. In each iteration the incentives and penalties are

estimated to be imposed in the objective function.

Maximise f ðCn;Plmaxj; TLmaxj;VminÞ ¼
Xi¼nd

i¼1

aiP
2
di þ biPdi þ di

�

Xng

n¼1

Cn þ
Xnlns

j¼1

Plmaxij:p1ij þ
Xnlns

ij¼1

TLmaxij:p2ij þ Vmin:p3

þ
Xng

n¼1

Pgn � PD � TL

 !
:p4 þ

Xi¼nd

i¼1

Pdimax�Pdið Þ:p5 þ
Xi¼nd

i¼1

PFi:p6

þ
Xnlns

j¼1

LQpj:p7 þ
Xng

n¼1

ðPgn0 � PgnÞ �
Xnd

i¼1

Pdi0 � Pdið Þ:p8 þ LUFij:PLUF

0

BBBBBBBBBB@

1

CCCCCCCCCCA

ð44Þ
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Step 8. In each iteration load curtailment limit is also

calculated to penalise the objective function accordingly

so that minimum dispatch requested by the LDC/

Consumer through Demand Response can be ensured.

Step 9. In each iteration the donor vectors are calculated

in as per Eqs. 8A and 9A. The difference vectors add

versatility to the solution particles so that solutions with

better fitness can be obtained.

Step 10. The knowledge of crossover probability (CR) in

this step decides the ultimate position of the solution

particle which may be better than or equal to QPSO

results as per Eq. 10A.

Step 11. The solution particle meeting step 6 criteria are

tested for its feasibility of implementation in the power

network.

Table 2 Case studies with security constrained optimal power flow (SCOPF)

Sl

no.

Case study particulars Minimum bus voltage

(VmininP:UÞ
Transmission line power

loss (Mw)

Maximum line

flow (Mw)

Generation cost

In Rs

1 Base case 0.9818 9.0089 81 11,772.00

2 Active power loading 50% increment

on 30th Bus

0.9877 8.7 81.44 12,542.00

3 Active power loading 100% increment

on 30th Bus

0.9827 8.8112 81.13 13,002.00

4 Active power loading 150%increment

on 30th bus

0.9871 8.71 81.49 13,789.00

5 Reactive power loading 50% increment

on 30th Bus

0.9771 8.873 81.46 12,300.00

6 Reactive power loading 100%

increment on 30th Bus

0.9681 9.01 81.4 12,553.00

7 Reactive Power loading 150%

increment on 30th Bus

0.9648 8.92 81.59 12,874.00

8 (N-1) contingency in line 1–2 0.9903 15.38 140.38 18,311.00

9 (N-2) contingency in line 1–2 and 2–5 0.9796 23.39 148.52 19,951.00

10 (N-3) contingency in lines 1–2,2–5 and

6–7)

0.97 23.65 148.6 19,965.00

Table 3 Case studies with security constrained social welfare optimization with demand response

Sl

No.

Case study particulars Minimum bus voltage

(VmininP:UÞ
Transmission line power

loss(Mw)

Maximum line

flow (Mw)

Generation cost

In Rs

1 Base case 0.9745 6.7 60 3280.8

2 Active power loading 50% increment

on 30th bus

0.9757 6.705 60 3875

3 Active power loading 100% increment

on 30th bus

0.9807 6 55 4255.7

4 Active power loading 150%increment

on 30th bus

0.9771 6.72 64 4768.7

5 Reactive power loading 50% increment

on 30th bus

0.9690 6.7332 61 3577.1

6 Reactive power loading 100%

increment on 30th bus

0.9635 6.75 62.5 3625

7 Reactive power loading 150%

increment on 30th bus

0.9566 6.79 61.75 3745.5

8 (N-1) contingency in line 1–2 0.9767 7.0990 83.3032 11,597

9 (N-2) contingency in line 1–2 and 2–5 0.9729 10.87 84.9 12,136

10 (N-3) contingency in lines 1–2,2–5 and

6–7)

0.9753 10.78 84.85 13,124
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5 Implementation of the proposed
framework in IEEE 30-bus system

In the base case (Sl no. 1, Table 2), the DEQPSO based

optimizer, with the SCOPF objective (Eq. 2) produces

minimum generation cost at standard operating condition

in respect of bus voltage, transmission line Power Loss and

maximum power flow. But as Active power loading (Sl.

No. 2, 3, 4 of Table 3), reactive power loading (Sl. No. 5, 6,

7) and (N-1), (N-2) and (N-3) contingencies worsen, the

generation cost increases for sustainable operation of the

grid.

The Table 3 shows the results for the proposed security

constrained Social Welfare optimization technique with

demand response. Imposing the same loading conditions

with social welfare as objective and with the incentives on

maintaining better Transmission line stability and demand

response, better operating condition with remarkably less

generation cost was found. However, there is a consider-

able load curtailment which is a threat to reliability of

supply. In Eq. 25, a formula related to maximum allowable

load curtailment has been derived in this paper. Hence

although the LDCs/consumers are subjected to load cur-

tailment, the system can operate within safe limit of reli-

ability if the allowable load curtailment is not violated. The

same fact is substantiated in Fig. 8 which shows that

although the nodal price of Social Welfare optimization is

less than that of SCOPF, the load curtailment in case of

former is more but the same is within safe limit as for-

mulated in Eq. 25.

In addition, the proposed social welfare optimization

algorithm in stressed condition of the power network pro-

duces improvement in Bus PF (Fig. 9), reduction in nodal

price (Fig. 10), improvement in LSI (Fig. 11) creating a

more secure operational zone of the network. The reduction

in nodal price is due to the incentives provided by the

Fig. 8 Load curtailment with the proposed algorithm with respect to ISO set limit of each bus

Fig. 9 Improvement of PF in proposed social welfare optimization
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solution being driven by penalties against each social

contribution of the LDCs/Consumers.

The proposed algorithm also is capable of producing

generation and demand schedule with higher degree of

dynamic rotor angle stability. In the extreme stressed

condition of active power loading, it was examined that

due to the incorporation of generation demand balance in

the objective function, the result produced also optimises

the rotor angle and thus contributes to the improvement of

stability margin of the grid (Fig. 12). All the simulations

are performed in MATLAB 2018a.

Fig. 10 Nodal or bus-wise price of electricity per MW

Fig. 11 Improvement of LSI with proposed algorithm

Fig. 12 Improvement of rotor angle stability
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6 Conclusion

For balancing the generation with load demand, smart grids

use techniques like demand response to ensure Optimal

Power Flow leading to maximisation of Social Welfare in

terms of reduced electricity prices. However, existing OPFs

are generally more biased towards reduction of electricity

prices for consumers, often at the cost of violating opera-

tional constraints and challenging system security. It is

imperative that a well-thought of Social Welfare Optimi-

sation Framework must fulfil objectives likeoptimal load

curtailment, maintaining adequate stability margins,

maintaining high system inertia and line stability as well as

maintaining acceptable bus voltages and power factor,

apart from minimizing the nodal prices of electricity. This

work proposed an optimisation framework which strived to

achieve security constrained social welfare optimisation

through DR technique, taking into account several opera-

tional issues such as intermittency of Renewable Genera-

tion, lowering of system inertia due to RES, degradation of

bus PF, line stability, deviation of voltage etc. The algo-

rithm developed in this paper ensured optimized load

curtailment, reduction of network losses, improvement of

operating power factor and mitigation of line congestion,

among several other benefits, while ensuring nodal prices

of electricity to be optimal. Differential Evolution modified

Quantum Particle Swarm Optimisation (DEQPSO) was

used in this research work to achieve the proposed objec-

tive. The case study on modified IEEE 30 Bus system

presented in the paper established that the proposed algo-

rithm outperformed the existing Social Welfare optimiza-

tion algorithms delivering encouraging results.

Appendix

Generation and demand scheduling using
stochastic DEQPSO optimisation tool

In this work the Differential Evolution modified Quantum

Particle Swarm Optimisation (DEQPSO) algorithm has

been used to optimise social welfare and to produce opti-

mised generation and load schedule for the next hour. In

the previous works the authors used particle swarm opti-

misation (PSO) for the same type of convex nonlinear

objective function. particle swarm optimisation (PSO) is a

stochastic optimization strategy introduced by Kennedy

and Ebarharth in 1995. The method was inspired by fish

schooling and bird flocking where each solution, that is a

particular generation and demand schedule, is a particle

that hovers around the solution space, that is the feasible

range of generation of generators and demand. Each par-

ticle has a position and velocity which is updated in each

iteration with respect to their individual best referred as

Pbest and global best referred as Gbest position and

velocity in terms of objective or fitness function. The

Eqs. 45 and 46 are responsible to change the position and

velocity as per individual and social influence of the par-

ticle flock and guide the particles towards best possible

solution.

vidðt þ 1Þ ¼ x:vidðtÞ þ c1:U1ðpidðtÞ � xidðtÞÞ
þ c2:U2ðgidðtÞ � xidðtÞÞ ð45Þ

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ ð46Þ

vidðt þ 1Þ= Updated velocity of the particle, xidðt þ 1Þ=
Updated position of the particle.

This particle Swarm Optimisation Suffers from local

convergence. Since Pbest and Gbest positions can be a very

small part of the solution plane, the algorithm suffers from

social metaphor as it can converge locally. The quantum

particle swarm optimisation (QPSO), an application of

Quantum Mechanics Theory to PSO, has proven to be

better alternative of PSO. In QPSO, the position of a par-

ticle is determined by probability distribution function,

hence the production of alternative solution can be ensured

and also the possibility of global solution increases. In

QPSO each particle is resident of quantum well d, which is

multi-dimensional in Quantum Space. In the same space

the position of the particle is defined as Monte- Carlo

method

xTK ¼ PK þ A

2
ln

1

e

� �
ð47Þ

where PK is the initial random position of the particle, e is a
random number between 0 and 1. A is calculated from the

following expression

A ¼ 2:k:jPK � xTK j ð48Þ

where T is the iteration number and k is the contraction and

expansion factor which helps maintaining position of the

particle during collapse of the well d. The local conver-

gence is avoided in QPSO by introducing mbest which is

the average best position of all the particles.

mbest Tð Þ ¼ 1

n

Xn

k¼1

Pbesti ð49Þ

n is the number of particles and Pbesti is the best position of

kth particle in its own well mbest Tð Þ, however, is the best

positions with respect to all the wells or in other words

when all the wells collapse.

Now with the knowledge of mbest Tð Þ, A is updated as
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A ¼ 2:k:jmbest Tð Þ � xTK j ð50Þ

In the next iteration the position of the particle is

updated as

xTþ1
k ¼ PK � k: mbestTK � xTK

		 		:lnð1
e
Þ ð51Þ

This algorithm reaches global optimum but even the

presence of mbest can take a lot of iteration. Thus, avoiding

local convergence in PSO introduces higher number of

iterations in QPSO. In order to accelerate the global search,

since same may help the power market participants in

taking quicker decisions, differential evolution (DE)

algorithm can be introduced alongside QPSO algorithm.

The result algorithm, known as DEQPSO algorithm, can

demonstrate better result with lesser number of iterations

depending on the nonlinearity and complexity of the

objective function. In the DEQPSO algorithm, a donor

vector is developed by adding the weighted subtracted

values of two or more personal best position. Thus the

donar vector is given by

vTþ1
k ¼ PK þ

XN

q¼1

£
T
kq=N ð52Þ

Fig. 13 The IEEE 30 bus system

Table 4 IEEE 30 bus system

System parameters Description

Branches 41

Generator 6

Total Demand (MW) 554.6

Table 5 Generator

characteristics of thermal and

RES

Bus No. Output of the generator in MW Generator cost coefficients

Min Max ai (Rs/MW2) bi (Rs/MW) ci (Rs)

1 (Thermal) 100 200 0.0071 7.3335 1881

2 (Thermal) 10 35 0.0083 8.22 2020

5 (Thermal) 15 50 0.092 10.11 2350

8 (Wind) 50 115 0 1.1682 2886.1

11 (Solar) 50 80 0 1.308 2320

13 (thermal) 10 30 0.01 11.2 2500

Table 6 Consumer’s price responsive characteristics

Bus no. Load dispatch Co-efficient of benefit function

Min Max ai (Rs/MW2) bi (Rs/MW) di (Rs)

2 11.7 21.2 - 0.2 67.1 0

3 3.2 5.5 - 0.10 70.5 0

4 8 10.6 - 0.3 65.5 0

5 114.2 215 - 0.2 87 0

7 12.7 40.2 - 0.035 60 0

8 20 55 - 0.21 70 0

10 7.8 10.6 - 0.35 78 0

12 10.5 15.8 - 0.16 60 0

14 5 17.5 - 0.125 60.6 0

15 7.2 10.5 - 0.25 50 0

16 2.5 15 - 0.25 60 0

17 5.5 14.5 - 0.005 55.5 0

18 2.5 6.2 - 0.17 90.2 0

19 8.25 10.1 - 0.255 56.2 0

20 3.15 5 - 0.15 80 0

21 27.5 60 - 0.152 63.8 0

23 2.5 5.2 - 0.52 75 0

24 3.8 8.5 - 0.12 70 0

26 2.5 5.7 - 0.13 70.2 0

29 1.2 5.5 - 0.15 82 0

30 11.2 17 - 0.12 72 0
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where £
T
jq is a state variable of general difference vector

defined as Dq ¼ ½£1q;£2q;£3q;£4q;£5q:£dq�
Here d is the dimension of the state variables. Also q =

1,2,3,…,N

£
T
jq ¼ ½ðPT

r1q � PT
r2qÞ þ ðPT

r3q � PT
r4qÞ�=2 ð53Þ

where Pr1q, Pr2q;;P
T
r3q;P

T
r4q are the four personal best

positions randomly selected excluding global positions and

r1, r2,r3 and r4 and the four random integers. The value of

N can be 2 or more but for simplification in the present

problem it is assumed as 2. In canonical DE, after mutation

by the donar vector a crossover operation is used to create

new solutions to the problem. For this operation a trial

individual is developed in DEQPSO algorithm by the

mutated individualVk ¼ ½vk1; vk2; vk3; . . .:vkd�.
And personal best position PK as is expressed as

tTþ1
k ¼ vTþ1

k ; rand jð Þ�CR
PT
k ; rand jð Þ[CR



ð54Þ

Here CR 2 ð0; 1Þ is the crossover probability. With this

technique the confluence DE with QPSO either retains

QPSO results or improves the result with respect to QPSO

by the mutation and crossover operation. This trial indi-

vidual tTþ1
k replaces the xTþ1

k if it can show better fitness

with respect to the objective function. Thus DEQPSO

results are not lesser in quality of solution than QPSO and

thus PSO or DE itself.

The feasibility and effectiveness of the proposed algo-

rithm has been tested in presence of renewable energy

sources on a modified IEEE 30 bus system Fig. 8 and

Table 1.

System description and characteristics
of generators and LDCs / consumers

See Fig. 13 and Table 4.

In Table 5 the incremental cost characteristics of Ther-

mal Power Plants and RES has been presented. One wind

and one solar power plant have been assumed in bus no. 8

and 11. Table 6 presents the consumer cost benefit func-

tions in the form of demand response of the LDCs. These

cost benefit functions will depend on the willingness to pay

of the LDCs and their subsequent bids.
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