
TECHNICAL PAPER

Modelling of air damping effect on the performance of encapsulated
MEMS resonators

Ankang Wang1 • Sahereh Sahandabadi1 • Tyler Harrison2 • Dean Spicer2 • Mohammed Jalal Ahamed1

Received: 26 October 2021 / Accepted: 13 September 2022 / Published online: 30 September 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The dynamic performance of a micro-resonator depends on its energy loss mechanism which is quantified by Q-fac-

tor (Quality factor). This paper presents numerical and analytical modelling techniques to understand the air damping on

energy loss and Q-factor in enclosed micro-resonators. A complete finite element based numerical model is presented that

can recreate a vacuum packaged MEMS resonators operating condition and capture its Q-factor for various design and

pressure conditions. The finite element model was then compared with analytical models available in the literature. In this

work, various vacuum regions relevant to encapsulated MEMS resonators are investigated using analytical and finite

element approaches for pressure ranges of\ 1 Pa, 1–10 Pa, and 10–100 Pa. When the pressure decreases, the Q factor

from finite element analysis and the analytical model exponentially increases until it levels off in intrinsic damping. The

modelling techniques described in this paper are compared with previously reported experimental work showing good

qualitative agreement of the change in Q-factor with pressure. Air damping is divided into squeeze film damping and slide

film damping to further explore damping effects and squeeze film damping is found to be the dominant energy loss

mechanism in the studied device. In a gap-closing structure, the air gaps between moving structure and fixed fingers create

squeeze film damping and cause energy loss while the smaller air gaps between them generate large forces, increasing the

damping. The modelling techniques presented in this paper can be applied generically to MEMS resonators to mitigate air

damping losses.

1 Introduction

Microelectromechanical system (MEMS) based resonators

are used in a wide range of applications in aerospace,

satellite, defense, automotive, consumer electronics, and

medical instruments for motion, position, stability and

navigation purposes (Khan et al. 2020; Khan and Ahamed

2020). The aerospace and satellite industries require high-

performance resonators for navigation and guidance sys-

tems. These applications demand resonators with higher

stability and lower energy loss. Any energy dissipation

during vibration will reduce its amplitude of motion and

will require additional input energy to keep it vibrating at

its resonance. Therefore, the performance of a MEMS

resonator highly depends on the rate of vibrational energy

dissipation. The Quality factor (Q) is defined as the ratio of

maximum stored energy to the total dissipated energy per

cycle and can be measured using the time rate of decay of

the resonator vibration energy (Ghaffari et al. Jul. 2015).

High Q-factor leads to resonance with a sharp peak and

high gain, resulting in a more sensitive and efficient sensor.

A high performance MEMS resonator with a Q-factor in

the range of a million, can be considered as state of the art,

was demonstrated in (Senkal et al. 2015). A low Q-factor

results in an attenuated amplitude of vibration (low gain

and low sensitivity), making the motion of the micro-res-

onator unstable and not suitable for high performance

applications. Many in the literature has explored detailed

understanding of energy loss mechanisms and their

improvements (Taheri-Tehrani et al. 2017; Santos et al.

2015; Toan et al. 2014; Shmulevich et al. 2013; Ahamed

et al. 2014; Du, et al. 2018; Kucera et al. 2013). For

example, Q-factor for a damped mass-spring is expressed

by the following formula (Ren et al. Sep. 2013; Yang et al.

2017).
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Q ¼ Energymax store

Energytotal dissipated

¼ mx
c

¼ k

cx
¼

ffiffiffiffiffiffi

km
p

c
ð1Þ

where, k is the spring constant of resonator, x is the radial

frequency, c is the coefficient of damping force, and m is

the effective mass. There are three primary energy dissi-

pation methods: thermoelastic dissipation (TED), anchor

loss, and air damping (Ghaffari et al. 2015; Rodriguez et al.

2019). Among different energy losses, the air pressure is

dominating loss for the micro-resonators operated in the

open air or at low vacuum (Chiao and Lin 2002). If the

resonator is not packaged with a vacuum seal, then it

operates in the ambient air at atmospheric pressure. There

is significant energy loss, and detected Q-factor is low in

the order of 10 to 1000 (Khan et al. 2020). However, if the

micro-resonator is encapsulated in vacuum, detected Q-

factor is high in the range of hundreds of thousands (Senkal

et al. 2014; Li et al. 2018).

Depending on the vacuum level, micro-resonators may

experience squeeze film damping and slide film damping

against the moving part’s motion. This paper addresses

which damping mechanism dominates inside the encapsu-

lated cavity under different vacuum regions for vacuum

packaged MEMS devices. MEMS packaging techniques

can achieve pressures from * 0.1 Pa with gettering to *
100 Pa without (Lisec and Reinert 2010). Such devices

can degrade over time, making the pressures between those

regions interesting to study. Sen et al. (2013) have studied a

micromachined pressure sensor with an integrated res-

onator operating at atmospheric pressure, showing that the

Q-factor from 1146 to 1772 for a device with a frequency

of 34.55 kHz (Ren et al. 2013). Bao (2005) investigated the

squeeze-film air damping effect in a MEMS resonator

using the Christian model (Rodriguez et al. 2019), the

energy transfer model, and the Boltzmann transportation

equation (Bao 2005), showing that the effect of air

damping is indeed quite constant when air pressure is near

atmospheric pressure. However, when the air is rarefied to

pressures well below one atmospheric pressure, air damp-

ing is reduced appreciably (Christian 1966). Feng (2011)

studied the squeeze-damping effect in the molecular

regions, showing decreased air damping with the resonator

enclosed in a gas evacuated cavity. Gas damping is neg-

ligible when ambient pressure is close to 1 pa. Senkal et al.

(2014) concluded that viscous effects (evaluated at a

pressure of 1.01 9 105 Pa) dominate in low- frequency

zone, while the stiffening effect (resisting deformation)

dominates in the higher frequency zone for low frequency

micro-resonators with resonant frequencies on the order of

a few tens of kHz. Zhou et al. (2014) proposed that Q factor

strongly depends on the air gap distance between comb

fingers. The narrower air gap that exists between the two

sides of a capacitive device, the higher the damping

coefficient, and the worse the dynamic performance of a

micro-resonator (Zhou et al. 2014). Christian’s free mole-

cule model does not consider the influence of fixed walls

like the substrate, the fixed comb fingers, and the anchors.

However, most MEMS applications have such structures. If

there is a substrate near the oscillating structure, Christian’s

free molecule model is not suitable. Therefore, Hutcherson

and Ye (2004) proposed a direct approach based on the

energy transfer model from Bao et al. (2002). This

approach considers the effect of nearby walls on damping.

Bao et al. assume the reaction between gas molecules and

micro-resonator structure, ignoring intermolecular colli-

sions. This energy transfer model uses the conservation of

linear momentum and conservation of kinetic energy to

calculate the velocity change before and after interactions

between the moving structure and the medium. Wang et al.

(2013) demonstrated that the dominant air damping

mechanism can depend on the direction of motion. For that

device, slide- film damping dominates in the driving

direction, squeeze-film damping dominates in the sensing

direction.

Focusing more on the numerical evaluation of gas

damping, a model in Frangi et al. (2009) predicts the effect

of gas damping in inertial MEMS by introducing a

numerical model for free-molecule flows which advances

the modeling approach in near vacuum regime. In the

transition regime, on the other hand, the Boltzmann equa-

tion with simplified modeling is applied in Frangi et al.

(2007) to evaluate the gas damping in silicon inertial

MEMS operating at lower frequencies. A numerical 3D

integral approach is introduced in Frangi et al. (2016) and

used to fabricate and test various structures to validate the

prediction of gas damping in MEMS. Later, a simplified

model of the gas damping prediction is proposed based on

a similar approach in Fedeli et al. (2017).

Air pressure regions and degree of air rarefaction

depend on the value of Knudsen number, ðKn ¼ k
g
), which

in a gap-closing comb-drive resonator stands for the ratio

of mean free path of the gas molecules to the gap distance

between plate and fixed comb fingers. If the Knudsen

number is greater than ten which is reasonable for MEMS

resonators, air damping is in the free molecular damping

region (Hutcherson and Ye 2004) where viscous effects can

be ignored. Figure 1 demonstrates the air damping cate-

gory includes three pressure regions: intrinsic damping,

molecular damping, and viscous damping (Bao 2005).

Figure 1 shows the relationship between pressures and

Q-factor for a typical MEMS device. If the device is

exposed to lower ambient pressure, the quality factor can

be increased. Generally, an assumption is that air acts like a

viscous fluid and resists against the micro-resonator’s

motion. Viscous damping is dominating near the
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atmosphere (100–105 Pa) pressure, where the Q value is

small due to air damping (Q in the 100 or 1000) (Khan

et al. 2020). Therefore, it is studied around atmospheric

pressure. At very low pressures, other damping mechanism

losses (e.g. TED, anchor loss) is larger than the air damping

(Hutcherson and Ye 2004). However, air damping plays an

essential role in analyzing capability for improving a

MEMS device’s performance even in a low-pressure

region to achieve accurate predictions during the design

stage. Researchers investigating the low-vacuum region

found that air damping dominates energy loss at (about

100–1000 kPa (Bao 2005). In the molecular damping

region (1 Pa\P\ 100 Pa), molecules strike the micro-

resonator and intermolecular collisions are rare enough to

be excluded from analysis. In this region, the comb fingers

collide with air molecules during the micro-resonator’s

motion causing kinetic energy loss from the resonator to

the surrounding air and the Q factor increases exponen-

tially as pressure decreases. As for the intrinsic damping

region, air damping decreases while the Q factor levels off

to a constant (typical Q[ 105, Kn is high) at a high vacuum

(P\ 1 Pa). The energy loss is from air damping is no

longer significant and dominant energy loss is from TED

and anchor loss. Air molecules are far away from each

other in this regime and there is no appreciable interaction

with the moving mass.

The above-mentioned studies show that even with vac-

uum seal packaging, several mechanisms limit the obtain-

ing high Q factor. Q factor depends on air gap distance

between comb fingers, surrounding walls and gas proper-

ties inside the device. The combination of all these

damping effects inside vacuum sealed resonators in one

single modeling technique has not been explored, thus this

paper will present a detailed analysis of air damping effects

on sealed micro-resonator at various pressure regions.

The following section aims to perform analysis of the air

damping effect on a sealed micro-resonator at various

vacuum regions to provide a model to predict the air

damping loss and use it to design resonator with low

damping. It is critical to present the analytical and

numerical modelling techniques to provide a complete

understanding of air damping in MEMS resonators. Ana-

lytical modelling is developed based on various formulae

available in the literature and is presented as a baseline in

Sect. 2. Next, Finite Element Analysis (FEA) based

numerical modelling of a vacuum-sealed MEMS resonator

using the simulation tool COMSOL Multiphysics 5.5 is

developed to investigate damping and its relationship with

resonator design and cavity pressure parameters by recre-

ating the actual operating environment of the resonator in

Sect. 3. Section 3 also compares Q factor in different

vacuum regions using both analytical and FEA approaches.

In Sect. 4 a qualitative comparison of the model results is

presented and compared to previous measurements from

literature.

2 Analytical modeling

Analytical analyses using various simple formulation are

available in the literature to relate air damping on MEMS

resonator. These models provide a baseline way to validate

the FEA simulation results that should be consistent with

analytical results. During the plate’s movement, the vis-

cous air flow dissipates some of the energy and transfers it

into heat (Bao et al. 2002). When the movable plate is

placed in parallel to the fixed fingers and moving towards

the fixed fingers, the air film between movable plate and

fixed finger is squeezed so that some of air flows out of the

Fig. 1 The relationship between pressure and typical quality factor of

micro-devices. Pressure regions are classified as intrinsic damping

(P\ 1 Pa), molecular damping (1 Pa\P\ 100 Pa), and viscous

damping (P[ 100 Pa) (Bao 2005)

Fig. 2 Pressure built-up by squeeze-film motion when the moving

plate moves toward fixed fingers. Air gap distances determine the

magnitude of squeeze film damping between the movable plate and

the fixed wall (Bao 2005)
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air gaps as shown in Fig. 2. Additional pressure develops in

the air gaps due to the viscous flow of the air (Christian

1966). In other words, the air acts as a damper. Gas viscous

damping is classified into three categories: slide-film gas

damping, squeeze film gas damping, and gas drag damping

(Christian 1966). Squeeze-film damping occurs when the

moving plates is moving toward to the fixed wall (Fig. 3a)

(Itoh et al. 2003; Tang and Zhang 2019). Slide film

damping occurs when the movable plate moves parallel to

the fixed wall (Fig. 3b) (Dennis et al. 2015; Bao and Yang

2007). Gas drag damping is cause by momentum transfer

from gas particles hitting the moving structure, it is neg-

ligible at the pressure regions explored in this paper (Boom

et al. 2021).

The damping force of squeeze film air damping is

strongly dependent on the air gap distance. The larger the

gap, the smaller the damping force generated, and the

pressure change between the combs is negligible. When the

moving plate moves closer to the fixed finger, smaller air

gaps are generated. The pressure build-up in between finger

and moving plate create a larger damping force and causes

the low-quality factor. Squeeze-film air damping has cru-

cial effects on the dynamic behaviour of micro-structure

since our structure comb fingers are used for sensing the

capacitance change. There is a trade-off between electrical

and mechanical performance. A small gap is desirable to

increase capacitance for electrical detection but decreases

the Q factor through squeeze-film damping. Modern

packaging techniques can achieve low pressures around

1 Pa, but may leak over time (Pickering et al. 2018).

Slide-film coefficient can be derived from the Navier

stokes equation (Wang et al. 2013):

CSlide;top ¼ leff
Aoverlap

dpt
ð2Þ

CSlide;bottom ¼ leff
Aoverlap

dpb
ð3Þ

where CSlide;top;CSlide;bottom are the slide film damping

coefficient exist in the air cavity above the device and

bottom of the device. The air viscosity (l = 1.75e-5 Pa.s)

is the air viscosity constant at room temperature (20 �C), it
needs to be converted to effective viscosity due to pressure

change leff ¼ l
1þ6Knð Þ

� �

(Jennings 1988) which increases

relative to cavity pressure (Wang et al. 2013). Aoverlap

ð3:68E � 6m2Þ is overlapping plate area, dpt (50 lm) is the

air cavity distance between device wafer and lid wafer.

And dpbð20lmÞ is the air cavity distance between device

wafer and base wafer (dpb; dpt are considered as dp shown

in Fig. 4, when dp is reduced by 10 lm it will increase the

slide film damping by 0.0005 lNs/m slide film damping

coefficient).

The squeeze film air damping coefficient can be

expressed by the semi-theoretical and semi-empirical

expression (Wang et al. 2013):

CSqueeze ¼ leff
LxLz

3

g3
b

Lz
Lx

� �

ð4Þ

Beta function b (Lz /Lx) could be represented by Wang

et al. (2013):

Fig. 3 Air damping mechanism in MEMS devices: a squeeze-film

damping (movable plate moves toward fixed fingers or fixed wall) and

b slide-film damping (movable plate slip to adjacent fixed walls or

fixed comb) (Hutcherson and Ye 2004)

Fig. 4 Three silicon wafers bonded together as one device to create a

vacuum encapsulated MEMS device structure. The slide film

damping exists in the cavities above (dpt) and bottom (dpb) of device

wafer and the squeeze film damping exists between movable plate and

fixed comb in the device wafer
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b
Lz
Lx

� �

¼ 1� 192

p5
Lz
Lx

� �

X1
n¼1;3;5

tanh
npLx
Lz

� �� �

ð5Þ

where Lx, Ly, Lz are movable finger length, width, and

device thickness. Beta function b (Lz /Lx) is equal to 0.85.

This section explains where the slide film damping, and

squeeze film damping occur on the micro-resonator. Sev-

eral geometric parameters can be exploring to optimize the

micro-resonator structure to reduce energy loss from the

slide film and squeeze film damping effect. Those param-

eters (comb finger length (Lx), structure thickness (Lz), air

gaps (g), overlap area Aoverlap, and air cavity (dp) need to be

analysed for the desired geometry.

A 2D top view of a micro-resonator structure considered

in this study is shown in Fig. 5a. A rectangular single mass

resonator is selected for this study as it is one of the

classical shapes in MEMS resonator involving comb

drives, fixed structures, and a moveable mass suspended

over a cavity. The device consists of the movable plate

(proof mass), 8 pieces of fixed combs and four folded

beams (springs) at the top and bottom of the structure. The

device is anchored at the edge of the four corners and inner

fixed comb fingers. Electrostatic force is applied to actuate

the micro-resonator which oscillates in the motion direc-

tion at the resonant frequency as shown in Fig. 5b.

The electrostatic force directly depends on the applied

voltage, higher voltage creates a larger force. The air gaps

exist between the movable comb finger and the fixed comb

fingers and between top and bottom spring hinges (Fig. 5a)

The device is symmetric in two directions, resulting in

equal damping and restoring forces. The gaps between

moving and static fingers are 2.6 and 10 lm. When the

device moves in one direction, both gap sizes are closing

(half of each) and so both must be considered in any

analysis.

Several parameters were investigated including the

pressure (P), proof mass size, comb size, and spring

geometry on device performance. A simple resonating

MEMS device shown in Fig. 4 was designed for a com-

mercially available vacuum encapsulated environment

known as MicraSilQ (Pickering et al. 2018). Table 1 shows

that the resonating structure has proof mass size of (L, W,

H) 2430 lm x 2323.6 lm x 60 lm. The length (lcf), width

(WcfÞ, and thickness (tcf of the comb fingers are 240 lm,

18.7 lm, and 60 lm, respectively. The area of plate for

slide film damping (Aslide) is 3.68E-6 m2. The overlap

area for squeeze film damping (Aoverlap is 2.29 E-6 m2.

The dimension of hinge length (Hl), hinge width (Hw), fold

width (Wc2), and fold height (Lc2) are 1118 lm, 8.9 lm,

32 lm, and 24.8 lm, respectively, shown in Fig. 6 (Sut-

tisintong and White 2015). The folded beam functions as a

spring It allows the resonator to vibrate in the desired

vertical direction. The micro-resonator design consists of

four pieces of identical dimensions with the beam in each

corner of the micro-resonator (Fig. 5a).

According to Eq. 4, squeeze film damping coefficient is

directly proportional to the comb finger length (Lx) and

structure thickness (Lz) and inversely proportional to the air

gap (g). Using a fixed pressure of 100 Pa and overlap area

3.68 mm2, comb finger length, Lx, (20–200 lm, 2–10 lm)

and structure thickness, Lz, (20–80 lm, 1–5 lm) cause the

squeeze film damping coefficient to exponentially increase

shown in Fig. 7a and b respectively. Smaller air gaps, g

(0.5–6.5 lm), between comb fingers generate a larger

squeeze film damping coefficient in Fig. 7c. According to

Fig. 5 a Schematic top view of a micro-resonator. Symmetric

structure minimizes anchor loss, air gaps exist between moving

fingers and fixed fingers. Each corner is fixed by anchors and folded

beams allow moving plate to move up and down to sense the changes

in the capacitance between fixed finger and moving fingers. b The

desired mode shape of vibration showing the movable structure of the

micro-resonator (blue color) allows it to oscillate in the vertical

direction at its resonance frequency (784 Hz)
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Eqs. 2 and 3, the slide film damping coefficient is affected

by overlap area Aoverlap and air cavity dpb. Figure 7d shows

the slide film damping coefficient is mainly influenced by

overlap area (air cavity have less effect on) with the

assumption of Pressure 100 Pa, comb finger length Lx
(240 lm), and device thickness Lz (60 lm). In a damped

mass-spring system, the quality factor can be expressed as:

Q ¼ 1

2n
ð6Þ

where the n=C/2
ffiffiffiffiffiffi

km
p

is the damping ratio.

The analytical results presented in this section shows the

dependence of geometric parameters with damping how-

ever it does not provide a detailed dynamic understanding

of effect of pressure on Q-factor and frequency which will

be presented in the next section with the help of finite

element model.

3 Numerical modeling

Numerical simulation gives us the opportunity to explore

many design variations for MEMS devices to target better

dynamic performance and computationally perform

experiments on various design parameters. While the

analytical results presented in the previous section can

provide general guidance for simple designs, complicated

geometry and nonlinear effects require a different approach

to produce predictive results. FEA techniques are widely

used to perform virtual experimentation of micro-scale

devices. In our application, the finite element simulation

needs to re-create the surrounding medium inside the

sealed cavity and allow simulation of device actuation,

damping and dynamic responses. The problem involves

solving solid mechanics and viscous damping, creating a

multiphysics problem. A Finite Element Analysis (FEA)

model was developed for the micro-resonator to simulate

its operation at various pressures using simulation tool

COMSOL Multiphysics (Manual 1742) which allows

solving coupled multiphysics.

FEA simulation allows for quicker and often more

efficient and accurate prediction and optimization of the

design than analytical techniques. Particularly for expen-

sive MEMS fabrication with the added complication of

vacuum sealing, creating a model that can simulate a

vacuum sealed environment is useful. The first step of FEA

is to define the geometry shown in Fig. 8. The geometry is

enclosed by the air with the dimension of 4000 lm 9

4000 lm 9 920 lm (Fig. 8). The second step is to specify

an air domain around the resonator device (include air gaps

in between comb fingers and folded beams) as shown in

Fig. 8. The air domain around the resonator has cavities

providing a space to allow resonator vibration. The air

domain is separated into two regions: thermoviscous

acoustic and pressure acoustic. These two physics allowed

for adjustment of the pressure inside the volume.

Thermoviscous acoustic physics defines a volume

around the resonator (inner frame of air domain), allowing

changes to the equilibrium pressure, which is used to set

the air pressure around the device. Setting a lower

Fig. 6 Folded beam, showing hinge length and width of 2D view

resonator in Fig. 2 (Tang and Zhang 2019)

Table 1 Various geometry

parameters, dimensions and the

baseline values

Parameter Model symbol Dimension (lm)

Device length L 2430

Device width W 2323.6

Structure layer thickness h 60

Comb-finger length lcf 240

Comb-finger width wcf 18.7

comb-finger thickness tcf 60

Area of plate for slide film damping Aslide 3.68E-6 m2

Overlap area for squeeze film damping Aoverlap 2.29 E-6 m2

Moving mass comb finger to fixed comb finger gap g 5

Hinge length Hl 1118

Hinge width Hw 8.9

Fold width Wc2 Wc2 32

Fold height Lc2 Lc2 24.8
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equilibrium pressure will establish high vacuum. This

thermoviscous acoustic physics needs to work with pres-

sure acoustic physics to adjust the acoustic pressure and

absolute temperature in the outer frame air domain (Man-

ual 1742), representing atmospheric pressure outside of the

vacuum chamber. This pressure acoustic sets 25 �C and

one atmosphere as an acoustic pressure.

Furthermore, adding the boundary condition is crucial

for the simulation. The acoustic-thermoviscous boundary is

set as the surface of the air domain around the resonator

and the thermoviscous acoustic structure boundary is

automatically selected from the imported geometry as the

edge of each air gaps around the comb fingers of the res-

onator as seen in Fig. 8. Frequency domain analysis was

performed to simulate the frequency response and predict

the Q value at various pressures. The frequency-domain

study adjusts frequency ranges of start frequency, end

Fig. 7 3D surface plot shows the squeeze film damping coefficient

and the slide film damping coefficient versus different parameters:

comb finger length (Lx) and structure thickness (Lz) cause an

exponential increase in the squeeze film damping coefficient as seen

in (a) and (b). c Reducing the air gap results in a higher squeeze film

coefficient. d The overlap area influences the slide film damping

coefficient linearly

Fig. 8 Schematic 3D finite element model of micro-resonator,

thermoviscous acoustic frequency domain applies in the air domain

around micro-resonator, the pressure acoustic frequency domain

applies in the outer frame of air domain
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frequency, and frequency step. Solid mechanics, thermo-

viscous acoustic, and pressure acoustic and multiple phy-

sics couplings like acoustic-thermoviscous acoustic

boundary and thermoviscous acoustic structure boundary

applies to the model shown in the frequency domain as

well. The goal of FEA model is to capture the relationship

between the quality factor (Q) and sealing air pressure (P).

Figure 9 gives a direct relationship between pressure ver-

sus Q factor. This curve of the quality factor illustrates that

the quality factor exponentially increases with decrease of

pressure.

The change in pressure can be understood through a few

parameters. When the pressure decrease, atmospheric air

viscosity latm;air
	 


changes to the effective air viscosity

leff ;air
	 


. The squeeze film damping coefficient ðCSqueezeÞ,
and the slide-film damping coefficient (CSlide) decrease

with the pressure decrease (Q ¼ mx
c ¼ k

cx ¼
ffiffiffiffi

km
p

c from

Eq. 1).

However, Q factor increases when the pressure decrea-

ses (Fig. 9). Another variable impacting Q factor in these

pressure regions is the air gap (g) between moving fingers

and fixed fingers. Similar behavior was noticed in Hutch-

erson and Ye (2004). Air gap distances, g, in between comb

fingers strongly influence the squeeze film damping coef-

ficient shown in Fig. 10. The larger the air gap, the smaller

the squeeze-film air damping coefficient resulting in a

higher Q value. To achieve sensitive detection, the gap size

should be kept as small as possible which increases

capacitance and therefore signal.

This section has used FEA techniques to capture

amplitude results in three pressure regions and demon-

strates the proportionality of the reciprocal of the air

pressure to the amplitude and Q factor. The Q factor is also

directly proportional to the air gaps (g). To understand the

characteristics of air damping at near high vacuum, it is

important to perform analysis to capture Q-factor change at

near high vacuum damping region (intrinsic damping

region). Figure 11 compares Q factor from FEA model

simulations and analytical modelling of squeeze film and

slide film damping. This figure shows a trend between the

Q factor and pressure in the molecular damping

(1\ Pa\ 100) and intrinsic damping (0.0005\ Pa\ 1)

regions. As pressure decreases, Q value exponentially

increases until it levels off. The red curve is analytical

research from Eqs. 2–6. This analytical Q is a combination

of squeeze film (blue circle) and slide film analysis (green).

The dominant damping at these pressures is squeeze film

which closely matches the analytical Q. In this case, slide

film damping has less influence on the overall Q factor.

Both methods (FEA and analytical model) have a good

agreement.

Zhou et al. (2014) has discussed the early works of

micro-resonator on squeeze-film damping. Bao has devel-

oped a direct method, known as energy transfer model, to

study squeeze-film damping at low pressure (Bao et al.

2002). The micro-resonator being examined here moves on

one axis motion in the vertical direction.

The energy loss from the vibrating plate is absorbed by

the air molecules.

DEcycle ¼
pl2A0

2x
16

q0m
L

g0
ð7Þ

Fig. 9 Combination of Q factor vs varied pressure ranges between

0.0005 and 100 Pa. This finite element model plot classified into

intrinsic damping region and molecular damping region

Fig. 10 Damping due to air gaps between comb fingers. The smaller

air gaps generated the larger squeeze-film air damping coefficient,

which developed a smaller Q value. In contrast, the larger the air

gaps, the smaller squeeze-film air damping coefficient is generated,

which developed a higher Q value

Fig. 11 Comparison between FEA model and analytical showing

similar relationships between pressures and Q factor
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The quality factor for squeeze-film air damping by

energy transfer model in low vacuum is

QE;Sq ¼
2pEp

DEcycle
¼

2p 1
2
MpA0

2x2

p
16
l2xq0m

L
g0

¼ 16Mpg0x

l2q0mL
ð8Þ

where Ep is the energy of the plate, Mp is the mass of plate.

A0 is the vibration amplitude. L is peripheral length

L = 2(Lx ? Lz),l is the molecule lateral traveling distance

between movable fingers and fixed fingers.q0 is the density

of the gas. vð
ffiffiffiffiffiffiffi

8KT
pm

q

Þ is average velocity of molecules. go is

the original distance between the movable finger and fixed

fingers.

Equations 7 and 8 were used to derive the following

Eq. 9. Therefore, the quality factor for squeeze-film air

damping by the energy transfer model in medium vacuum

(free molecular damping pressure region) related to pres-

sure is

QE;Sq ¼
16Mp � g0 � xPatm

qatm � v � Ll2
1

P
ð9Þ

where qatm is the specific mass of air molecular at atmo-

spheric pressure.

Figure 12 shows the results of the energy transfer model

for squeeze-film air damping in low pressures from Bao

et al. (2002). This technique yields a Q-factor an order

magnitude lower than the Q from finite element modelling

for pressures less than 40 Pa. Experimental results will be

presented in future work to validate and adjust the available

three models.

The numerical simulation results in this section showed

how the pressure inside the cavity would impact the

device’s performance. It showed how to develop the finite

element model, provided predicted Q factor for the

designed geometry, and explored the relationship between

the amplitude versus frequency at pressure regions between

10 and 100 Pa, 1–10 Pa, and below 1 Pa. It also combined

the different pressure ranges into one plot, as shown in

Fig. 9. Figure 11 compares Q factor from FEA model

simulations and analytical modelling techniques to show

good agreement on the behavior of Q factor in the same

curve trend relationship, concluding that the pressures

decrease, the Q factor exponential increase until it levels

off (P\ 0.1 Pa). Figure 12 compares Q factor from Bao’s

energy transfer model with FEA and numerical analysis.

Bao’s energy transfer model shows Q-factor an order

magnitude lower than the Q from finite element modelling

for pressures less than 40 Pa.

4 Comparison of model results
with previous experiments

The previous experimental results from the literature

(Ghaffari et al. 2015; Candler et al. 2006) use a similar air

damping analysis with the MEMS resonator devices. In

those experimental setups air is present in the vacuum

chamber which is used to adjust the pressure for testing air

damping effects on a device in the vacuum chamber. For

example, N. Candler (Candler et al. 2006) establishes the

MEMS resonator with single-anchored, double-end tuning

fork structures, and resonant frequency of near 150 kHz,

which shows the quality factor of the sealed encapsulated

resonator at pressures ranging between 0.01 and 10 Pa.

Ghaffari (Ghaffari et al. 2015) tested the experimental Q of

a disk resonator at * 247 kHz between 0.1–100 Pa and

the highest Q was around 150,000 at 0.6 Pa (Q is level off

below 0.6 Pa). To make a comparison between the exper-

imental results, our model and previously reported models

(Hutcherson and Ye 2004; Bao et al. 2002), the Q factor

values are normalized by the maximum Q factor. Frangi

et al. (2016) performed Q factor measurement on comb

finger devices and found that around 10–2 mbar the Q

factor reaches a plateau near a Q factor of 105. Normalized

data from Fig. 11 was used to produce Fig. 13 for com-

parison with our finite element analysis and analytical

analysis with others. Changes in the pressure result in a

change of Q/Qmax. This figure illustrates a trend as the

pressure decreases, the quantity Q/Qmax exponentially

increases. The comparison shows good agreement in esti-

mating the intrinsic Q-factor and similar exponential trend

for pressure between 1 to 100 Pa between our FEA model

and previous experimental results from other research

works.
Fig. 12 Combination of the Q-factor from FEA, analytical, and

literature model comparing the various model approaches. Analytical

Q is combination of Qair, QTED, and QAnchor
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5 Conclusion

This paper explores the design of a resonator for vacuum

encapsulation using finite element analysis, and analytical

analysis, presenting a comparison with the various previous

model and experimental results. In this study, the com-

parison of finite element model simulation, analytical

damping analysis and previous experimental results shows

good agreement in these three pressure regions. The pres-

sure between 1 and 100 Pa is in the molecular damping

region (medium vacuum), and air damping is the domi-

nating loss in low to medium vacuum. However, intrinsic

losses, such as anchor loss and thermoelastic damping loss,

dominate at a high vacuum in the pressure range of 0.1 to

10–5 Pa. The Q factor from FEA and analytical simulations

and previous experiments exponentially increase when the

pressure decreases. The amplitude of motion and Q factor

increase proportionately with the reciprocal of the air

pressure. The Q factor is also directly proportional to the

air gap distance (g). The major energy loss for the device

being evaluated is from squeeze film damping.
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