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Abstract
Path planning is an essential necessity for the proper functioning of mobile robot in a complex terrain. Conventional

approaches face different challenges such as balancing exploration and exploitation ability, premature convergence, weak

searching ability, and longer path length. To overcome these flaws, an Intelligent Modified Particle Swarm Optimization

approach with a different strategy is proposed. Firstly, a velocity regularized strategy based on regularized coefficients has

been applied to balance the exploration and exploitation ability. Secondly, a neighborhood search strategy based on reward

value and utilization probability has been employed, enriching search behaviors and avoiding premature convergence.

Finally, a path smoothness principle based on hypocycloid curves has been used to smooth the sharp turns. The com-

parative analysis conducted in four different terrains with different complexity. Different performance indices are being

measured to validate the effectiveness of the proposed approach. The outcome acquired from different terrains indicates

that the proposed approach outperforms the GA-PSO, Advance PSO, FACO, and other conventional approaches with a

maximum improvement (%) of 17.59% in path length and 76.66% in convergence rate.

1 Introduction and related work

Mobile robots are utilized in a broad range of applications

including the industrial sector, nuclear power plants, space

research, underwater investigation, domestic purpose,

medical support etc., therefore regarded as smart operating

tools (He et al. 2019; Patle et al. 2019; Liao et al. 2021). For a

robot to operate effectively, path planning is one of the

essential control parameters. Path planning may be consid-

ered as an optimization issue whose aim is to identify a path

from the initial location to the destination through numerous

waypoints in a cluttered environment without colliding with

the obstacles (Dolgov et al. 2008). It is divided into two

categories such as global path planning and local path

planning. In global path planning, the mobile robot must

have previous knowledge of the environment such as

obstacle location, and target location. On the other hand,

local path planning does not need prior knowledge of the

surroundings. Global path planning methodology works in

an entirely known environment. Whereas, local path plan-

ning operates in a partially known or unknown environment.

Each of the aforementioned scenarios require distinct path

planning approaches.

Path planning research emerged in the late 1960s, and

different approaches have been introduced including

dynamic programming (DP) (Cesarone and Eman 1989),

A� approach (Loong et al. 2011), Dijkstra approach (DA)

(Wang et al. 2011), roadmap approaches (Clark 2005), and

potential field (Xu and Park 2020). The main disadvantages

of these approaches are smoothness, local minima issue

and high computational costs. Researchers have always

been looking for alternative strategies and more effective

methods to solve these issues. Various meta-heuristic

approaches have been used in previous studies to solve

these challenges. These approaches include particle swarm

optimization (PSO) (Huang and Tsai 2011), genetic algo-

rithm (GA) (Arora et al. 2014), cuckoo search approach

(CS) (Mohanty and Parhi 2016), sparrow search algorithm

(Zhang et al. 2021), bacterial foraging optimization (BFO)

(Hossain and Ferdous 2015), artificial bee colony (ABC)

(Kumar and Sikander 2022), and ant colony optimization

(ACO) (Yen and Cheng 2018). In contrast to other
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approaches, each approach has its own pros and limitations.

These algorithms have several advantages such as the

capacity to do a global search, need for fewer tuning

parameters, the ability to solve unconstrained problems in a

short amount of time, and so on. In recent years, some new

intelligence path planning algorithms have performed

excellently such as DDM (Diversified-path Database driven

Multi-robot Path planning) algorithm (Han and Yu 2020),

MOD-RRT� (Multiobjective dynamic rapidly exploring

tree) (Qi et al. 2021) and Self-Adaptive Harmony Search

Algorithm (Quan et al. 2021). Han andYu (2020) introduced

a unique DDM algorithm with two alternative strategies, the

first of which is to move a collection of robots from their

beginning vertices to target vertices as fast as possible, and

the second of which is to demand frequent re-planning to

account for target configuration changes. This algorithm is

not suitable for path planning in narrow passages due to its

concise mechanism. Also, Qi et al. (2021) proposed aMOD-

RRT� algorithm that selects the best node among several

nodes by considering the path length and path smoothness.

This algorithm suffers from the limitation of longer path

length due to the random sampling approach. Similarly,

Quan et al. (2021) developed an improved version of the

harmony search algorithm to improve the neighbours, self-

adaptive and probability disturbance updating strategies.

Although this algorithm has better search accuracy, its dis-

advantages are randomness and instability.

However, many prior literature appreciated the use of

Particle swarm optimization (PSO) to solve the path

planning issues. A lot of research has been done on PSO

due to its concise mechanism and few control parameters.

Still, there are some challenging issues such as easily

trapped in local minima and lacking guarantee in optimal

solutions. To tackle the issues outlined above, numerous

updated variants of PSO have been developed to produce a

feasible path. A mutation-based technique has been utilized

by Gong et al. (2011) to repair the incorrect paths by using

the self-adaptive mutation operation. Zhang et al. (2013)

developed a multi-objective PSO that depends on a random

sampling of particles for mobile robot path planning in the

test area with unpredictable danger sources. Also, Deepak

et al. (2014) presented a fitness function-based approach

that mainly depends on the distance of each particle to the

target location. Another recent study on this topic is pre-

sented by Li and Chou (2018) and Zhang et al. (2020). Li

and Chou (2018) introduced a self-adaptive learning

mechanism using different learning strategies and a new

bound violation handling scheme to improve the feasibility

of the acquired paths. Similarly, Zhang et al. (2020)

developed an improved localized PSO that uses the

extended Gaussian distribution, inertia weights, and inter-

polation-based path smoothness principle to enhance the

search ability.

The aforementioned researchers conducted a number of

experiments to prove the effectiveness of the suggested

approach, although there are still some shortcomings:

• Most studies employ a random sampling strategy. The

random sampling strategy does not ensure to provide

the global optimal solution every time (Clark 2005;

Zhang et al. 2013; Deepak et al. 2014). This will

increase the path length.

• In the case of high dimensional and complex terrains,

the existing literature faces various learning ability

issues such as slow convergence rate, weak adaptability

and weak exploration ability (Huang and Tsai 2011;

Deepak et al. 2014; Yen and Cheng 2018).

• Past study uses the inertia weight factor strategy. Which

increases the computational load. Therefore, the pro-

cessing time of the acquired path increases (Li and chou

2018; Zhang et al. 2020).

• Most algorithms do not vary the number of particles or

samples or populations while calculating the perfor-

mance indices such as path length and processing time,

as variation in samples plays an important role to

authenticate the effectiveness of the proposed approach

(Huang and Tsai 2011; Deepak et al. 2014; Mohanty

and Parhi 2016; Yen and Cheng 2018).

To address these limitations, establishing an intelligent

optimum path planning approach in complex terrain would

be effective and beneficial, which is the primary goal of

this research study. Therefore, this research study presents

an intelligent modified particle swarm optimization

(IMPSO) approach for resolving mobile robot path plan-

ning issues in a complex terrain. The innovations and key

contributions of this research work are outlined as follows.

• A velocity regularized strategy based on regularized

coefficients has been applied to balance the exploration

and exploitation ability.

• A neighborhood search strategy based on reward value

and utilization probability has been employed, enrich-

ing search behaviors and avoiding premature

convergence.

• A path smoothness principle based on hypocycloid

curves has been used to smooth the sharp turns.

• The proposed approach is validated and analyzed

against the GA-PSO (Huang and Tsai 2011), Advance

PSO (Deepak et al. 2014), FACO (Yen and Cheng

2018), and other conventional approaches in terms of

different performance indices.

• The comparative studies are conducted in four different

small and large dimension terrain with different

complexity.

• The performance and effectiveness of the proposed

IMPSO are validated using simulation outcomes.
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The rest of the research work is outlined in the following

ways. The problem formulation and performance indices

are presented in Sect. 2. The proposed methodologies for

mobile robot path planning are introduced in Sect. 3. In

Sect. 4, a set of simulation findings are presented that

demonstrate the proposed technique’s efficacy compared to

prior research. Finally, the conclusion of the research study

is presented in Sect. 5.

2 Problem formulation and performance
indices

A model should firstly be constructed in order to develop

an efficient trajectory path for a mobile robot. Figure 1

shows a two-dimensional corridor like terrains (terrain #1,

terrain #2, terrain #3, and terrain #4) with different

dimensions. These terrains comprise all entities such as

obstacles, mobile robot, number of samples or population

size, initial and target locations with different shapes and

sizes. The mobile robot is represented as R (with radius

rROB) having its coordinate Cðx0; y0Þ.
A green circular object signifies the initial location,

which is denoted by Sðx0; y0Þ. Whereas, a red circular

object signifies the target location denoted by Tðxt; ytÞ. The
mobile robot at the initial location uses a number of sam-

ples to find the next best current location. Within the sensor

detection range, generate a map that joins the initial and

target location. To execute the task of predicting the

behaviour and location of obstacles, the sensor range of the

mobile robot is divided into four circles having radii

l1; l2; l3; and l4 as presented in Fig. 2. The range of

sensors depends upon its types. There are various types of

sensors used in mobile robots such as infrared, ultrasonic,

tactile, GPS, etc. The goal of path planning is to discover

an effective path without colliding with any obstacle’s

Fig. 1 Model of different terrains a terrain #1; b terrain #2; c terrain #3; d terrain #4

Microsystem Technologies (2023) 29:469–487 471

123



regions. If the robot encounters any obstacles in its path, it

must move some angles, either left or right, without col-

liding to reach the desired target location. In order to solve

the path planning problem, certain assumptions are taken in

this research study.

Assumption 1. The obstacles are depicted as rectangular

shapes with static in nature.

Assumption 2. The test scenario is partially known or

unknown for the robot.

Assumption 3. Robot have some sensor range and it can

move in any direction due to its omnidirectional nature.

2.1 Performance indices

Path planning tries to construct the best possible collision-

free path while taking into consideration specified perfor-

mance indices. This study focuses on path length, pro-

cessing time and smoothness.

(a) Path length

The objective is to acquire the shortest path as much as

possible. Suppose, the initial and target locations are

NF0 and NF Nþ1ð Þ, then the path length can be calculated as:

P Fð Þ ¼
XN

i¼0

NF iþ1ð Þ � NF ið Þ ð1Þ

where NF iþ1ð Þ � NF ið Þ denotes the Euclidean distance

between NF ið Þ and NF iþ1ð Þ.

(b) Smoothness

The smoothness is computed by summing the robot’s

turning angles along the predefined path. The formula

below can be used to calculate the smoothness.

S Fð Þ ¼
XN

i¼1

ci ¼
XN

i¼1

arccos
NF ið Þ � NF i�1ð Þ
� �

: NF iþ1ð Þ � NF ið Þ
� �

NF ið Þ � NF i�1ð Þ
�� ��� NF iþ1ð Þ � NF ið Þ

�� ��� 180

 !

ð2Þ

where ci represents the value of the acquired path’s ith

turning angle (measured in radians ranging from 0top).
Fi � Fi�1ð Þ: Fiþ1 � Fið Þ are the inner product of two

vectors.

(c) Improvement (%)

Improvement %ð Þ ¼ XConventional � XProposed

XConventional

� �
� 100 ð3Þ

where X can be any performance indices.

3 Proposed Methodology

This section outlines the complete path generation process

in two stages. The first stage describes the stranded Particle

Swarm Optimization (PSO), while the second stage intro-

duces the proposed approach (Intelligent Modified Particle

Swarm optimization). Three modules are included in the

proposed IMPSO. A velocity regularized strategy is used in

the first module, whereas a neighborhood search strategy is

utilized in the second module. Lastly, a path smoothness

principle is applied in the third module. Figure 3 represents

the proposed methodology.

3.1 Standard PSO

James Kennedy and Russell Eberhart introduced Particle

Swarm Optimization in 1995. PSO is a population-based

stochastic optimization approach that is inspired by the

social behavior of flocks of birds. Initially, all of the birds

travel at random velocities and positions, but after a period,

depending on their own flying experience and that of the

other birds, all of the birds begin to follow the bird closest

to the food. All birds or particles in PSO have two attri-

butes i.e. position and velocity. These particles are intro-

duced into the search space of a problem or function. The

fitness values associated to the fitness function are calcu-

lated for each particle, and two best fitness values are

obtained; the first is the best fitness value a particle has

attained so far known as ’pbest’. The second is the best

fitness value attained so far by the whole swarm, which is

referred to as ’gbest.’ In the d-dimensional search space,

the ith particle’s velocity and position can be represented as

Vi ¼ ½vi;1; vi;2; . . .; vi;d� and Xi ¼ ½xi;1; xi;2; . . .; xi;d�, respec-
tively. Each particle has its own best position (pbest),

Pbi ¼ pi;1; pi;2. . .; pi;d
� �

which corresponds to the personal

best objective value attained so far at time t and the best

one among Pbi in a group is designated as the global best

Fig. 2 Sensor range with regards to obstacles location
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particle (gbest) denoted by Pg. In each iteration t, the

velocity and position of each particle is computed as

follows

vi;j t þ 1ð Þ ¼ wvi;j tð Þ þ g1r1 Pbi � xi;j tð Þ
� �

þ g2r2 Pg � xi;j tð Þ
� �

; j ¼ 1; 2; . . .d
ð4Þ

xi;j t þ 1ð Þ ¼ xi;j tð Þ þ vi;j t þ 1ð Þ; ð5Þ

where w signifies the inertia weight factor, g1 and g2 rep-

resent the personal and global learning coefficients, r1 and

r2 are two random numbers that lies in the range of 0 to 1.

To restrict excessive roaming of particles beyond the

search space, the value of each component in Vi can be

clamped to the range �vmax; vmax½ �. The following are the

main procedures of standard PSO.

Step 1. Generate a population of particles with random

velocities and positions, each having d variables.

Step 2. Compute the objective values of all particles; set

pbest and its objective value equal to the particle’s current

location and objective value, and set gbest and its objective

value equal to the location and objective value of the best

starting particle.

Step 3. Update the velocity and location of each particle

by using Eqs. (4) and (5).

Step 4. Compute each particle’s objective values.

Step 5. Compare the current objective value of each

particle to the pbest objective value. If the current value is

superior, then replace pbest and its objective value with the

current position and objective value.

Step 6. Find the best particle in the current swarm that

has the best objective value. If the current best particle’s

objective value is higher than gbest, replace gbest and its

objective value with the current best particle’s position and

objective value.

Step 7. If a stopping requirement is fulfilled, generally

satisfying the fitness value; otherwise, return to Step 3.

The standard PSO has the advantage of having param-

eters that are easy to adjust and implement. However, some

drawbacks still exist in standard PSO, such as improper

balance between exploration and exploitation ability, poor

searching behaviour, premature convergence, and being

easily stuck into local minima.

3.2 Intelligent Modified Particle Swarm
Optimization (IMPSO)

To address the drawbacks of standard PSO, a new approach

is introduced, the intelligent modified particle swarm

optimization. The IMPSO mainly depends on the velocity

regularized strategy, neighborhood search strategy, and

path smoothness principle. The velocity regularized strat-

egy is based on regularized coefficients and is used to

balance the exploration and exploitation ability. A

Fig. 3 Proposed Methodology
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neighborhood search strategy based on reward value and

utilization probability has been employed enriching search

behaviors and avoiding premature convergence. A path

smoothness principle based on hypocycloid curves has

been used to smooth the sharp turns.

3.2.1 Velocity regularized strategy (VRS)

Any optimization technique necessitates a trade-off

between exploration and exploitation to determine its

efficacy. These contradictory features are ideally balanced

by an efficient optimization strategy. In standard PSO,

velocities of the particles can readily climb to unaccept-

able levels and sometimes exceed the bounds of the search

region within a few iterations. Therefore, a velocity regu-

larized strategy is applied by introducing regularized

coefficients to govern the velocities of the particles as well

as to keep inside the boundary constraints. The coefficient

governs particle movement and leads it toward conver-

gence. The modified particle velocities can be expressed in

the following way:

vmax i;jð Þ ¼ wRFvi;j tð Þ þ C1r1 Pbi � xmax i;jð Þ tð Þ
� �

þ C2r2 Pg � xmax i;jð Þ tð Þ
� �

; ð6Þ

vmin i;jð Þ ¼ wRFvi;j tð Þ þ C1r1 Pbi � xmin i;jð Þ tð Þ
� �

þ C2r2 Pg � xmin i;jð Þ tð Þ
� �

; ð7Þ

vi;j t þ 1ð Þ ¼ vi;j t þ 1ð Þ; ifvi;j t þ 1ð Þ\vmax i;jð Þ
vmax i;jð Þ; otherwise

	
ð8Þ

where xmin i;jð Þ and xmax i;jð Þ are the minimum and maximum

positions of the particles. Here higher value of vmax i;jð Þ
encourages exploration whereas lower value encourages

exploitation. Also, wRF ¼ w � RF, and C1, C2 signifies the

cognitive and social components that impact exploration

and exploitation ability as well as the finding of an optimal

point in the search area. The C1 and C2 can be computed as

follows:

C1 ¼ RF � g1 ð9Þ
C2 ¼ RF � g2 ð10Þ

where

RF ¼ 2

g� 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4g

p���
���

ð11Þ

g ¼ g1 þ g2 ð12Þ

where RF and g denotes a regularized factor and co-effi-

cient, respectively. Now the regularized particles can help

to converge the process towards the optimal solutions and

maintain a proper balance between the exploration and

exploitation ability.

3.2.2 Neighborhood search strategy

In IMPSO, neighborhood selection is necessary for

enriching search behaviors and avoiding premature con-

vergence. In this study, a neighborhood search strategy is

used based on the reward value and utilization probability

of each particle. The following equation can be used to

calculate the reward value for each particle.

b ¼ pf � cfj j
N N � 1ð Þ ð13Þ

where N signifies the total number of particles in the search

space, pf is the function value of each particle whose

coordinate is represented as xi; yið Þ and cf is the function

value of target particle whose coordinate is denoted as

xt; ytð Þ: After the reward value is obtained, the utilization

probability Probutið Þ of each particle is calculated with the

following formula.

Probuti;i ¼
biPN
i¼1 bi

ð14Þ

where bi is the ith particle’s reward value, and N represents

the total number of populations or particles. A fit neigh-

borhood will be chosen based on the particle with the

highest reward value and utilizing probability. Initially, N

particles are scattered in the search area as shown in

Fig. 4a. After applying the proposed strategy, the new

neighborhood is NF1, NF2, NF3, NF4, and NF5, as depicted

in Fig. 4b.

3.2.3 Path smoothness principle

Although the attained path avoids obstacles, still there are

too many sharp turns that result in longer path length. To

avoid these sharp turns, a path smoothness principle is

applied based on hypocycloid curves (Weisstein 2016).

The basic steps are outlined as follows.

Step 1. It can be seen from Fig. 5a that a robot

traversing form initial (S) to target location (T) encounters

sharp turns at points NF1; NF2; NF3; NF4; and N5. The

complete path from S to T is made up of various line

segments labelled SNF1; NF1NF2; NF2NF3; NF3NF4;

NF4NF5; and NF5T : Each of the six-line segments is rep-

resented as

y ¼ mixþ ci; i 2 1; 2; . . .13f g ð15Þ

where mi and ci denotes the slopes and the intercepts of the

thirteen lines.

Step 2. With respect to line segment SNF1 and NF1NF2,

let x0; y0ð Þ; x1; y1ð Þ, and x2; y2ð Þ be the coordinates of

points S, NF1, and NF2. In Fig. 5a, the midpoints of line

segments SNF1 and NF1NF2 are G x0þx1
2

; y0þy1
2

� �
and
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H x1þx2
2

; y1þy2
2

� �
, respectively. The slope of line SNF1 m1ð Þ is

y1�y0
x1�x0

and slope of line NF1NF2 m2ð Þ is y2�y1
x2�x1

. Therefore, the

equation of line (L1Þ is:

y� y0 þ y1
2

¼ � 1

m1

x� x0 þ x1
2

� �
ð16Þ

For L2, it is

y� y1 þ y2
2

¼ � 1

m2

x� x1 þ x2
2

� �
ð17Þ

Form Eqs. (15) and (16), a first point of turn is

determined.

Step 3. Similarly, all point of turn is calculated corre-

sponding to each line segment. Once the point of turn is

calculated, the next step is to smooth the path.

Fig. 4 a Model of the search area, b path attained using proposed neighborhood strategy

Fig. 5 a Initial path. b Path after smoothness principle (blue dotted line)
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Step 4. After calculating the first point of turn corre-

sponding to line segments SNF1 and NF1NF2, the coordi-

nates x0; y0ð Þ; x1; y1ð Þ, and x2; y2ð Þ are considered as

diffused points. From the diffused points S x0; y0ð Þ;
SF1 x1; y1ð Þ, and SF2 x2; y2ð Þ, the angle between the line

segments amax can be calculated by using the cosine rule

such as

amax ¼ cos�1 a2 þ c2 � b2

2ac

� �
ð18Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2þ y2 � y1ð Þ2

q

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x0ð Þ2þ y2 � y0ð Þ2

q

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � x1ð Þ2þ y0 � y1ð Þ2

q

For each point of turn, the turns are smoothed by

varying the a from 0 to amaxp
180

by using the following

equations

x að Þ ¼ RL � rsð Þ cos að Þ þ rs: cos
RL � rs

rs
a

� �
ð19Þ

y að Þ ¼ RL � rsð Þ sin að Þ þ rs: sin
RL � rs

rs
a

� �
ð20Þ

where RL ¼ 4� rs. Finally, the smooth path (blue dotted

line) has been attained as shown in Fig. 5b. Figure 6 pre-

sents the flow chart of path planning using the proposed

IMPSO, whereas the pseudo-code of the proposed IMPSO

is provided in Algorithm 1.

4 Performance evolution

In this part, the outcomes attained by employing the pro-

posed IMPSO are compared by GA-PSO (Huang and Tsai

2011), Advance PSO (Deepak et al. 2014), FACO (Yen

Algorithm 1. Proposed IMPSO

Input: Set parameters such as population or particle size , random particle’s velocity and 
position, robot radius, sensor range, obstacles, initial and target locations
Output: Optimize and Smooth path
1: Initialize the particle with some random velocity and position
2: For = 1

3: For = 1

4: Calculate fitness ( ) of each particle
5: if ( , ) > ( )

6: then ( , ) = and set best of pbest as gbest
7: End if
8: If termination condition is not satisfied
9: then update each particle’s velocity based on velocity regularized strategy by using Eq. (8)
10: End if  
11: Implement the neighborhood search strategy based on reward value ( ) and utilization 

probability of each particle by using Eq. (13) and Eq. (14)
12: Get the new current location of the particles
13: if the new current location of particle  is better than its 
14: then update 
15: End if
16: if the new current location of particle  is better than its 
17: then update 
18: End if 
19: Implement the path smoothness principle based on hypocycloid curves for path 
optimization
20: End For
21: End For
22: Smooth and optimize path
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and Cheng 2018), and other conventional approaches in

terms of different performance metrics. In order to prove

the superiority and efficacy of the proposed IMPSO, four

distinct terrains with different complexity have been taken

into account namely, terrain #1, terrain #2, terrain #3, and

terrain #4. The simulation tests of all the techniques were

carried out in a corridor-like complex terrains with a size of

100� 100, 50� 50, 400� 400, and 20� 20 of the litera-

ture. The simulation has been carried out using the

MATLAB (MATLAB 2020a) programming language with

Intel� core i5 4.2 GH processor, hard disk of 500 GB and

6 GB of RAM memory. There is a variation in the number

of samples or populations in the search space, such as

N ¼ 40; 80; 120; 160½ � for terrain #1, N ¼ 50½ � for terrain

#2 and N ¼ 15½ � for terrain #3, and N ¼ 15½ � for terrain #4.

For better performance, the simulation tests were run 50

times with a maximum of 100 iterations. In each terrain,

the robot has different initial and target locations. The

following are the performance comparison in different

terrains:

4.1 Performance comparison in terrain #1

Initially, the mobile robot is standing at the initial location

(34, 10) and is required to reach the target location (70, 90).

The parameters to be considered are stated in Table 1. As

shown in Figs. 7, 8, 9, 10, all the path planning approaches

efficiently attained the target without any collision with

obstacles. The statistical findings in terms of path length,

processing time, and smoothness are graphically presented

in Fig. 11 for the different number of samples. As depicted

in Fig. 11a, the proposed IMPSO gives the smallest path

(112.59, 111.14, 107.50, 106.74) and RRT gives the

longest path (237.52, 255.17, 264.34, 285.10) for each

value of N. This signifies that the proposed IMPSO easily

attain the target location as compared to other approaches.

In terms of processing time, the proposed IMPSO surpasses

the other approaches, but takes slightly more time (14.07,

17.82, 22.68, 23.07) as compared to PRM (2.20, 3.53, 5.75,

6.01) as displayed in Fig. 11b. In terms of smoothness, the

proposed IMPSO provides smoother path (0.8391, 0.8835,

0.8527, 0.7739) as compared to other techniques as shown

in Fig. 11c. The reason is that the proposed IMPSO have

less sum of turning angles than that of other approaches.

Fig. 6 Flowchart of path planning using the proposed IMPSO
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This implies that the proposed IMPSO consumes more

energy. In addition, the Table 2 clearly illustrate that the

proposed IMPSO is more stable as compared to other

approaches under the different value of N.

To sum up, it has been clearly analysed from Fig. 11 and

Table 2 that the performance parameters of each algorithm

change significantly from the initial sample size to final

sample size. In case of dynamic programming, A-star,

dijkstra, PRM, PSO, and IMPSO, there is reduction in path

length as the number of sample increases. Whereas in case

of RRT, ABC, and ABC-EP, there is increment in path

length as the number of sample increases. The optimal path

length acquired by the proposed IMPSO is 106.74 when the

sample size is 160. As the number of sample increases, the

computational load also increases, which in turn increases

the processing time. The minimum processing time taken

by the modified IMPSO is 14.07 s when the sample size is

40. In case of smoothness, the proposed IMPSO gives the

best smoothness value that is 0.7739 when the number of

samples is 160. Overall, the proposed IMPSO performed

more efficiently in all path planning performance indices

for each number of samples N.

4.2 Performance comparison in terrain #2
(50· 50Þ

For terrain #2, the mobile robot is at the initial location (1,

1) and is necessary to reach the target (49, 49). The

parameters used in GA-PSO (Huang and Tsai 2011) are:

global learning coefficient g1ð Þ = 1.5, personal learning

coefficient (g2Þ = 1.5, inertia weight wð Þ = 0.8, crossover

probability = 0.7, mutation probability = 0.1, and itera-

tions = 100. The path acquired by the GA-PSO is shown in

Fig. 9 in Ref. (Huang and Tsai 2011), whereas the path

acquired by the proposed IMPSO is depicted in Fig. 12a.

The proposed IMPSO delivers the optimal path length

that is 72.18, whereas the optimal path length in GA-PSO

is 76.94. It can be observed from Fig. 12b that the proposed

IMPSO takes 21 iterations to find the global optimum

solutions as compared to GA-PSO, that takes 90 iterations

as shown in Fig. 10 in Ref. (Huang and Tsai 2011). This

indicates that the proposed IMPSO is more efficient and

faster convergence rate to reach the optimal path than GA-

PSO. In addition, Table 3 illustrates that the proposed

IMPSO is more stable as compared to GA-PSO (Huang and

Tsai 2011).

4.3 Performance comparison in terrain #3
(400· 400Þ

For terrain #3, the mobile robot is at the initial location

(340, 380) and is necessary to reach the target (10, 10). The

parameters used in Advance PSO (Deepak et al. 2014) are:

global learning coefficient g1ð Þ = 2, personal learning

coefficient (g2Þ = 2, inertia weight wð Þ = 1.3, population

size = 80, and iterations = 100.The path acquired by the

Advance PSO is shown in Fig. 13b in Ref. (Deepak et al.

2014), whereas the path acquired by the proposed IMPSO

is depicted in Fig. 13a. The proposed IMPSO delivers the

optimal path length that is 543.71, whereas the optimal

path length in Advance PSO is 659.8. The proposed PSO

reduces the path length by 17.59% compared to Advance

PSO (Deepak et al. 2014). This signifies that the proposed

IMPSO can easily find the optimal path. It can be observed

from Fig. 13b that the proposed IMPSO takes 17 iterations

to find the global optimum solutions, whereas the algorithm

in Ref. (Deepak et al. 2014) does not calculate the con-

vergence rate. In addition, Table 4 demonstrate that the

proposed IMPSO surpasses the Advance PSO (Deepak

et al. 2014).

4.4 Performance comparison in terrain #4
(20· 20Þ

For terrain #4, the mobile robot is at the initial location

(340, 380) and is necessary to reach the target (10, 10). The

parameters used in FACO (Yen and Cheng 2018) are:

pheromone factor að Þ = 1, heuristic factor (bÞ = 18, pher-

omone evaporation factor qð Þ = 0.4, pheromone intensity

coefficient Qð Þ = 1, and population size = 50, and itera-

tions = 100.The path acquired by the FACO is shown in

Fig. 14a in Ref. (Yen and Cheng 2018), whereas the path

acquired by the proposed IMPSO is depicted in Fig. 14a.

The proposed IMPSO delivers the optimal path length that

is 27.9647, whereas the optimal path length in FACO is

29.3848. The proposed IMPSO reduce the path length by

4.83% as compared to FACO. It can be observed from the

Fig. 14b that the proposed IMPSO takes 19 iterations to

Table 1 Parameters

Test scenario size ¼ 100� 100

Initial location; S x0; y0ð Þ ¼ 34; 10ð Þ
Target location;T xt; ytð Þ ¼ 70; 90ð Þ
Sensor range ¼ 0:35� 0:35

Hindrancewidth ¼ 4m

Hindrance height ¼ 24m

Robot radius; rROB ¼ 0:25

Personal learning coefficent; g1 ¼ 1:5

Global learning coefficent; g2 ¼ 1:5

Probablitity value;Pa ¼ 0:2; 0:2; 0:4; 0:2f g
Number of samples;N ¼ 40; 80; 120; 160f g
Target ¼ Known
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find the global optimum solutions as compared to FACO

that takes 23 iterations as shown in Fig. 14b in Ref. (Yen

and Cheng 2018). The convergence speed of proposed

IMPSO increases by 17.39% than that of FACO. This

indicates that the proposed IMPSO is more efficient and

faster convergence rate to reach the optimal path than

FACO. In addition, Table 5 illustrates that the proposed

IMPSO surpasses the FACO (Yen and Cheng 2018) in

terms of path length and convergence rate.

Fig. 7 Path found by different path planning approaches when N ¼ 40. a A� algorithm; b PRM method; c PSO approach; d Dynamic

programming; e Dijkstra algorithm; f RRT algorithm; g ABC algorithm; h ABC-EP algorithm; i Proposed IMPSO
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Fig. 8 Path found by different path planning approaches when N ¼ 80. a A� algorithm; b PRM method; c PSO approach; d Dynamic

programming; e Dijkstra algorithm; f RRT algorithm; g ABC algorithm; h ABC-EP algorithm; i Proposed IMPSO
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Fig. 9 Path found by different path planning approaches when N ¼ 120. a A� algorithm; b PRM method; c PSO approach; d Dynamic

programming; e Dijkstra algorithm; f RRT algorithm; g ABC algorithm; h ABC-EP algorithm; i Proposed IMPSO

Microsystem Technologies (2023) 29:469–487 481

123



Fig. 10 Path found by different path planning approaches when N ¼ 160. a A� algorithm; b PRM method; c PSO approach; d Dynamic

programming; e Dijkstra algorithm; f RRT algorithm; g ABC algorithm; h ABC-EP algorithm; i Proposed IMPSO
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5 Conclusion

This research study presents an Intelligent Modified Par-

ticle Swarm Optimization (IMPSO) approach with a dif-

ferent strategy to address the path planning issues in a

partially known or unknown complex terrain. Firstly, a

velocity regularized strategy based on regularized coeffi-

cients has been applied to balance the exploration and

exploitation ability. Secondly, a neighborhood search

strategy based on reward value and utilization probability

has been employed enriching search behaviors and avoid-

ing premature convergence. Finally, a path smoothness

principle based on hypocycloid curves has been used to

smooth the sharp turns. A number of comparison tests have

been carried out in a simulation scenario to validate the

efficiency and performance of the proposed IMPSO as

compared to GA-PSO, Advance PSO, FACO, and other

conventional approaches. Moreover, the following results

have been achieved:

• The proposed IMPSO outperforms the conventional

approaches in terms of path length and smoothness.

• In case of processing time, the proposed IMPSO

surpasses dynamic programming, A�, dijkstra, PSO,

ABC, and ABC-EP, but performs slightly less than

PRM.

• When compared to GA-PSO, Advance PSO, and

FACO, the proposed IMPSO reduces path length by

6.18%, 17.59% and 4.83%, respectively.

• In regards to convergence rate, the proposed IMPSO

provides a better convergence rate than GA- PSO and

FACO with improvements of 76.66%, 17.39%,

respectively.

Form the performance comparison in different terrain, it

is clear that the proposed IMPSO perform better in small

dimension terrain as well as large dimension terrain. Fol-

lowing this proposed framework, future work will focus on

moving obstacles and moving targets in clutter

environments.
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Table 2 Performance analysis

in terms of different

performance indices

N Methods Path length (m) Processing time (s) Smoothness (radian)

Mean Mean Mean

40 RRT 237.52 59.44 NaN

Dynamic programming 197.09 124.73 2.7949

A-star 193.74 98.65 2.3746

Dijkstra 193.74 104.30 2.3746

PRM 174.12 2.20 1.6244

PSO 168.82 38.41 1.2027

ABC 128.81 34.11 1.3182

ABC-EP 124.05 29.07 1.1031

Proposed IMPSO 112.59 14.07 0.8391

80 RRT 255.17 67.31 NaN

Dynamic programming 166.96 143.81 2.6718

A-star 156.63 110.11 2.2743

Dijkstra 156.63 115.02 2.2743

PRM 146.07 3.53 1.5702

PSO 143.48 41.97 1.1232

ABC 130.18 35.19 1.3702

ABC-EP 125.82 30.20 1.1488

Proposed IMPSO 111.14 17.82 0.8835

120 RRT 264.34 71.85 NaN

Dynamic programming 148.04 160.90 2.6182

A-star 139.19 122.59 2.1963

Dijkstra 139.19 128.67 2.1963

PRM 132.38 5.75 1.5562

PSO 128.64 43.66 1.1022

ABC 132.91 37.90 1.4290

ABC-EP 125.99 31.78 1.1921

Proposed IMPSO 107.50 22.68 0.8527

160 RRT 285.10 80.21 NaN

Dynamic programming 139.19 193.36 2.5790

A-star 131.23 133.61 2.1005

Dijkstra 131.23 141.25 2.1005

PRM 121.07 6.01 1.5151

PSO 117.73 48.98 1.0918

ABC 132.91 41.52 1.4521

ABC-EP 127.09 34.16 1.2305

Proposed IMPSO 106.74 23.97 0.7739
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Fig. 12 a Path acquired by proposed IMPSO; b Convergence rate

Table 3 Comparison of

proposed IMPSO with respect to

GA-PSO (Huang and Tsai 2011)

Algorithm Stop criteria Path length Convergence iterations times

GA-PSO (Huang and Tsai 2011) Target reached 76.94 90

Proposed IMPSO Target reached 72.18 21

Fig. 13 a Path acquired by proposed IMPSO; b Convergence rate

Table 4 Comparison of

proposed IMPSO with respect to

Advance PSO (Deepak et al.

2014)

Algorithm Population size Stop criteria Path length Runs

Advance PSO (Deepak et al. 2014) 80 Target reached 659.8 20

Proposed IMPSO 80 Target reached 543.71 20
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