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Abstract
Shape optimization of piezoelectric energy harvesters (PEH) is deemed to be one of the most effective methods to enhance

energy efficiency. In this paper, we propose a novel shape optimization approach for PEH by combining isogeometric

analysis (IGA) and particle swarm optimization (PSO). Based on the Kirchhoff–Love plate theory and Hamilton’s prin-

ciple, an IGA formula is modeled for a bimorph PEH. Meanwhile, two optimization models with maximum average open-

circuit voltage as the objective function are established, and the difference between the two is whether frequency constraint

is considered or not. Then, we set the coordinates of control points to be design variables and utilize PSO to solve

optimization problems. The numerical examples are performed to verify the accuracy and convergence of the IGA model

and systematically compare the computational efficiency between PSO and genetic algorithm (GA). Furthermore, the shape

optimization is executed for three different structures, and the effect of thickness ratio and frequency constraint on the

optimized shapes are further analyzed. The results show that maximum output power and power density of the optimized

design respectively increase by 184.7 and 36:4%, compared with the initial design. More importantly, the presented method

can realize the integrated analysis of modeling, simulation, and optimization for PEH.

1 Introduction

Shape optimization refers to optimizing the shape of the

geometric structure to make it have more excellent

mechanical properties. Traditional shape optimization

usually bases on the finite element method to solve the

structural response, and the nodes on the boundary are

defined as design variables (Francavilla et al. 1975).

However, due to irregular boundaries and geometric errors

between the design model and the analysis model, such

definition often leads to non-physical design. To improve

the smoothness of the geometric boundary, the polynomial

and spline functions were proposed to characterize the

structure boundary (Bhavikatti and Ramakrishnan 1980).

Among them, spline functions, such as B-splines and Non-

uniform Rational B-splines (NURBS) basis functions, can

eliminate the oscillation boundary and have a relatively

higher local smoothness, which attract wide attention

(Piegl and Tiller 1997).

To seamlessly integrate the geometric model and the

analysis model, Hughes et al. (2005) introduced isogeo-

metric analysis (IGA). The fundamental principle of IGA is

that the NURBS basis functions used in the geometric

model are employed as shape functions to approximate the

unknown field. Because of its accurate description of the

geometric model and high-order continuity, many works

have been done to analyze piezoelectric structure. For

example, Willberg and Gabbert (2012) first presented a

three-dimensional electromechanical-coupled isogeometric

element, and the functionality and the advantages of the

isogeometric element were demonstrated by simulating

piezoelectric sensor and actuator. Next, the static, free

vibration, and dynamic control of piezoelectric composite

plates based on shear deformation theory were studied

(Phung-Van et al. 2015a). The similar work was also

extended to carbon nanotube reinforced composite nano-

plates (Thanh et al. 2018; Nguyen-Quang et al. 2018),

functionally graded plates (Liu et al. 2020), and laminated

composite shells (Nikoei and Hassani 2019, 2020). Inspired

by the above works, Van et al. (2015b) considered using

GA to optimize the input voltage for active control.
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Considering that piezoelectric structure has broad appli-

cation prospect in the field of health monitor, researchers

also focus on its wave characteristic (Li et al. 2020; Li and

Han 2020; Liu et al. 2019) and crack evolution (Benson

et al. 2010; Bui 2015; Bui et al. 2016; Singh and Singh

2020). Moreover, Akbar and Curiel-Sosa (2018) imple-

mented a hybrid mathematical/IGA scheme to evaluate

PEH. However, the output voltage cannot be computed

directly, because the model did not use of a fully coupled

electromechanical element.

According to the literature survey, some researchers

have studied topology optimization (Kumar and Partha-

sarathy 2011) and shape optimization (Wall et al. 2008) by

using IGA. The core idea of isogeometric shape opti-

mization is to define the control points as design variables,

and the key of solving the problem lie in the sensitivity

formula. Cho and Ha (2009) derived an enhanced shape

sensitivity and proved that the continuity of the normal

vector and curvature was important over the whole design

domain. Later on, this method was utilized in the shape

optimization of built-up structures, and the effect of exact

curvature on the design sensitivity was further demon-

strated (Lee and Cho 2015). To reduce the complexity of

the sensitivity formula for the shell components, Kiendl

et al. (2014) presented sensitivity weighting and semi-an-

alytical sensitivity. Ha et al. (2015) proposed a generalized

sensitivity formula described in a curvilinear coordinated

system, which overcame the boundary resultants accom-

panying severe curvature changes. Furthermore, there are

currently two methods to improve the shape flexibility of

the geometric model. The first method is to define both the

positions and weights of the NURBS control points as

design variables (Qian 2010). The other is the trimming

technique (Seo et al. 2010), which can complete shape and

topology optimization for shell structure simultaneously.

With the continuous development of the method, isogeo-

metric shape optimization has been used for minimum

complementary strain energy (Nagy et al. 2010a), stress

constraint problem (Nagy et al. 2010b), maximum buckling

load factor (Nagy et al. 2013), and heat conduction prob-

lem (Yoon et al. 2015). In this paper, the research progress

of isogeometric topology optimization is not reviewed, and

interested readers can refer to the review articles (Wang

et al. 2018; Gao et al. 2020).

Above-mentioned isogeometric shape optimization

usually utilizes gradient-based methods to solve optimiza-

tion problems. However, gradient-based methods require

sensitivity data, which are difficult to derive and implement

for some special problems. Therefore, the gradient-free

methods have also aroused researchers’ interest, especially

the rapid development of artificial intelligence algorithms

in recent years. For instance, Sun et al. (2018) developed a

shape optimization approach based on the isogeometric

boundary element method and particle swarm optimization

(PSO). Subsequently, this approach was expanded to the

shape optimization of the two-dimensional Helmholtz

acoustic problems (Mostafa Shaaban et al. 2020). Truong

et al. (2021) realized the material distribution optimization

of two-dimensional functionally graded beams by using the

deep feedforward neural network and PSO. The obtained

results show its accuracy and effectiveness. In summary,

the use of PSO for isogeometric shape optimization not

only provides an attractive gradient-free option, but also

has the characteristics of high accuracy and effectiveness.

To the best of our knowledge, a few works consider the

shape optimization of piezoelectric energy harvester (PEH)

to enhance energy efficiency. On the one hand, the

parameter analysis was implemented based on the theo-

retical model and simulation study, where the effect of

geometric parameters such as proof mass shapes (Nisanth

et al. 2021), structural dimensions (Ghoddus and Kor-

drostami 2018) and thickness profile (Kundu and Nemade

2021) on the performance of the traditional PEH were

analyzed, and optimized values were obtained for higher

output power. On the other hand, one utilized exponential

function or polynomial function to describe the structure

boundary, and applied heuristic algorithm (Dietl and Gar-

cia 2010), artificial immune system (Tabatabaei et al. 2016)

and ant colony system (Salmani et al. 2019) to obtain

optimized shape parameters. However, the above works are

based on theoretical analysis and simulation study, which is

not conductive to the shape optimization of complex

geometry.

Recently, IGA was utilized to evaluate the performance

of PEH with arbitrarily complex structure, and the para-

metric analysis to investigate the effect of shape pertur-

bations and tip mass on the fundamental frequency and

voltage amplitude was conducted (Peralta et al. 2020). The

authors extended the above works to variable thickness

PEH and proposed a multi-objective Kriging metamodel to

perform shape optimization (Calderon Hurtado et al. 2022).

However, the input–output database with 30,000 support

points was utilized to ensure the high accuracy of the

metamodel. Therefore, to save computational cost and

realize the integrated analysis of modeling, simulation and

shape optimization of PEH, this paper proposes a shape

optimization approach based on IGA and PSO.

The remainder of this paper is organized as follows. The

isogeometric framework of the model is presented in

Sect. 2. Section 3 proposes two different optimization

models for PEH and briefly reviews PSO. In Sect. 4,

numerical results are validated against the data from the

literature, and the convergence analysis is displayed.

Eventually, some numerical examples about the shape

optimization of PEH are employed to show the
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effectiveness of the presented method. Conclusions are

described in Sect. 5.

2 Isogeometric formulation for PEH

In this paper, a bimorph PEH with width b and length L is

considered, as shown in Fig. 1. The upper and lower layers

are piezoelectric material with thickness hp. The middle

layer is metal material with thickness hs. x� y plane is

defined in the neutral plane of the plate. It is assumed that

the polarization directions of the piezoelectric layers are

opposite, and a series connection can be utilized to harvest

energy. The Kirchhoff–Love plate theory and IGA are

integrated to develop a numerical approach for PEH, and

the related equations of PEH subjected to harmonic exci-

tation are represented in this section.

2.1 The B-splines and NURBS basis functions

For the completeness of the paper, we briefly review the

concept of the NURBS basis functions, and the work

(Hughes et al. 2005) can be referred to attain more detailed

introduction. In brief, a non-decreasing knot vector N ¼
n1; n2; :::; ni; :::; nnþpþ1

� �
is utilized to construct the B-

splines basis functions in the parameter space with

0� n� 1, where ni is the ith knot; i is the knot index; n is

the number of basis functions, and p is the polynomial

order. Giving a knot vector, the B-splines basis functions

are expressed by the Cox-De Boor recursive formula

Ni;0ðnÞ ¼
1; if ni � n\niþ1

0; else

�

Ni;pðnÞ ¼
n� ni

niþp � ni
Ni;p�1ðnÞ

þ
niþpþ1 � n

niþpþ1 � niþ1

Niþ1;p�1ðnÞ for p� 1

ð1Þ

According to the tensor product, two-dimensional

NURBS basis functions are obtained as follows

Rp;q
i;j ðn; gÞ ¼

wi;jNi;pðnÞMj;qðgÞPn
î¼1

Pm
ĵ¼1 Nî;pðnÞMĵ;qðgÞwî;ĵ

ð2Þ

where wi;j is the weight, Ni;pðnÞ and Mj;qðgÞ represent the
B-splines basis functions defined in the n and g directions

with knot vectors Nn ¼ n1; n2; . . .; ni; . . .nnþpþ1

� �
and

Ng ¼ g1; g2; . . .; gj; . . .gmþqþ1

� �
, respectively.

2.2 Kirchhoff–Love plate theory

Considering the Kirchhoff–Love plate theory, the dis-

placement equations along three directions are written as

u1ðx; y; tÞ ¼ uðx; y; tÞ � z
owðx; y; tÞ

ox

u2ðx; y; tÞ ¼ vðx; y; tÞ � z
owðx; y; tÞ

oy

u3ðx; y; tÞ ¼ wðx; y; tÞ

ð3Þ

where uðx; y; tÞ; vðx; y; tÞ and wðx; y; tÞ are the displace-

ments of the neutral plane in x; y and z direction. The

mechanical strain fields are obtained

Sij ¼
1

2
ui;j þ uj;i
� �

ð4Þ

According the Kirchhoff hypothesis, the corresponding

in-plane strain components can be written as

S1 ¼
ou1
ox

; S2 ¼
ou2
oy

; S12 ¼
ou1
oy

þ ou2
ox

ð5Þ

where S1 and S2 are axial strain along x and y directions,

and S12 is shear strain. Substituting Eq. (3) into Eq. (5),

and the strain components can be expressed in a compact

notation

S ¼ Sm þ zSb ð6Þ

Fig. 1 Schematic diagram of a

bimorph PEH
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where Sm ¼ ou

ox

ov

oy

ou

oy
þ ov

ox

� �T
; Sb ¼

� o2w

ox2
� o2w

oy2

�
�2

o2w

oxoy
�T :

In general, piezoelectric materials are usually trans-

versely isotropic materials, such as PZT-5H and PZT-5A.

According to IEEE Standard on piezoelectricity (American

and Standard 1984), x� y plane is isotropic, and the

polarization direction of the piezoelectric material is along

z direction. Therefore, the constitutive equation describing

the piezoelectric effect can be written as

Tij ¼ CijklSkl � ekijEk

Di ¼ eiklSkl þ eSikEk

ð7Þ

herein, T represents the stress tensor, and E;D respectively

denote the electric filed and the electric displacement. The

elastic tensor C in matrix form is formulated as

C ¼

c11 c12 c13 0 0 0

c21 c22 c23 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

2

6666664

3

7777775

ð8Þ

The third-order piezoelectric tensor e representing the

mechanical-electric coupling effect and the second-order

electric permittivity tensor eS in matrix form are expressed

as

e ¼
0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

2

4

3

5;

eS ¼
eS11 0 0

0 eS22 0

0 0 eS33

2

4

3

5

ð9Þ

in which e31 ¼ e32; e24 ¼ e15; eS11 ¼ eS22, and the contracted

notation is used (i.e., Voigt’s notation:

11 ! 1; 22 ! 2; 33 ! 3; 23 ! 4; 13 ! 5; 12 ! 6). The

middle layer is considered as an isotropic material, and the

corresponding constitutive relation holds T ¼ CsS.

2.3 The isogeometric discretization
and govering equations

According to isogeometric discretization, the displacement

fields u; v;w are approximated by the NURBS basis

function

u0 ¼
Xn�m

i¼1

Riui ð10Þ

where ui ¼ ui vi wi½ �T . We substitute Eq. (10) into the

Eq. (6) and obtain

Sm ¼ Bmu; Sb ¼ Bbu ð11Þ

here u represents the displacements of all control points,

Bm ¼
Ri;x 0 0

0 Ri;y 0

Ri;y Ri;x 0

2

4

3

5;Bb ¼
0 0 �Ri;xx

0 0 �Ri;yy

0 0 �2Ri;xy

2

4

3

5:

It is assumed that each element in the piezoelectric domain

defines a degree of freedom of electric potential. The

electric field can be expressed as E ¼ �B//e, where

B/ ¼ 1
	

2hp
� �

, and /e represents the electric potential of

eth element. According to Hamilton’s principle, the weak

form of the problem is given by (Peralta et al. 2020)

Z t2

t1

Z h=2

�h=2

Z

X
qd _uT _udX�

Z

X
dSTTdX

�(

þ
Z

X
dETDdXþ

Z

X
duT fbdX

�
dzþ

Z

X
d/T

e qdX

gdt ¼ 0

ð12Þ

substituting constitutive relation, Eq. (12) is rewritten as

Z t2

t1

Z h=2

�h=2

Z

X
qd _uT _udX�

Z

X
dSTTdXþ

Z

X
dSTeTEdX

�(

þ
Z

X
dETeSdX:þ

Z

X
dETeSEdXþ

Z

X
duT fbdX

�
dzþ

Z

X
d/T

e qdX



dt ¼ 0

ð13Þ

where q is material density; fb is the body load; q repre-

sents the surface electrical charge; d denotes the variation

operator, and the notion _N means oN=ot. Substituting dis-

placement, strain, and electric field equations into Eq. (13)

and assembling the element matrix, the global governing

formulations are subsequently written by

Muu €uþ Cuu _uþ Kuuuþ Ku// ¼ f

K/uu� K/// ¼ Q
ð14Þ

where
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It is noted that a and b are Rayleigh damping factors that

can be confirmed as follows (Erturk and Inman 2011)

a ¼ 2x1x2 x1n2 � x2n1ð Þ
x2

1 � x2
2

; b ¼ 2 x1n1 � x2n2ð Þ
x2

1 � x2
2

ð15Þ

in which x1;x2 are the first two natural frequency, and

n1; n2 are corresponding damping ratio.

In the energy harvesting problem, in addition to dis-

placement boundary conditions, electrical boundary con-

dition need to be considered. Assuming that the electrodes

are perfectly connected, the equipotential boundary con-

dition / ¼ B/ can be applied, in which / is voltage; B is a

unit vector with dimension Nall � 1 (Igura et al. 1995), and

Nall is the total number of elements. Therefore, Eq. (14) is

rewritten as

Muu €uþ Cuu _uþ Kuuuþ Ku// ¼ f

K/uu� K/// ¼ Q
ð16Þ

where Ku/ ¼ Ku/B;K// ¼ BTK//B;Q ¼ BTQ. If the

based displacement wb in the transversal direction is a

harmonic form, the distributed force f will represent iner-

tial effect due to the transverse acceleration, that is

f ¼ �Muu €wb. It is assumed that the transversal acceleration

is €wb ¼ Wbe
ixtði ¼

ffiffiffiffiffiffiffi
�1

p
Þ, and the unknown displacement

and the output voltage are u ¼ Ueixt;/ ¼ Ueixt, where x
denotes harmonic excitation frequency. By differentiating

the second formula of the Eq. (16) with respect to time, the

governing equations for harmonic vibration are formulated

as

�x2MuuU þ ixCuuU þ KuuU þ Ku/U ¼ Wbr

ixK/uU � ixK//U ¼ U=R
ð17Þ

where r ¼ �Muu 1 . . . 1½ �T . The frequency response

function of the output voltage subjected to unit excitation

amplitude is derived by solving the Eq. (17)

U
Wb

¼ ix ixK// þ 1=R
� ��1

K/u

�x2Muu þ ixCuu þ Kuu

� �
+ ix ixK// þ 1=R

� ��1
Ku/K/u

h i�1

r

ð18Þ

Note that the above process can be extended to higher-

order shear deformation theory model. Since this paper

only considers the thin plate, the corresponding elastic

properties can be written as

Cs ¼
Es

1� v2s

1 vs 0

vs 1 0

0 0 ð1� vsÞ=2

2

4

3

5;Cp

¼
c11 c12 0

c12 c22 0

0 0 c66

2

4

3

5 ð19Þ

For piezoelectric material, mechanical-electric coupling

matrix is e ¼ e31 e32 0½ �, and the dielectric constant

only consider eS33, where

c11 ¼ c11 �
ðc13Þ2

c33
; c12 ¼ c12 �

c13c23
c33

;

c22 ¼ c22 �
ðc23Þ2

c33
; c66 ¼ c66

e31 ¼ e31 �
c13e33
c33

; e32 ¼ e32 �
c23e33
c33

; eS33 ¼ eS33 þ
ðe33Þ2

c33

ð20Þ

Muu ¼
Z

X
NT

1m0N1 þ NT
2m1N1 þ NT

1m1N2 þ NT
2m2N2

� �
dX;Kuu ¼

Z

X
BT
mABm þ BT

bBBm þ BT
mBBb þ BT

bDBb

� �
dX

Ku/ ¼ H
Z

Xp

BT
b e

TB/
� �

dXp;K// ¼ 2hp

Z

Xp

BT
/e

SB/

� 
dXp; f ¼

Z

X
NT

1C
T fb

� �
dX;Cuu ¼ aMuu þ bKuu;Q ¼

Z

X
qdX

C ¼ diagðh; h; hÞ; m0 m1 m2f g ¼
X3

nl¼1

qð Þnl znl � znl�1ð Þ z2nl � z2nl�1

� �	
2 z3nl � z3nl�1

� �	
3

� �

H ¼ 2hshp þ h2p

� 
; A B Df g ¼

X3

nl¼1

Cð Þnl znl � znl�1ð Þ z2nl � z2nl�1

� �	
2 z3nl � z3nl�1

� �	
3

� �

N1 ¼
Ri 0 0

0 Ri 0

0 0 Ri

2

64

3

75;N2 ¼
0 0 �Ri;x

0 0 �Ri;y

0 0 0

2

64

3

75

Microsystem Technologies (2022) 28:1637–1651 1641

123



3 Optimization problem

3.1 Optimization model

In order to improve the energy efficiency of a given

structure, one can define maximum average open-circuit

voltage within the measured frequency range as the

objective function (Townsend et al. 2019), and the corre-

sponding mathematical model is written as

min c1 ¼
1

120p

Zxocþ60p

xoc�60p

UocðxÞdx

s.t.� x2MuuU þ ixCuuU þ KuuU þ Ku/U ¼ Wbr

ixK/uU � ixK//U ¼ U=R

ð21Þ

where UocðxÞ denotes the open-circuit voltage, and xoc is

open-circuit resonant frequency (Bourisli and Al-Ajmi

2010).

Previous studies show that traditional PEH only have

high energy efficiency near the resonant frequency (Erturk

and Inman 2009). However, there are different vibration

frequencies in the real environment. To ensure that PEH

has a high energy efficiency at a specified frequency, we

introduce frequency constraint into the optimization model.

Then the penalty function method is used to convert the

problem into an unconstrained problem (Sun et al. 2018),

and the optimization formula is specifically expressed as

min c2 ¼
1

120p

Zxocþ60p

xoc�60p

UocðxÞdxþ k xoc � xobj

�� ��� d
� �

s.t.� x2MuuU þ ixCuuU þ KuuU þ Ku/U ¼ Wbr

ixK/uU � ixK//U ¼ U=R

ð22Þ

where xobj and d respectively represent the objective fre-

quency and frequency difference, and k denotes the penalty
factor. It is noted that the continuous integral is replaced by

a discrete sum, in our case, there are 30 equally spaced

frequency points in the range of

xoc � 60pð Þ; xoc þ 60pð Þ½ �(Townsend et al. 2019).

3.2 Particle swarm optimization

The PSO algorithm is proposed by Kennedy and Eberhart

(1995), which is inspired by the simplified social behavior

of birds. In PSO algorithm, the basic process consists of

three steps, namely, generating particles’ position and

velocity, velocity update, and finally position update. Here,

the initial swarm of N particles is defined, where particles’

position represents a candidate solution, and velocity is the

magnitude and direction of particles’ motion. Later, the

swarm is promoted to obtain optimized solution by

updating the velocity and position with the influence of the

personal best position pbestki and the global best position

gbestk, where pbestki and gbestk stand for the optimized

position of ith particle and the optimized position of the

overall particles in the kth step, respectively. Finally, the

optimized particle is obtained until the convergence con-

dition is satisfied. The new velocity and position of each

particle at kth iteration are given as

vkþ1
i ¼ ~xvki þ c1rand

k
1 pbestki � xki
� �

þ c2rand
k
2 gbestk � xki
� �

xkþ1
i ¼ xki þ vkþ1

i

ð23Þ

where k denotes the current iteration step; ~x is the inertia

weight; vki 2 �vmax; vmax½ �, vmax is the maximum velocity of

a particle; c1 and c2 are learning factors; randk1 and randk2
are random numbers between 0 and 1. It is worth noting

that the ~x decreases linearly during the optimization

(Fourie and Groenwold 2002), that is

~x ¼ ~xmax � ~xmax � ~xminð Þk=Tmax, where Tmax is the

maximum iteration step, and ~xmin; ~xmax are the initial and

final inertia weights. The optimization flow chart is shown

in the Fig. 2.

4 Numerical analysis

In this section, the IGA model is verified by comparing

with the results obtained from literature, and the conver-

gence analysis is performed in terms of the relationship

between the accuracy of the first natural frequency and the

number of elements. The comparative analysis is made

among PSO and GA to highlight PSO’s convergence speed

and computational efficiency. The shape optimization of

three different structures is examined based on the opti-

mization model defined in Sect. 3.1, and the effect of

thickness ratio and frequency constraint on optimized

designs is investigated systematically. Unless otherwise

stated, the piezoelectric material is PZT-5H, and the matrix

material is Brass. Table 1 shows the material properties.

4.1 Validation and convergence analysis

Referring to the experimental model (Erturk and Inman

2011), the geometric dimensions are set as L ¼
24:53 mm; b ¼ 6:4 mm, hp ¼ 0:265 mm, hs ¼ 0:14 mm,

and the damping ratio is n1 ¼ 0:00874. The resistance

R ¼ 470X, and the amplitude of excitation acceleration is

1 m=s2. The structure is discretized into 16� 16 quadratic

elements. Figure 3 shows the frequency response of the

output voltage including the experimental values,

1642 Microsystem Technologies (2022) 28:1637–1651
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theoretical values (Cao et al. 2019) and IGA results. It can

be seen that the output voltage amplitude is all 0.015V, and

the experimental and theoretical values of the resonant

frequency are both around 502Hz. The numerical result is

511Hz, the errors are within 2%. Therefore, the IGA model

is validated by the experimental and theoretical values.

To study the convergence of the IGA model, we define

an error parameter error ¼ x1 � x�
1

�� ��	x�
1, where x1 is

calculated by IGA, and a reference solution x�
1 is obtained

from theoretical value about the first natural frequency.

The variation curves of error with the number of elements

are described in Fig. 4 for various orders p ¼ 2; 3; 4; 5; 6.

The results show that the parameter error gradually

decreases as the number of elements increases with a given

element order, and the minimum value of error is 1:52%.

Meanwhile, error also decreases with the increase of the

element orders. Particularly, when p[ 5, within a given

range of the number of elements, no obvious improvement

in the accuracy or convergence rate is observed. Further-

more, as the element orders and the number of elements

increase, the calculation cost increases by multiples.

Therefore, considering the accuracy and calculation cost,

the following examples use quadratic element (p ¼ q ¼ 2)

to discretize the structure.

Compared with finite element analysis, another advan-

tage of IGA is that it can accurately describe the analysis

model. In order to evaluate performance of IGA for a

complex geometry, we analyze a curved PEH as displayed

in Fig. 5. The damping ratio is set as n1 ¼ 0:00874, and

24� 16 quadratic elements are utilized. Figure 6 sketches

the numerical solutions and COMSOL simulation results of

the open-circuit voltage. The detailed simulation process

has been described in the literature (Cao et al. 2020), which

will not be repeat here. At the same time, the frequency

response of the above rectangular model is also given.

Fig. 2 The flowchart of PSO process

Table 1 The material properties

of PZT-5H and Brass
q(kg �m�3Þ c11ðGPaÞ c12ðGPaÞ c66ðGPaÞ e31ðC �m�2Þ eS33ðF �m�1Þ

PZT-5H 7500 66.2 19.2 23.5 -23.4 17.3E-9

Brass 9000 105 – – – –

Fig. 3 The frequency response of the output voltage with different

models
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For the rectangular model, the numerical solutions and

simulation results of the open-circuit voltage amplitude are

1.46 and 1.44V, respectively. As for the curved model, the

open-circuit voltage amplitudes are respectively 1.57 and

1.56V, and the errors are within 1:5%. Thus, the IGA

model is further validated by COMSOL simulation. In

addition, the open-circuit voltage amplitude of the curved

model increases by 7:5%, compared with the rectangular

model. The resonant frequency reduces from 539.4 to

485.5Hz, and there is a 10% change. Therefore, it can be

concluded that the shape design of PEH can adjust resonant

frequency and enhance energy efficiency, Sect. 4.2 will

discuss shape optimization in detail.

4.2 Numerical examples

We compare the computational efficiency and convergence

speed of PSO and GA, and then combine IGA and PSO to

study the shape optimization of PEH, and explore the effect

of thickness ratio hs
	
hp and frequency constraint on the

optimized designs in this subsection. The numerical

examples mainly aim at the three structures of different

geometric boundaries as shown in Fig. 7, where the

thickness of piezoelectric layer and metal layer is

hp ¼ 0:265 mm, hs ¼ 0:14 mm. The first structure is a

rectangle design, named as Model A, defined by length L

and width b. The second structure is represented by a

trapezoid, identified as Model B. Here, the boundary is

described by the parameter a under the premise of

L ¼ 24:53 mm; b ¼ 6:4 mm. The third geometry corre-

sponds to a curved boundary (Model C in Fig. 7), which is

described by control points (red points). The design vari-

ables are set as the coordinates of the control points, and

L ¼ 24:53 mm; b ¼ 6:4 mm remains unchanged. It is noted

that upper and lower boundaries are symmetric with

respect to middle line. Furthermore, since we are interested

in the resonant behavior, the variation of mechanical

damping is also important. Thus, it is assumed that the

damping ratios from Eq. (15) are set as n1 ¼ 0:00874; n2 ¼
0:01 for the following examples.

By default, the parameters of PSO are set as

~xmin ¼ 0:4; ~xmax ¼ 0:8; c1 ¼ c2 ¼ 1:5;N ¼ Tmax ¼ 100.

GA is an evolutionary optimization methodology by

mimicking biological evolution, which contains encode,

Fig. 4 The variation curve with different element orders a error vs the number of elements; b computation time vs the number of elements

Fig. 5 A curved PEH with initial knots vectors Nn ¼
0; 0; 0; 1=3; 2=3;f 1; 1; 1g;Ng ¼ 0; 0; 1; 1f g

Fig. 6 The frequency responses of the open-circuit voltage

1644 Microsystem Technologies (2022) 28:1637–1651

123



decode, selection, crossover and mutation for searching

and optimizing complex problems, and the relevant theory

can refer to the literature (Nabavi and Zhang 2017, 2019).

The parameters of GA are following for comparison: the

population size is set as 100, and roulette wheel selection

with a 0.8 crossover rate is utilized to selection operation.

A fixed mutation rate 0.01 is implement. All examples are

completed at a personal computer with Intel Core i7-6700

CPU @3.30 GHz and 24 GB RAM.

4.2.1 Comparative analysis

Firstly, we take maximum average open-circuit voltage as

the objective function and compare the computational

efficiency and convergence speed of PSO and GA based on

the three groups of models. The range of design variables is

shown in Fig. 7, the design variables of Model A are L and

b, and the geometry is discretized by 32� 16 quadratic

elements. The range of angle a is 0
	
; 45

	� �
for Model B,

and the domain is discretized by a mesh of 24� 16 ele-

ments. For Model C, the ordinates of the control points

belong to �b; 2b=5½ �, and the mesh number of Model C is

the same as Model B. The maximum velocities of particle

are respectively set as 0.001, 4 and 0.0005 in the PSO, and

the number of binary codes is respectively 19,13 and 20 for

Model A, B and C. These problems will be solved by both

the PSO and GA, five times each, to implement the com-

parative analysis in the following section.

The results show that each optimized designs of the

same geometric configuration are identical, where the

optimized design for Model A is L ¼ 30 mm; b ¼ 10 mm,

and the optimized angle corresponding to Model B is a ¼
45

	
and the coordinates of optimized control points are

L=4;�4:6ð Þ; L=2; 1:3ð Þ; 3L=4;�6:3ð Þ; L;�6:4ð Þ: Table 2

summarizes the optimized value and average computation

Fig. 7 Three different models of

PEH: rectangular (Model A),

trapezoidal (Model B), curved

(Model C) plate

Table 2 The comparison about

optimized values and

computation time

Optimized model/methods Model A Model B Model C

PSO GA PSO GA PSO GA

The objective values 0.329 0.329 0.361 0.361 0.306 0.306

Computation time(s) 9980.7 10,631.7 8218.8 8660.3 8199.4 8721.7

Fig. 8 The convergence history of Model A with different optimiza-

tion methods
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time. It is shown that different optimization methods obtain

the same optimized values, and the total computation time

of PSO is reduced by 6% compared with GA, and saving

calculation resources.

To further compare the convergence speed, it can be

observed from Fig. 8 that the initial value of gbest for PSO

is greater than that of GA, and PSO rapidly converges to

the stable value within approximately first 26 iterations,

while GA needs 72 iterations. Therefore, the numerical

examples prove that PSO has better computational effi-

ciency and convergence performance than GA. The similar

conclusion were obtained by a set of benchmark test

problems (Hassan et al. 2005). In the following examples,

PSO will be utilized to study the influence of material

thickness ratio hs
	
hp and frequency constraint on the

optimized results.

4.2.2 Maximum average open-circuit voltage

According to the optimized results from Sect. 4.2.1, Fig. 9

sketches the frequency responses of the open-circuit volt-

age for the initial designs and optimized designs. It is

indicated that the open-circuit voltage amplitudes of the

initial design and optimized design for Model A are

respectively 1.46 and 2.21V. Compared with the initial

design, the open-circuit voltage amplitude of the optimized

design increases by 51:4%. For Model B, the open-circuit

voltage amplitude of the initial design with a ¼ 30
	
is

2.24V, but that of the optimized design is 2.82V, which

increases by 25:9%. The same conclusion for Model C is

obtained, namely, the open-circuit voltage amplitude of the

optimized design increases by 11:2%, compared with the

initial design with L=4; b=3ð Þ; L=2; 0ð Þ; 3L=4;�b=3ð Þ;
L; 0ð Þ: Furthermore, the growth rates of the open-circuit

voltage amplitude have a relationship of Model A[Model

B[Model C. Additionally, the growth rates of objective

value for three models are 2.2, 1.4, and 0:33%, and the

magnitude relationship is the same as the growth rates of

open-circuit voltage amplitude.

According to the average output power P ¼ U2
	
2Rð Þ,

the comparison on the output power of PEH between the

initial design and the optimized design is further per-

formed. Note that the output power means the peak power

under a given load resistance and frequency excitation in

this paper. Table 3 summarizes the output power charac-

teristics in detail and indicates that the optimized resistance

of the optimized design is smaller than that of the initial

design for the identical configuration, while the optimized

resistance of Model B is one order of magnitude smaller

than that of Model A and C. It can be recalled the opti-

mized resistance formulation from the reference (Erturk

and Inman 2011) that the optimized resistance is inversely

proportional to the capacitance, that is K// in this paper.

Numerical tests show that the K// of the optimized design

increases by about 50% compared to the initial design for

all models, and that of Model B is one order of magnitude

lager than Model A and Model C. This is in good agree-

ment with the optimized resistance. Additionally, maxi-

mum output power of the optimized design for Model A

increases by 184:7%, and the power density increases by

36:4%, compared with the initial design. Meanwhile,

Model A maintains the largest increase. Especially,

regardless of the initial design and optimized design,

maximum output power of Model B is 3–5 times larger

than the other two. It is worthy of our attention that max-

imum output power of Model C increases by 92:8%, but

the power density decreases by 4:4%. The main reason is

that the volume of the optimized design is almost doubled.

Later on, the thickness of piezoelectric layer hp ¼
0:265 mm is unchanged, and the thickness ratio hs

	
hp are

respectively set as 20 : 53ð Þ; 1 : 1ð Þ; 2 : 1ð Þ. The optimized

results of Model A and Model B are not affected by the

thickness ratio, that is, the optimized dimensions of Model

A are L ¼ 30 mm; b ¼ 10 mm, and the optimized angle is

a ¼ 45
	
for Model B. However, the optimized results of

Model C are illustrated in Fig. 10, it can be observed that

the geometry shapes are generally similar, and only the

coordinates of the second and third control points are

slightly different.

We take Model C as an example to investigate the fre-

quency responses based on Eq. (18),

Table 4 summarizes the resonant frequency and open-

circuit voltage amplitude of the initial designs and the

optimized designs. It is known that the open-circuit voltage

amplitude decreases with the increase of thickness ratios,

and the open-circuit voltage amplitude of the optimized

designs are about 12% higher than that of the initial

Fig. 9 The frequency responses of the open-circuit voltage with

different models
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designs. Additionally, the resonant frequency increases

gradually as the thickness ratios increase, and its variation

range is up to 69:7%, so adjusting natural frequency can be

realized by changing the thickness ratio.

To further explore the effectiveness of the optimized

designs, the variation of the output power with load resis-

tance is described in Fig. 11. Considering that the variation

rules of different thickness ratios are the same, we take

hs
	
hp¼ 1 : 1 as an example to explain in detail. The opti-

mized resistances of optimized design and initial design are

respectively 125kX; 189kX, and the corresponding maxi-

mum output powers are 3.25 lW, 1.7 lW. In other words,

the maximum output power of the optimized design is

about twice as high as that of the initial design. Moreover,

the maximum output powers increase with the increase of

thickness ratios, and the optimized resistances decrease.

The numerical laws of Model A and Model B are the same

as those above and will not be described here.

In short, numerical examples show that PSO has better

computational efficiency and convergence performance

than GA. Although the three models are different in shape

and size, the non-traditional design can further improve the

performance of PEH, such as Model B and Model C. The

thickness ratios have little effect on the optimized geom-

etry, and we can adjust the resonant frequency by change

the thickness ratios, so as to realize high harvesting

efficiency.

Table 3 The power characteristics of different models

Models Optimized resistance kXð Þ Maximum output power lWð Þ Power density lW
	
mm3

� �

Model A

Initial design 245 1.11 0.011

Optimized design 201 3.16(þ184:7%) 0.015(þ36:4%)

Model B

Initial design 89 7.21 0.0213

Optimized design 81 13.0(þ80:3%) 0.0256(þ20:2%)

Model C

Initial design 221 1.66 0.0158

Optimized design 141 3.20(þ92:8%) 0.0151(�4:4%)

Fig. 10 The optimized results of Model C with different thickness ratios

Table 4 The characteristics of electric response with different models

Models hs
	
hp ¼ 20 : 53 hs

	
hp ¼ 1 : 1 hs

	
hp ¼ 2 : 1

Initial design Optimized design Initial design Optimized design Initial design Optimized design

Resonant frequency Hzð Þ 379.0 386.7 476.4 473.1 643.3 624.4

Open-circuit voltage amplitude Vð Þ 1.72 1.92

(?11.6%)

1.58 1.78

(?12.7%)

1.35 1.55

(?14.8%)
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4.2.3 Maximum average open-circuit voltage
with frequency constraint

According to the analysis results of Sect. 4.2.2, the range

of resonant frequency for different models is 280–643 Hz.

For the vibrational sources with different frequencies, on

the one hand, we can optimize the geometric shape to

enhance the energy efficiency. On the other hand, when the

geometric shape has reached the optimized electric

responses in the identical configuration, the thickness ratio

can be further changed to adjust the natural frequency, so

as to enhance energy efficiency. Therefore, the optimiza-

tion model c2 is performed, and the influence of the

thickness ratio and frequency constraint on optimized

designs is investigated.

The penalty function method is used to solve the opti-

mization formulation, and the choice of the penalty factor

is crucial. According to the numerical relationship between

the objective function and constraint function, we take the

penalty factors as �0:01 in this paper. The parameters are

set as xobj ¼ 1000pðrad=sÞ;d ¼ 10pðrad=sÞ; the remaining

parameters are the same as Sect. 4.2.1. Consequently, the

optimized dimensions of Model A are

L ¼ 25:6 mm; b ¼ 9:9 mm, and the optimized angle is a ¼
2:2

	
for Model B, and the coordinates of control points for

Model C are L=4;�4:3ð Þ; L=2;�0:8ð Þ; 3L=4; 1:5ð Þ;
L;�6:3ð Þ: Correspondingly, the frequency responses of the

open-circuit voltage for the above optimized design are

depicted in Fig. 12.

It can be observed that the resonant frequency of the

optimized designs is near 499:5 Hz, which meet the con-

straint condition. In addition, the open-circuit voltage

amplitudes are 1.64, 1.55, and 1.63V, respectively. Com-

pared with the optimized results from Fig. 9, the open-

circuit voltage amplitudes have a downward trend, and the

maximum reduction is 45:0% of Model B. Moreover, the

open-circuit voltage amplitude of Model A increases by

12:3%, while that of Model B and Model C respectively

decreases by 30.8 and 3:6% compared to the initial design.

Considering the design space, we take Model C as

example to analyze shape optimization of PEH under dif-

ferent frequency constraints and thickness ratios. Firstly,

the thickness of piezoelectric layer and metal layer are

respectively hp ¼ 0:265 mm,hs ¼ 0:14 mm, the objective

frequency are set as 800 and 1200pðrad=sÞ. Figure 13

displays the frequency responses of the open-circuit volt-

age, it can be seen that the resonant frequency of the

optimized designs meets the design requirements, and the

open-circuit voltage amplitudes are 1.91 and 1.37V

respectively. Furthermore, combined with the optimized

results in Fig. 12, it is concluded that the open-circuit

Fig. 11 The variation of the output power with load resistance at the

open-circuit resonant frequency

Fig. 12 The frequency responses of the open-circuit voltage with

optimized designs

Fig. 13 The frequency responses of the open-circuit voltage with

optimized designs
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voltage amplitude decreases with the increase of frequency

constraint, and the optimized shape of the three is quite

different.

The thickness of piezoelectric layer is set as

hp ¼ 0:265 mm, and the objective frequency is

1000pðrad=sÞ. The optimized designs for the thickness

ratio 20 : 53ð Þ; 1 : 1ð Þ; 2 : 1ð Þ are obtained as shown in

Fig. 14. The thickness ratios have a great influence on the

optimized shape, that is, as the thickness ratio increases,

the material area of the fixed edge gradually decreases, and

that of the free edge increases. Particularly, the optimized

shape of thickness ratio 2 : 1ð Þ is significantly different

from that of the first two.

Based on Eq. (18), it is found that the resonant fre-

quency is all 499.5 Hz, meeting the frequency constraint

condition, and the open-circuit voltage amplitudes of the

optimized designs are 1.57, 1.72 and 1.69V, respectively.

The variations of the output power with load resistance are

shown in Fig. 15 for the optimized designs, it can be

observed that the maximum output power increases with

the increase of the thickness ratios, and the values are

respectively 1:53; 2.53; 2:92 lW . Compared with the

initial designs from Fig. 11, the optimized designs of the

thickness ratio 1 : 1ð Þ; 2 : 1ð Þ increase by 48.8 and 68:8%,

but the optimized design of hs
	
hp ¼ 20 : 53ð Þ decreases by

6:7%. More importantly, maximum output powers have a

downward trend compared with the optimized designs from

Fig. 11, and the maximum reduction is 51:1% of case

hs
	
hp ¼ 20 : 53ð Þ.

5 Conclusions

In this paper, we derive the IGA formulation of a bimorph

PEH based on the Kirchhoff–Love plate theory. Then two

optimization models with maximum average open-circuit

voltage as the objective function are discussed. The IGA

model is well verified with the datum from the literature,

and the comparison analysis between PSO and GA is fully

implemented in view of computational efficiency and

convergence speed. Several numerical examples are per-

formed to investigate the effect of the thickness ratio and

frequency constraint on the optimized shape. Several prime

conclusions can be summarized as follows.

The shape optimization method based on IGA and PSO

has the advantages of high computational efficiency and

fast convergence speed. When the frequency constraint is

not considered, the open-circuit voltage amplitude increa-

ses by 51:4%, and the maximum output power increases by

184:7%, compared with the initial design. Furthermore,

compared with the rectangular design of Model A, the non-

traditional design can further improve the energy harvest-

ing efficiency, such as Model B and Model C. More

importantly, in addition to considering the frequency con-

straint, the free vibration characteristics of the structure can

be adjusted by changing the thickness ratio to harvest

energy with resonant state.

As with the majority of studies, the design of the current

study is subject to limitations. For instance, the IGA model

is derived based on Kirchhoff–Love plate theory, which is

only suitable for thin plate. The numerical examples in this

paper do not consider the effect of variable thickness and

Fig. 14 The optimized designs of Model C with different thickness ratio

Fig. 15 The variation of the output power with load resistance at the

open-circuit resonant frequency
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thickness optimization. To further extend this model, we

can apply higher-order shear deformation theory to calcu-

late power generation by PEH and carry out the shape

optimization of thick PEH. Furthermore, based on a gen-

eralized shear deformation theory and IGA framework, we

can simultaneously optimize the thickness and shape pro-

files of PEH.
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