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Abstract
The vibration properties of functionally graded multiple nanobeams is studied using Eringen’s nonlocal elasticity theory.

Beam layers are considered to be continuously connected by layer of linear springs and the nonlocal Timoshenko beam

theory is used to model each layer of beam which applies the size dependent effects in FG beam. The material behaviors of

FG nanobeams are assumed to vary over the thickness based to the power law. The Hamilton’s principle is used to derive

the governing differential equations of motion according to Eringen nonlocal theory and a Chebyshev spectral collocation

method is employed to convert the coupled equations of motion into algebraic equations. The discretized boundary

conditions are applied to adjust the Chebyshev differentiation matrices, and the system of equations is then expressed in the

matrix–vector form. Next, the coupled natural frequencies and corresponding mode shapes are obtained by solving the

standard eigenvalue problem. The model is confirmed by comparing the obtained results with benchmark results existing in

the literature. Next, a parametric study is carried out to determine the influences of the material gradation, length scale, and

stiffness parameters on the vibration properties of multiple functionally graded nanobeams. It is demonstrated that these

parameters are vital in examination of the free vibration of a multi-layered FG nanobeam.

1 Introduction

Of the superior mechanical, thermal, and electrical char-

acteristics of micro/nanostructures, the applications in

small-scale systems, such as micro-sensors, micro-actua-

tors, and micro-resonators have raised increasingly over the

past decade. In order to accurately design these devices and

to increase the reliability of the nanostructures, compre-

hensive study and precise evaluation of the mechanical

behaviors of nanostructures, such as bending, buckling,

vibration, and wave propagation is crucial. In the literature,

to analyze nanostructures, three methods have been used

including atomistic modeling (Ball 2001; Baughman et al.

2002), hybrid atomistic–continuum mechanics (Bodily and

Sun 2003; Li and Chou 2003), and continuum mechanics.

The two former modeling are computationally costly and

can be used only to a few atoms or molecules, thus con-

tinuum mechanics is usually used by researchers.

Based on experimental outcomes, it is exposed that

small-scale effects play an important role in the static and

dynamic properties and responses of micro/nanostructures.

Since classical continuum theory is scale-free in modeling

material, therefore, size-dependent continuum theories

must be applied in order to take into account size effects.

Several researchers suggested modified elasticity theories

to extract the most accurate results, for example strain

gradient elasticity, couple stress, Eringen’s nonlocal elas-

ticity, and general nonlocal elasticity (Eringen 2002; Yang

et al. 2002; Lam et al. 2003; Shaat and Abdelkefi 2017).

Among these non-classical continuum theories, Eringen

nonlocal elasticity is more popular in the research com-

munity. Eringen (1983, 2006) proposed integral and dif-

ferential types of constitutive equations with a single

material parameter, such that it takes into consideration the

forces between atoms and internal length scale. Many

researchers have studied the mechanical behaviors of dif-

ferent types of nanostructures within the framework of

nonlocal continuum mechanics.
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Micro/nanobeams are one of the significant elements of

most micro/nanostructures, the following literature review

focuses on examinations on the vibrational properties of

single micro/nanobeams using nonlocal elasticity theories.

Roque et al. (2011) employed Eringen’s nonlocal theory to

reveal the bending, buckling, and vibrational properties of

a nanobeam via Timoshenko beam theory. They applied an

effective meshless method to obtain their results. Murmu

and Pradhan (2009) investigated the vibration response of

non-uniform cantilever beam utilizing the nonlocal elas-

ticity theory. Differential quadrature method has been

employed and natural frequencies of the structure were

determined. They demonstrated that the nonlocal frequency

solutions of nano-cantilever are larger compared to the

local solutions till a critical height ratio. Thai (2012)

studied the analysis of the bending, buckling, and vibration

of a nanobeam based on Eringen’s theory and a shear

deformation beam model. Their model is similar the non-

local Euler–Bernoulli beam model and does not need a

shear correction factor. Aranda-Ruiz et al. (2012) exam-

ined the free vibration of a rotating non-uniform nano-

cantilever by employing Eringen’s nonlocal theory. They

measured the influence of the small-scale nonlocal phe-

nomenon and angular speed on the vibrational behaviors of

nanobeams.

Reddy (2007, 2010), Reddy and El-Borgi (2014) sug-

gested new equations of motion for Euler–Bernoulli,

Timoshenko, and Reddy and Levinson beam theories cor-

responding on the Eringen’s nonlocal elasticity theory and

then developed analytical solutions for bending, vibrations,

and buckling responses of beams for simply supported

boundary conditions. Ghadiri and Shafiei (2016) studied

the nonlinear bending vibration of nonlocal Euler–Ber-

noulli nanobeams with considering von Karman nonlin-

earity and axial loads. The differential quadrature method

in combination with a direct iterative approach is imple-

mented to achieve the nonlinear vibration frequencies of

nanobeam. Wang et al. (2007) used the Hamilton’s prin-

ciple, Eringen’s nonlocal elasticity theory, and Timosh-

enko beam theory to study the free vibration problem of

micro/nano-beams. The governing equations were analyt-

ically solved for the natural frequencies of beams with

various boundary conditions. Khaniki (2018a, b) applied

mixed local/nonlocal Eringen elasticity to examine the

transverse vibration properties of a rotating Euler–Ber-

noulli cantilever beam with considering in-phase and out-

of-phase vibrations. Several other studies used nonlocal

elasticity theories to model various kinds of dynamical

systems.

All aforementioned works considered single

micro/nanostructure-based systems for static and dynamic

analyses. More complex nanoscale systems contain of two

and more prepared nanostructures, such as tubes, rods,

beams, and plates, which are generally joined through

some mediums. The static and dynamic properties of such

systems are still not fully discovered in the literature. The

simplest model of a coupled multiple-nanostructure sys-

tems is double nanostructure-based system. It can be

composed of two nanotubes, nanorods, nanobeams, or

nanoplates. These multiple systems are coupled through a

medium with elastic or viscoelastic behaviors. Liu et al.

(2017) applied the nonlocal theory along with the Kelvin

model to conduct the flexural vibrations of double-vis-

coelastic-functionally graded nanoplates resting on a vis-

coelastic Pasternak medium, and subjected to in-plane

loads. They obtained analytical solutions for vibrational

frequencies and buckling loads when the system was under

simply supported boundary conditions. Murmu and Adhi-

kari (2010a, b, 2011), Murmu et al. (2013) examined a

comprehensive vibration analysis of a double-nanorod,

nanobeam, and nanoplate systems. They obtained the

governing equations of motion based on the D’Alembert’s

principle and nonlocal elasticity theory. They carried out

the impact of small-scale effects and other physical

parameters on natural frequencies and critical buckling

loads and their obtained analytical results were compared

to molecular dynamics simulations. Şimşek (2011) pro-

posed an analytical approach for the forced vibration of an

elastically connected double-carbon nanotube system car-

rying a moving nanoparticle corresponding on the nonlocal

elasticity theory. The two nanotubes are uniform and are

attached with each other constantly by elastic springs. He

showed that the dynamic deflections anticipated by the

classical theory are always smaller than those expected by

the nonlocal theory due to the nonlocal effects.

Arash and Wang (2011) examined the vibration char-

acteristics of single- and double-layered graphene sheets by

using nonlocal continuum theory and molecular dynamics

simulations. They showed that the classical elastic model

overvalued the resonant frequencies of the sheets. Sari

et al. (2020) studied the natural vibration behavior of axi-

ally functionally graded double nanobeams based on the

Euler–Bernoulli beam and Eringen’s nonlocal elasticity

theory. They modeled the double nanobeams by a layer of

linear springs and used the Hamilton’s principle for

developing the governing differential equation of motion

and the Chebyshev spectral collocation method was used to

transform the coupled governing differential equations of

motion into algebraic equations. Also, they examined the

influence the coupling springs, Winkler stiffness, the shear

stiffness parameter, taper ratios, and the boundary condi-

tions on the natural transverse frequencies of axially

functionally graded double nanobeams. Hashemi and

Khaniki (2018) carried out dynamic response of multiple

nanobeam system subjected to a moving nanoparticle.

They coupled beam layers by Winkler elastic medium and
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the nonlocal Euler–Bernoulli beam theory was employed to

model each layer of beam. The Hamilton’s principle,

eigenvalue function procedure, and the Laplace transform

process were applied to solve the equation of motion.

Karličić et al. (2018) investigated the dynamic stability of a

nonlinear multiple-nanobeam system within the framework

of Eringen’s nonlocal theory. They used the incremental

harmonic balance procedure to reveal the dynamic stability

problem of a nonlinear multiple-nanobeam system.

Sun et al. (2018) studied the design and fabricated of

multi-layer graphene reinforced nanostructured function-

ally graded cemented carbides. Li et al. (2019) investigated

the static bending deformation of multi-layered nanoplate

under surface loading by using the modified couple stress

theory. Guo et al. (2018) presented a three dimensional size

dependent layered model for functionally graded magne-

toelectroelastic plate by using the modified couple stress

theory. They reduced the final governing equations to

eigen-system by suggesting the extended displacement

according to two dimensional Fourier series. Li et al.

(2019) studied the size-dependent thermo-electromechani-

cal responses of multi-layered piezoelectric nanoplates

subject to heating load. Chen et al. (2017) presented ana-

lytical solutions for propagating of time-harmonic waves in

three dimensional isotropic multi-layered plates with non-

local influence. They showed the effect of the nonlocal

parameter, stacking sequence on the time-harmonic field

response. Study of the static and dynamic properties of

such systems has been an interesting outlook in the last

decade because of potential applications in design tech-

niques of different micro/nanoengineering systems, par-

ticularly when they are expected to be used in vibrating

nanodevices, such as resonators, sensors, or other nano-

electromechanical systems.

The lack of consistent dynamic models of multiple-

nanostructure-based systems creates a challenging study in

this field as an interesting task for researchers. A pivotal

idea of this work is to fill this gap in the literature and

suggest new model and approach of a solution to examine

the vibration of double and multiple functionally graded

Timoshenko nanobeams (MFGTB) using the nonlocal

elasticity theory. The current model of MFGTB composed

of multiple individual simply supported and clamped

Timoshenko nanobeams that are parallel to each other and

joined by an elastic layer of continuous linear springs. The

governing equations of motion are derived and the Che-

byshev spectral collocation method (CSCM) is applied to

find the dimensionless natural frequencies and the corre-

sponding mode shapes.

2 General formulation for FGM nanobeam
resting on an elastic foundation

In Fig. 1, a functionally graded multi-layered nanobeam of

length L, width b, and thickness h is shown. These nano-

beams are connected by a set of linear elastic springs.

Based on Timoshenko beam model and considering the

double nanobeams scenario, the axial displacement ux, and

the transverse displacement uz of any point of the beam are

given as:

uix x; z; tð Þ ¼ ui x; tð Þ þ zhi x; tð Þ; ð1Þ
uiz x; z; tð Þ ¼ wi x; tð Þ; ð2Þ

where ui and wi (i = 1, 2) are the axial and the transverse

displacements of any point on the neutral axis of beam i,

and hi is the bending rotation of the cross-sections at any

point on the neutral axis of beam i, x and z are the coor-

dinates along the length and the thickness of the beam,

respectively, and t is the time.

The nonzero strain of the beam can be expressed as:

eixx ¼
oui
ox

þ z
ohi
ox

� �
; ð3Þ

cizx ¼
owi

ox
þ hi; ð4Þ

where exx and czx are the normal and shear strains,

respectively.

Consider the Hamilton’s principle which is given as:

Z t

0

d Ti � Ui � Við Þdt ¼ 0; ð5Þ

where d is the variation operator, T represents the kinetic

energy, U is the strain energy, and V denotes the potential

energy due to the coupling spring.

Following the strategy used in (Rahmani and Pedram

2014) for one single beam, the first variation of the strain

energy and the potential energy for double connected

beams can be expressed as:

dUi ¼
ZL

0

Ni
odui
ox

� �
þMi

odhi
ox

� �
þ Qi

odwi

ox
þ dhi

� �� �
dx;

ð6Þ

dV ¼
ZL

0

K w2 � w1ð Þd w2 � w1ð Þdx; ð7Þ

where N is the axial normal force, Q represents the shear

force, M is the bending moment, and K is the stiffness of

the elastic layer. These stress resultants are defined as:
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N ¼
Z
A

rxxdA;M ¼
Z
A

zrxxdA;Q ¼
Z
A

jrxzdA; ð8Þ

where rxx and rxz are the normal and shear stresses,

respectively, A denotes the beam’s cross sectional area

which is given as A = bh, and j is the shear correction

factor.

The first variation of the kinetic energy of the beam can

be given as:

dTi¼
ZL

0

I0 _uid _uiþ I1 _uid _hiþ I1 _hid _uiþ I2 _hid _hiþ I0 _wid _wi

� �
dx;

ð9Þ

where

I0; I1; I2f g ¼
Z
A

q zð Þ 1; z; z2
� �

dA; ð10Þ

and q(z) is the density of the beam’s material. Inserting

Eqs. (6), (7), and (9) into Eq. (5) yields:

Z t

0

ZL

0

Ni
odui
ox

� �
þMi

odhi
ox

� �
þ Qi

odwi

ox
þ dhi

� ��

�K w2 � w1ð Þd w2 � w1ð ÞÞdx�
ZL

0

I0 _uid _ui þ I1 _uid _hi þ I1 _hid _ui þ I2 _hid _hi þ I0 _wid _wi

� �
dx ¼ 0:

ð11Þ

Integrating by parts yields:

Z t

0

Z L

0

oNi

ox
� I0 €ui � I1€hi

� �
dui

�

þ oMi

ox
� Qi � I1 €ui � I2€hi

� �
dhi

þ oQi

ox
� I0 €wi � Kðw2 � w1Þ

� �
dðw2 � w1Þ

	
dx dt

þ
Z L

0

fðI0 _ui þ I1 _hiÞd _ui þ ðI1 _ui þ I2 _hiÞd _hi þ I0 _wid _wigdx

�
Z t

0

Nidui þMidhi þ Qidwif gL0dt ¼ 0

ð12Þ

According to the Hamilton’s principle, the equations of

motion can be written as:

oNi

ox
� I0 €ui � I1€hi ¼ 0; ð13Þ

oMi

ox
� Qi � I1 €ui � I2€hi ¼ 0; ð14Þ

oQi

ox
� I0 €wi þ �1i


 �
K w1 � w2ð Þ ¼ 0: ð15Þ

The boundary conditions that are related to Eq. (12) can

be expressed as follows:

Ni ¼ 0 or ui ¼ 0atx ¼ 0 and x ¼ L; ð16Þ
Mi ¼ 0 or hi ¼ 0atx ¼ 0 and x ¼ L; ð17Þ
Qi ¼ 0 or wi ¼ 0atx ¼ 0 and x ¼ L : ð18Þ

3 Nonlocal Timoshenko modeling of multi-
layers FG nanobeams

Based on Eringen’s nonlocal elasticity theory, the stress at

a reference point in a structure is a function of the strains at

all points in the domain. For nonlocal FG Timoshenko

Fig. 1 Schematic illustration of multi-layered nanobeam
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beam, the nonlocal constitutive relations may be written as

follows (Sari et al. 2020):

rixx � e0að Þ2o
2rixx
ox2

¼ E zð Þeixx; ð19Þ

sizx � e0að Þ2o
2sizx
ox2

¼ G zð Þcizx; ð20Þ

where e0 is a constant that depends on the material prop-

erties, a represents the internal characteristic length, E(z) is

the modulus of elasticity, and G zð Þ ¼ E zð Þ= 2 1 þ mð Þ½ � is the

shear modulus.

By using Eqs. (3), (4), (8), (19), and (20) and following

the strategy used in (Rahmani and Pedram 2014), the axial

force, bending moment, and shear force of the nonlocal

Timoshenko beam are expressed as:

Ni � g2 o
2Ni

ox2
¼ S0

oui
ox

þ S1

ohi
ox

; ð21Þ

Mi � g2 o
2Mi

ox2
¼ S1

oui
ox

þ S2

ohi
ox

; ð22Þ

:Qi � g2 o
2Qi

ox2
¼ S3

owi

ox
þ hi

� �
; : ð23Þ

where

S0; S1; S2ð Þ ¼
Z
A

E zð Þ 1; z; z2

 �

dA; ð24Þ

S3 ¼
Z
A

jG zð ÞdA; ð25Þ

and g ¼ e0a.

In this study, E zð Þ, G zð Þ, and q zð Þ are given as (Rahmani

and Pedram 2014):

E zð Þ ¼ Ec � Emð Þ z

h
þ 1

2

� �k

þEm; ð26Þ

G zð Þ ¼ Gc � Gmð Þ z

h
þ 1

2

� �k

þGm; ð27Þ

q zð Þ ¼ qc � qmð Þ z

h
þ 1

2

� �k

þqm; ð28Þ

where the subscripts m and c represent the metallic and

ceramic rich surfaces. The top surface (z = h/2) of the

beam is ceramic-rich whereas the bottom surface (z = - h/

2) is metal-rich, and k is the radiant index that is considered

to describe the change in the volume fraction of the con-

stituent materials of the FG beam.

By using Eqs. (13)–(15) and (21)–(23), the equations of

motion of two FG Timoshenko nanobeams connected by a

continuous layer of vertical translational springs are given

as:

S0

o2u1

ox2
þ S1

o2h1

ox2
¼ I0

o2u1

ot2
þ I1

o2h1

ot2

� g2 I0
o4u1

ox2ot2
þ I1

o4h1

ox2ot2

� �
; ð29Þ

S3

o2w1

ox2
þ oh1

ox

� �
� K w1 � w2ð Þ þ Kg2 o2w1

ox2
� o2w2

ox2

� �

¼ I0
o2w1

ot2
� g2I0

o4w1

ox2ot2
;

ð30Þ

S1

o2u1

ox2
þ S2

o2h1

ox2
� S3

ow1

ox
þ h1

� �

¼ I1
o2u1

ot2
þ I2

o2h1

ot2
� g2 I1

o4u1

ox2ot2
þ I2

o4h1

ox2ot2

� �
; ð31Þ

S0

o2u2

ox2
þ S1

o2h2

ox2
¼ I0

o2u2

ot2
þ I1

o2h2

ot2

� g2 I0
o4u2

ox2ot2
þ I1

o4h2

ox2ot2

� �
; ð32Þ

S3

o2w2

ox2
þ oh2

ox

� �
� K w2 � w1ð Þ þ Kg2 o2w2

ox2
� o2w1

ox2

� �

¼ I0
o2w2

ot2
� g2I0

o4w2

ox2ot2
;

ð33Þ

S1

o2u2

ox2
þ S2

o2h2

ox2
� S3

ow2

ox
þ h2

� �

¼ I1
o2u2

ot2
þ I2

o2h2

ot2
� g2 I1

o4u2

ox2ot2
þ I2

o4h2

ox2ot2

� �
: ð34Þ

An eigenvalue problem analysis is performed by

assuming harmonic solutions in time as:

ui x; tð Þ;wi x; tð Þ; hi x; tð Þð Þ ¼ Ui xð Þ;Wi xð Þ;Hi xð Þð Þejxt;
ð35Þ

where x is the natural frequency in rad/s, and j ¼
ffiffiffiffiffiffiffi
�1

p
and

U, W, and H are as the mode shapes of the system.

Substituting Eq. (35) into Eqs. (29–34) yields:

S0

d2U1

dx2
þ S1

d2H1

dx2
¼ �x2I0U1 � x2I1H1

þ g2x2 I0
d2U1

dx2
þ I1

d2H1

dx2

� �
; ð36Þ

S3

d2W1

dx2
þ dH1

dx

� �
� K W1 �W2ð Þ þ Kg2 d2W1

dx2
� d2W2

dx2

� �

¼ �x2I0W1 þ g2x2I0
d2W1

dx2
;

ð37Þ
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S1

d2U1

dx2
þ S2

d2H1

dx2
� S3

dW1

dx
þH1

� �

¼ �x2I1U1 � x2I2H1 þ g2x2 I1
d2U1

dx2
þ I2

d2H1

dx2

� �
;

ð38Þ

S0

d2U2

dx2
þ S1

d2H2

dx2
¼ �x2I0U2 � x2I1H2

þ g2x2 I0
d2U2

dx2
þ I1

d2H2

dx2

� �
; ð39Þ

S3

d2W2

dx2
þ dH2

dx

� �
� K W2 �W1ð Þ þ Kg2 d2W2

dx2
� d2W1

dx2

� �

¼ �x2I0W2 þ g2x2I0
d2W2

dx2
;

ð40Þ

S1

d2U2

dx2
þ S2

d2H2

dx2
� S3

dW2

dx
þH2

� �

¼ �x2I1U2 � x2I2H2 þ g2x2 I1
d2U2

dx2
þ I2

d2H2

dx2

� �
:

ð41Þ

Performing a similar process for multi-layered beams,

the governing equation of motions can be expressed in

terms of displacements as:

S0

d2U1

dx2
þ S1

d2H1

dx2
¼ �x2I0U1 � x2I1H1

þ g2x2 I0
d2U1

dx2
þ I1

d2H1

dx2

� �
; ð42Þ

S3

d2W1

dx2
þ dH1

dx

� �
� K1 W1 �W2ð Þ

þ K1g
2 d2W1

dx2
� d2W2

dx2

� �

¼ �x2I0W1 þ g2x2I0
d2W1

dx2
; ð43Þ

S1

d2U1

dx2
þ S2

d2H1

dx2
� S3

dW1

dx
þH1

� �

¼ �x2I1U1 � x2I2H1 þ g2x2 I1
d2U1

dx2
þ I2

d2H1

dx2

� �
;

ð44Þ

S0

d2Ui

dx2
þ S1

d2Hi

dx2
¼ �x2I0Ui � x2I1Hi

þ g2x2 I0
d2Ui

dx2
þ I1

d2Hi

dx2

� �
; ð45Þ

S3

d2Wi

dx2
þ dHi

dx

� �
� Ki�1 Wi �Wi�1ð Þ

þ Ki�1g
2 d2Wi

dx2
� d2Wi�1

dx2

� �
� Ki Wi �Wiþ1ð Þ

þ Kig
2 d2Wi

dx2
� d2Wiþ1

dx2

� �

¼ �x2I0Wi þ g2x2I0
d2Wi

dx2
; ð46Þ

S1

d2Ui

dx2
þ S2

d2Hi

dx2
� S3

dWi

dx
þHi

� �

¼ �x2I1Ui � x2I2Hi þ g2x2 I1
d2Ui

dx2
þ I2

d2Hi

dx2

� �
:

ð47Þ

i = 2, 3, …, m-1

S0

d2Um

dx2
þ S1

d2Hm

dx2
¼ �x2I0Um � x2I1Hm

þ g2x2 I0
d2Um

dx2
þ I1

d2Hm

dx2

� �
;

ð48Þ

S3

d2Wm

dx2
þ dHm

dx

� �
� Km�1 Wm �Wm�1ð Þ

þ Km�1g
2 d2Wm

dx2
� d2Wm�1

dx2

� �

¼ �x2I0Wm þ g2x2I0
d2Wm

dx2
; ð49Þ

S1

d2Um

dx2
þ S2

d2Hm

dx2
� S3

dWm

dx
þHm

� �

¼ �x2I1Um � x2I2Hm þ g2x2 I1
d2Um

dx2
þ I2

d2Hm

dx2

� �
:

ð50Þ

It should be mentioned that in the current study the

values of the properties for the metallic and the ceramic

layers used in the nonlocal FG nanobeams are given in

Table 1.

Table 1 Material properties used in the FG beam (Rahmani and

Pedram 2014)

Properties Steel Alumina (Al2O3)

E (GPa) 210 390

q (kg/m3) 7800 3960

m 0.3 0.24
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4 Solution procedure: Chebyshev spectral
collocation method (CSCM)

When investigating the vibrations of double and multiple

FG Timoshenko nanobeams with different boundary con-

ditions, obtaining analytical solutions becomes challeng-

ing. It should be mentioned that the single FG beam case

was performed by Rahmani and Pedman (2014) for simply

supported boundary conditions in which Fourier series

were applied for only one kind of boundary conditions. In

this work, different kinds of boundary conditions for single,

double, and multiple FG nanobeams are considered and

analyzed by using the Chebyshev spectral collocation

method. This method is utilized to discretize the equations

of motion and obtain the natural frequencies and mode

shapes of the system under investigation.

The Chebyshev points are defined in the range of [- 1,

1] as (Trefethen 2000):

xj ¼ cos
jp
N

� �
; j ¼ 0; 1; . . .:;N: ð51Þ

The Chebyshev differentiation matrix, D½ �N , is an

N þ 1ð Þx N þ 1ð Þ matrix, and its elements are expressed

as:

DNð Þ00¼
2N2 þ 1

6
; DNð ÞNN¼ � 2N2 þ 1

6
;

DNð Þjj¼
�xj

2 1 � x2
j

� � ; j ¼ 1; . . .;N � 1

DNð Þij¼
ci
cj

�1ð Þiþj

xi � xj

 � ; i 6¼ j; i; j ¼ 0; . . .;N:ci

¼
2 ; i ¼ 0 or N;

1 ; otherwise

�
:

ð52Þ

In the current research, the x-axis is normalized to be in

the range of [0, 1], hence, the elements of DN will have

different values than those shown in Eq. (51). Due to its

accuracy, rapid convergence rate, flexibility and simplicity

in utilization, the CSCM has efficiently been applied to

investigate the natural vibrations and buckling responses of

different structures (Sari et al. 2017; Ma’en et al. 2018; Sari

and Butcher 2011). When employing the CSCM to dis-

cretize differential equations, the nth derivative of an

unknown function (the transverse and axial displacements

of the beams, and the bending rotation of the beams) is

given by Dn ¼ DNð Þn.
For the FG Timoshenko nonlocal double nanobeam

under consideration, each point possesses three degrees of

freedom: U, W, and H. Hence, a displacement vector is

defined as:

Uf g ¼
U1;1W1;1H1;1U2;1W2;1H2;1U1;Nþ1W1;Nþ1H1;Nþ1U2;Nþ1W2;Nþ1H2;Nþ1

U1;2. . .U1;NW1;2. . .W1;NH1;2. . .H1;NU2;2. . .U2;NW2;2. . .W2;NH2;2. . .H2;N

� 	T

;

ð53Þ

where the first and second subscripts refer to the ith beam

(beam 1 or beam 2), and to the jth Chebyshev point along

the beam’s span (j = 1, 2 …, N ? 1), respectively.

The Eqs. (42–50) are discretized using the CSCM as:

GE1

GE2

GE3

2
4

3
5 Uf g ¼ x2

RH1

RH2

RH3

2
4

3
5 Uf g; ð54Þ

where

GE1 ¼ S0 � 100000½ � � D2ð Þ þ S1 � 001000½ � � D2ð Þ;
ð55Þ

GE2 ¼ S3 � 010000½ � � D2ð Þ þ S3 � 001000½ � � D1ð Þ
� K � 010000½ � � Ið Þ þ K � 000010½ � � D1ð Þ
þ Kg2 � 010000½ � � D2

 �

� Kg2 � 000010½ � � D2

 �

;

ð56Þ

GE3 ¼ S1 � 100000½ � � D2ð Þ þ S2 � 001000½ � � D2ð Þ
� S3 � 010000½ � � D1ð Þ � S3 � 001000½ � � Ið Þ;

ð57Þ
GE4 ¼ S0 � 000100½ � � D2ð Þ þ S1 � 000001½ � � D2ð Þ;

ð58Þ

GE5 ¼ S3 � 000010½ � � D2ð Þ þ S3 � 000001½ � � D1ð Þ
� K � 000010½ � � Ið Þ þ K � 010000½ � � D1ð Þ
þ Kg2 � 000010½ � � D2

 �

� Kg2 � 010000½ � � D2

 �

;

ð59Þ

GE6 ¼ S1 � 000100½ � � D2ð Þ þ S2 � 000001½ � � D2ð Þ
� S3 � 000010½ � � D1ð Þ � S3 � 000001½ � � Ið Þ;

ð60Þ

RH1 ¼ �I0 � 100000½ � � Ið Þ � I1 � 001000½ � � Ið Þ
þ I0g

2 � 100000½ � � D2

 �

þ I1g
2 � 001000½ � � D2


 �
; ð61Þ

RH2 ¼ �I0 � 010000½ � � Ið Þ þ I0g
2 � 010000½ � � D2


 �
;

ð62Þ

RH3 ¼ �I1 � 100000½ � � Ið Þ � I2 � 001000½ � � Ið Þ
þ I1g

2 � 100000½ � � D2

 �

þ I2g
2 � 001000½ � � D2


 �
; ð63Þ
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RH4 ¼ �I0 � 000100½ � � Ið Þ � I1 � 000001½ � � Ið Þ
þ I0g

2 � 000100½ � � D2

 �

þ I1g
2 � 000001½ � � D2


 �
; ð64Þ

RH5 ¼ �I0 � 000010½ � � Ið Þ þ I0g
2 � 000010½ � � D2


 �
;

ð65Þ

RH6 ¼ �I1 � 000100½ � � Ið Þ � I2 � 000001½ � � Ið Þ
þ I1g

2 � 000100½ � � D2

 �

þ I2g
2 � 000001½ � � D2


 �
; ð66Þ

and � is the Kronecker product.

The size of each term (GE1, GE2,…, GE6, RH1,

RH2,…, and RH6) is (N ? 1) � 6(N ? 1). The same

scheme is followed for the triple nonlocal FG Timoshenko

nanobeams. After rewriting the equations of motion

according to the CSCM, the eigenvalue problem for the FG

Timoshenko double nanobeams with clamped (C) and

simply supported (S) boundary conditions can be solved.

More details can be found in (Sari and Butcher 2011).

5 Results and discussions

5.1 Methodology verification for single nonlocal
Timoshenko FG beams

In order to check the accuracy of the CSCM, a comparative

study is first performed. Initially, the natural frequencies of

the FG Timoshenko nonlocal single nanobeam are com-

pared to those reported by Rahmani and Pedram (Rahmani

and Pedram 2014). In Table 2, the nondimensional fun-

damental frequencies of simply supported FG Timoshenko

nanobeams are shown which are defined as

x̂1 ¼ x1L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcA=EcI

p
. Also, Table 3 presents the nondi-

mensional fundamental frequencies of simply supported

FG Timoshenko nanobeams for two different the power-

law exponent, namely, k = 1 and k = 5. It follows from the

obtained results in these tables that the natural frequencies

of the present methodology are in acceptable agreement

with those calculated by Rahmani and Pedram (2014).

Tables 2 and 3 reflects the reliability of the numerical

technique used in this study.

The plotted curves in Fig. 2 show the variations of the

first fundamental natural frequency when the material

gradation distribution is varied and the nonlocal parameter

is set equal to l/h = 100. It can be seen that the first natural

frequency significantly decreases when the power exponent

changes from 0 to 5 than that when power exponent in

range between 5 and 10. In addition, an increase in the

nonlocal parameter has a softening effect on the natural

frequency of the system, as expected. These results are in

excellent agreement with their counterparts obtained by

Rahmani and Pedram (2014).

5.2 Vibration properties of double connected FG
nanobeams

The effects of the power exponent of the material, nonlocal

elasticity, and continuous elastic layer stiffness on the

natural frequencies of the double connected FG nanobeams

are investigated. The plotted curves in Fig. 3 show the

influence of the power exponent parameter (k) at different

values of the nonlocal parameter (g2) on the first three

dimensionless natural frequencies of FG SS–SS double

nanobeam with considering the stiffness of the continuous

elastic layer between the nanobeams equal to K ¼
500N=m when L=h ¼ 20. The notation SS–SS indicates

that the two nanobeams are simply-supported at both

edges. The power exponent parameter is considered to be

in the interval of [0, 10]. Inspecting the plots in Fig. 3, it is

clear that both the power exponent parameter and nonlocal

elasticity parameter have a softening effect on the first

three natural frequencies of the coupled system. This is

Table 2 Fundamental nondimensional natural frequency x̂1 ¼
x1L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcA=EcI

p
of simply supported nanobeams (b = 1000 � 10�9m,

L = 10000 � 10�9m, k = 10, j ¼ 5=6)

L/h e0að Þ2 Rahmani and Pedram (2014) Present

20 0 5.6521 5.6528

1 9 10-12 5.3923 5.3929

2 9 10-12 5.1653 5.1659

3 9 10-12 4.9647 4.9653

4 9 10-12 4.7858 4.7864

5 9 10-12 4.6250 4.6255

50 0 9 10-12 5.6730 5.6736

1 9 10-12 5.4122 5.4128

2 9 10-12 5.1843 5.1849

3 9 10-12 4.9830 4.9836

4 9 10-12 4.8035 4.8040

5 9 10-12 4.6421 4.6426

100 0 9 10-12 5.6760 5.6766

1 9 10-12 5.4150 5.4156

2 9 10-12 5.1871 5.1877

3 9 10-12 4.9857 4.9862

4 9 10-12 4.8060 4.8066

5 9 10-12 4.6445 4.6450
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expected because an increase in the power exponent

parameter is associated with a decrease in the effective

Young’s modulus of the structure and hence a reduction in

the natural frequencies of the system. Moreover, this fig-

ure shows that the reduction of the natural frequencies is

more noticeable for the higher modes when the power

exponent parameter is increased. Deeply investigating the

influences of the power exponent parameter on the natural

frequencies, it can be noted that these frequencies are in

general more sensitive when k is in the range of [0, 2] for

various configurations of the nonlocal parameter. Further-

more, for higher values of the nonlocal parameter, it is

observed that the second and third natural frequencies

becomes closer to each other which can result in the

presence of a one-to-one internal resonance. This trend

becomes more important when the power exponent is

increased.

The plotted curves in Fig. 4 present the impact of the

power exponent parameter (k) for different values of the

nonlocal parameter (g2) on the first three dimensionless

frequencies of FG CC–CC double nanobeam with

K ¼ 500N=m; and L=h ¼ 20. The notation CC–CC

denotes that the two nanobeams are clamped at both

boundaries. As predicted, it follows from these plots that

both k and g2 parameters have softening influence on the

first three natural frequencies. Furthermore, this figure re-

veals that the reduction of the natural frequencies is more

significant for the higher modes. Besides, the frequencies

Table 3 Fundamental

frequency parameter X1 ¼
x1L

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcA=EcI

p
of simply

supported nanobeams (b = 1000

� 10�9m, L = 10,000 � 10�9m,

j ¼ 5=6)

k = 1.0 k = 5.0

L/h e0að Þ2 Rahmani and Pedram (2014) Present Rahmani and Pedram (2014) Present

20 0 6.9676 6.8370 5.9172 5.8993

1 9 10-12 6.6473 6.5227 5.6452 5.6281

2 9 10-12 6.3674 6.2481 5.4075 5.3912

3 9 10-12 6.1202 6.0055 5.1975 5.1819

4 9 10-12 5.8997 5.7892 5.0103 4.9952

5 9 10-12 5.7014 5.5946 4.8419 4.8273

50 0 9 10-12 6.9917 6.8605 5.9389 5.9209

1 9 10-12 6.6703 6.5451 5.6659 5.6487

2 9 10-12 6.3895 6.2695 5.4274 5.4109

3 9 10-12 6.1414 6.0261 5.2166 5.2008

4 9 10-12 5.9201 5.8090 5.0287 5.0134

5 9 10-12 5.7212 5.6138 4.8597 4.8450

100 0 9 10-12 6.9952 6.8638 5.9421 5.9240

1 9 10-12 6.6736 6.5483 5.6689 5.6517

2 9 10-12 6.3927 6.2726 5.4302 5.4138

3 9 10-12 6.1444 6.0291 5.2194 5.2036

4 9 10-12 5.9231 5.8118 5.03135 5.0161

5 9 10-12 5.7240 5.6165 4.8623 4.8475

Fig. 2 Variation of the first

natural frequency of a simply

supported single nanobeam with

material graduation for different

nonlocality parameter at L/
h = 100
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are in general more sensitive when k is in the range of [0,

4]. It follows from the plotted curves in Figs. 3 and 4 that

the coupling stiffness between the two beams has a less

effect on the clamped–clamped configuration compared to

the simply supported counterpart. Indeed, the second and

third natural frequencies are almost the same for the SS–SS

configuration when the nonlocal parameter is

g2 ¼ 5 � 10�12, as shown in Fig. 3, however, for the same

value of the linear coupling stiffness, these two natural

frequencies become far away than each other for the CC–

CC configuration, as indicated in Fig. 4.

The effects of the nonlocal elasticity parameter for four

distinct values of the power exponent on the first three

dimensionless natural frequencies of FG SS–SS and FG

CC–CC double nanobeam with K ¼ 1000N=m and L=h ¼
50 are presented in Figs. 5 and 6, respectively. It is obvious

that both k and g2 parameters have a softening impact on

the natural frequencies of the double beam system. More-

over, these figures reveal that the reduction of the first

mode with respect to the nonlocal parameter is less pro-

nounced compared to the higher modes. It should be

mentioned that for both considered boundary conditions,

the first three transverse natural frequencies are in general

more sensitive for values of the nonlocal parameter in the

range of 0 and 3 � 10�12.

To further investigate the impacts of the linear stiffness

coupling between the two connected FG beams on the

natural frequencies of the coupled system, Fig. 7 reveals

the influence of the stiffness parameter (K) for two values

of the power exponent (k) on the first four dimensionless

transverse frequencies of FG SS–SS double nanobeam with

g2 ¼ 1 � 10�12and L=h ¼ 50. The stiffness parameter is

assumed to be in the interval [0, 1000 (N/m)]. It is clear

that the alteration of the natural frequencies take place by

increasing the linear stiffness coupling parameter. It fol-

lows from the plots in Fig. 7 that the first dimensionless

transverse frequency is not sensitive to the change in the

linear stiffness coupling parameter due to the symmetry of

Fig. 3 Variations of the first

three natural frequencies with

respect to the power exponent

parameter for different values of

the nonlocal parameter for a FG

SS–SS Timoshenko double

nanobeam when

K ¼ 500N=m; L=h ¼ 20ð Þ

Fig. 4 Variations of the first

three natural frequencies with

respect to the power exponent

parameter for different values of

the nonlocal parameter for a FG

CC–CC Timoshenko double

nanobeam when

K ¼ 500N=m; L=h ¼ 20ð Þ
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Fig. 5 Variations of the first

three natural frequencies with

respect to the nonlocal

parameter for different values of

the power exponent parameter

for a FG SS–SS Timoshenko

double nanobeam when

K ¼ 1000N=m; L=h ¼ 50ð Þ

Fig. 6 Variations of the first

three natural frequencies with

respect to the nonlocal

parameter for different values of

the power exponent parameter

for a FG CC–CC Timoshenko

double nanobeam when

K ¼ 1000N=m; L=h ¼ 50ð Þ

Fig. 7 Variations of X1, X2, X3,

and X4 as function of the

stiffness parameter at different

values of the power exponent

for a FG SS–SS Timoshenko

double nanobeam

g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ
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the coupled system (the two beams are identical). On the

other hand, the second natural frequency is first increased

by increasing the stiffness parameter after that it is not

sensitive to changing in the stiffness parameter after a

crossing phenomenon takes place. For instance, in a fixed

power exponent (k = 5), the second natural frequency is

increased when the linear stiffness coupling parameter is

altered from 0 to 88 N/m, while by increasing the stiffness

parameter from 88 to 1000 N/m, the second natural fre-

quency is almost unaffected.

The alteration of the third natural frequency has three

stages when the linear stiffness coupling parameter is

increased, as indicated in Fig. 7. First it is constant, then it

is increased and last stage it stabilizes to a constant value.

This is due to the crossing between the modes of the two

coupled beams. For instance, in a fixed power exponent

(k = 5), the third natural frequency is unchangeable when

the stiffness parameter is altered from zero to 88 N/m, then

by increasing the linear stiffness coupling parameter from

88 to 342 N/m, the third natural frequency is increased

while it is constant when the stiffness parameter is changed

from 342 to 1000 N/m. As depicted in the plotted curves in

Fig. 7, the fourth natural frequency has a similar behavior

as the third natural frequency by increasing the stiffness

parameter. From another perspective, the plotted curves in

Fig. 7 can be seen as three constant curves for the first,

third, and fifth coupled natural frequencies and two (second

and fourth) continuously increasing frequencies with

respect to the linear coupled spring. The unchangeable

values of the three constant frequencies are due to the

identical properties, dimensions, and boundary conditions

of the two selected beams.

To examine the effects of the linear coupling stiffness

on the mode shapes of the coupled system, the mode shapes

of FG SS–SS double nanobeams for two distinct values of

spring (K) before and after the first and second crossing

when k = 0, g2 ¼ 1 � 10�12, and L/h = 50 are plotted in

Figs. 8 and 9, respectively. Clearly, the mode shapes

change before and after the first and second crossing.

Indeed, they keep moving with their uncoupled (K = 0 N/

m) associated frequencies.

Similar to the plotted curves in Fig. 7, the effects of the

linear stiffness coupling parameter (K) on the first four

dimensionless transverse frequencies of FG CC–CC double

nanobeams when g2 ¼ 1 � 10�12and L=h ¼ 50 are plotted

in Fig. 10. It is shown from the plotted curves in Fig. 10

that, when increasing the stiffness coupling parameter, the

changing of first four natural frequencies for the clamped–

clamped configuration have the same trend as the simply

supported configuration shown in Fig. 7. It should be

mentioned that the required linear coupling stiffness for

crossing becomes smaller when the power exponent

increases. This can be explained by the linear softening

behavior due to the increase in the power exponent.

Compared to the simply supported beams configuration, it

is clear that a higher value of the linear coupling stiffness is

needed for the clamped configuration due to the hardening

effect. Concerning the variations of the mode shapes before

and after the first and second crossing, it follows from the

plotted curves in Figs. 11 and 12 that the mode shapes are

sensitive to the value of the linear coupling coefficient.

5.3 Vibration characteristics of triple connected
FG nanobeams and importance of the linear
coupling stiffness

The effects of the nonlocal parameter, linear coupling

stiffness, and power exponent parameter on the coupled

natural frequencies of triple connected FG nanobeams are

deeply studied. In Fig. 13, the influence of the power

Fig. 8 The second and third mode shapes of nanobeam 1 with FG SS–SS k ¼ 0; g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ before and after the first crossing
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exponent parameter (k) for four distinct values of the

nonlocal parameter (g2) on the first three dimensionless

transverse frequencies of FG SS–SS–SS triple nanobeam

when considering

K1 ¼ 1000N=m; K2 ¼ 10 N=m; and L=h ¼ 50. The nota-

tion SS–SS–SS denotes that the three nanobeams are

simply-supported at both boundaries. Inspecting the plotted

curves in Fig. 13, it is obvious that both the power expo-

nent and nonlocal elasticity parameters have softening

properties on the natural frequencies, as predicted. More-

over, this figure reveals that the reduction of the frequen-

cies is more remarkable for the higher modes. Further, the

natural frequencies are in general more sensitive when k is

in the range of [0, 2].

To determine the effects of the nonlocal parameter on

the first three natural frequencies, Fig. 14 is plotted when

considering FG SS–SS–SS triple nanobeams with

K1 ¼ 1000N=m; K2 ¼ 10 N=m; and L=h ¼ 50. The nonlo-

cal parameter is assumed to be varied in the interval [0,

5 � 10�12]. It follows from the plotted curves in Fig. 14

that the first two dimensionless transverse frequencies are

less sensitive to the nonlocal parameter for this configu-

ration of the linear coupling stiffnesses. It should be

mentioned that the third natural frequency is sensitive than

the lower frequencies to the nonlocal parameter and par-

ticularly when g2 is in the range of [0, 3 � 10�12].

It was showed in the previous section that the linear

coupling stiffness between the nanobeams and the type of

boundary conditions have significant impacts on the natural

frequencies of the system. In Figs. 15 and 16, the coupling

stiffness values are considered equal to each other

(K1 ¼ K2 ¼ 1000N=m) in order to determine the influence

Fig. 9 The third and fourth mode shapes of nanobeam-1 with FG SS–SS k ¼ 0; g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ before and after the second crossing

Fig. 10 Variations of X1, X2,

X3, and X4 as function of the

stiffness parameter at different

values of the power exponent

for a FG CC–CC Timoshenko

double nanobeam

g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ
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of the power exponent and nonlocal parameters on the first

three dimensionless transverse frequencies of FG CC–CC–

CC triple nanobeam when L=h ¼ 50. The notation CC–

CC–CC indicates that the three nanobeams are clamped at

both boundaries. As expected, the plots in Figs. 15 and 16

show that both k and g2 parameters have a softening

behavior on the transverse natural frequencies with a

higher sensitivity to the power exponent parameter

between zero and 4.

To investigate the impacts of the linear coupling stiff-

ness on the system’s natural frequencies and existence of

crossing of modes, the plotted curves in Fig. 17 display the

effects of the stiffness parameter (K1) at different values of

the power exponent (k) on the first four dimensionless

transverse frequencies of FG SS–SS–SS triple nanobeams

when considering g2 ¼ 1 � 10�12;K2 ¼ 100N=m;

and L=h ¼ 50. The plots in Fig. 17 indicates that the

alteration of frequencies by increasing the linear stiffness

coupling parameter do not have the same trend for different

values of the power exponent of the FG material. The first

dimensionless transverse frequency is not sensitive to the

change of stiffness parameter (K1Þ. As for the second fre-

quency, it increases with having a hardening effect in the

linear coupling stiffness (K1Þ. As for the variations of the

third and four natural frequencies, it is clear that the

crossing between these two modes is strongly dependent on

Fig. 11 The second and third mode shapes of nanobeam-1 with FG CC–CC k ¼ 5; g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ before and after the first crossing

Fig. 12 The third and fourth mode shapes of nanobeam-1 with clamped edges k ¼ 5; g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ before and after the second

crossing
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the material degradation coefficient. In fact, when k = 0,

the third frequency is first increased then by increasing the

stiffness parameter (K1), it is fixed. On the other hand, by

increasing the power exponent to (k = 5), the third fre-

quency is not sensitive to the increase in the linear stiffness

coupling (K1). While the fourth frequency is increased by

increasing the stiffness parameter (K1).

Figure 18 shows the mode shapes of third and fourth FG

SS–SS–SS triple nanobeams for two distinct values of

spring (K1) before and after the crossing with

K2 ¼ 100N=m; k ¼ 0; g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ. It

follows from the plots in Fig. 18 that by increasing the

value of the linear coupling spring, the third mode shape is

sensitive and change behavior, however, the fourth mode

shape has the same response. Indeed, before the crossing, it

is clear that the third mode is dominant by one of the

beam’s first mode and the fourth mode is dominant by the

second mode of another beam. After the crossing and for

higher values of the linear coupling stiffness, both modes

behave similarly with the characteristics of the second

mode of two distinct beams. This can be explained by the

existence of another crossing between the fifth and fourth

modes which is not shown in Fig. 18.

Similar to the simply-supported boundary conditions,

Fig. 19 display the effects of the stiffness parameter (K1) at

different values of the power exponent (k) on the first four

dimensionless transverse frequencies of FG CC–CC–CC

Fig. 13 Variations of the first three fundamental frequencies as function of the power exponent parameter at different values of the nonlocal

parameter for a FG SS–SS–SS Timoshenko triple nanobeam K1 ¼ 1000 N
m ;K2 ¼ 10N=m; L=h ¼ 50


 �

Fig. 14 Variations of the first three fundamental frequencies as function of the nonlocal parameter for various values of the power exponent

parameter for a FG SS–SS–SS Timoshenko triple nanobeam K1 ¼ 1000N=m; K2 ¼ 10N=m; L=h ¼ 50ð Þ
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triple nanobeams when considering

g2 ¼ 1 � 10�12;K2 ¼ 100N=m; and L=h ¼ 50. Inspecting

the plotted curves in Fig. 19, it is obvious that the variation

of frequencies by increasing the linear stiffness parameter

(K1Þ do not have the same trend for different values of the

power exponent of the FG material compared to the simply

supported configuration. The first dimensionless transverse

frequency is not sensitive to the change of the stiffness

parameter (K1Þ. The second frequency is increased by

increasing the linear coupling stiffness parameter (K1Þ. The

third nondimensional frequency is first increased by

increasing the linear stiffness parameter and then it is not

sensitive to the hardening effect of the linear spring. While

the fourth nondimensional frequency is fixed and then

smoothly increased when linear spring parameter is

increased. As shown in the double connected beam sce-

nario, the power exponent increase results in a softening

effect and hence lowering the required linear stiffness

coupling coefficient for the crossing. Concerning the mode

shapes variations before and after the crossing, Fig. 20

display the mode shapes of the third and fourth FG CC–

CC–CC triple nanobeam-1 for two distinct values of spring

(K1). Similar to the results obtained in the simply supported

configuration, the mode shapes are different before the

crossing due to the activation of two different modes of

distinct beams. However, after the crossing, the mode

shapes are similar due to the interaction/crossing between

Fig. 15 Variations of the first three fundamental frequencies as function of the power exponent parameter at different values of the nonlocal

parameter for a FG CC–CC–CC Timoshenko triple nanobeam K1 ¼ 1000N=m; K2 ¼ 1000N=m; L=h ¼ 50ð Þ

Fig. 16 Variations of the first three fundamental frequencies as function of the nonlocal parameter for various values of the power exponent

parameter for a FG CC–CC–CC Timoshenko triple nanobeam K1 ¼ 1000N=m;K2 ¼ 1000N=m; L=h ¼ 50ð Þ
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the fourth and fifth modes and hence the activation of

another second bending mode of a distinct beam.

6 Conclusions

The vibration properties of nonlocal FG double and mul-

tiple nanobeams were investigated. The multi-layered

beams were modeled using the nonlocal Timoshenko beam

theory, and it was assumed that they were connected by a

continuous layer of linear springs. The Chebyshev spectral

collocation method was employed, and the partial differ-

ential governing equations of motion were converted into

algebraic equations. Next, the boundary conditions were

applied, and the eigenvalue problem was carried out to

determine the dimensionless natural frequencies and their

corresponding mode shapes. Then, the impacts of the

nonlocal parameter, stiffness elastic medium, power

exponent parameter, and number of connecting layers were

deeply investigated. It was found that the power exponent

parameter plays a major role in the magnitudes of the

nondimensional natural frequencies. Increasing the power

Fig. 17 Variations of X1, X2, X3, and X4 as function of the stiffness parameter K1 at different values of the power exponent for a FG SS–SS–SS

Timoshenko triple nanobeams g2 ¼ 1 � 10�12;K2 ¼ 100N=m; L=h ¼ 50ð Þ

Fig. 18 The third and fourth mode shapes of nanobeam-1 with simply supported edges K2 ¼ 100N=m; k ¼ 0; g2 ¼ 1 � 10�12; L=h ¼ 50ð Þ:
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exponent parameter causes the natural frequencies to be

reduced. Moreover, the results indicated that the nonlocal

parameter significantly impacts the natural frequencies by

resulting in a softening effect. It was showed that the

crossing phenomenon can take place depending on the

linear coupling stiffness between the layers, the nonlocal

parameter, and the power exponent. This analysis showed

the importance of accurately modeling and studying the

vibration properties of multi-layered nanobeams.

Compliance with ethical standards

Data availability The raw/processed data required to reproduce these

findings cannot be shared at this time due to time limitations.
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