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Abstract
A fast digital chip is designed and fabricated successfully to implement the algorithm for estimating blood pressure (BP) in

real time by a non-invasive cuffless photoplethysmogram (PPG) Sensor. The fast response accomplished by this digital

computation chip is made possible by one-time calibration only and the Taiwan Semiconductor Manufacturing (TSMC)

T18 process to realize the chip in an area of 3.97 mm2. The experimental result shows that the overall power consumption

of the chip is 15.62 mW. Finally, the blood pressure measurement platform has been developed with a user interface (UI)

for long-term continuous cuffless BP measurement. The non-invasive blood pressure sensor is applied to the wrist arteries

of 44 subjects for sensing the PPG pulsation of the blood vessel, and then estimating BPs (blood pressures). Measurement

results shows that the maximum error in the BP measurement is ± 6 mmHg. Which is less than 8 mmHg, defined by the

Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) standard.

1 Introduction

Increased blood pressure (BP) is one of the leading risk fac-

tors of mortality in the world, which is often caused by

coronary heart disease, and ischemic as well as hemorrhagic

strokes. Blood pressure levels have been shown to be posi-

tively and continuously related to the risk of stroke and

coronary heart disease. Therefore, the medical industry that

prevents risk factors is increasingly value the continuous

monitoring of BP in various countries. With the advancement

of the technology, digital transformation of the smart heath

care system is highly in demand. For global home healthcare

market, the market size was valued at USD 281.8 billion in

2019 and is expected to register a CAGR of 7.9% over the

forecast period (Grand view research 2020). There are two

increase factors which are population aging around the world

and increased patient preference for value-based healthcare to

fuel market growth. For these two groups, the blood pressure

is an important physiological bio-sign to monitor, since pro-

longed abnormal blood pressure precipitates different kinds of

cardiovascular diseases. The early detection of hypertension

is extremely important for the prevention and cure of car-

diovascular diseases.

In the recent studies, 24-h ambulatory blood pressure

measurement (Ahmad et al. 2010), nighttime measurement

(Kitterman et al. 1970), or long-time BP variability are

generally accepted as legitimate means of detecting health

conditions. Some studies (Dupuis and Eugene 2000; Sil-

vani et al. 2008) reported that clinic BP measurement may

not provide normal BP values due to white-coat effects.

Continuous measurement can effectively avoid these

problems and achieve a more effective prevention of car-

diovascular diseases. With the development of biomedical

technology, the measurement of blood pressure has become

easier. Measurement methods have changed from invasive

to non-invasive. Invasive measurement method is neither

safe nor convenient, since the sensor and catheter need to

be inserted into the blood vessel. As for the conventional

non-invasive sensor, the popular sphygmomanometer is of

inflatable type. In order to measure blood pressures, one is

forced to be with an uncomfortable 200-mmHg pressures

by the blood pressure cuff. Therefore, cuff-less BP mea-

surements are in demand. In the references (Tu and Chao
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2018; Chiang and Chao 2018; Ahmmed et al. 2019; Song

et al. 2019) cuffless type BP and blood flow velocity (BFV)

measurement sensors were proposed. The key technology

involved is the photoplethysmogram (PPG) sensing, cloud

computing and machine learning. The sensed PPG data is

transmitted wirelessly to a remote server to perform the

cloud-computing-based BP estimation. This leads to a

delay, not to mention that signal may be too noisy for BP

estimation, thus accuracy degraded. The study (Lazazzera

et al. 2019) presented a cuffless method for BP estimation

that is based on the time delay, the travel time of the blood

volume from the heart to peripheral organs. Due to the

complicated calculation, this method requires more com-

putational resources and memories on the hosting device.

In other words, it is not easy to implement the algorithm for

blood pressure estimation in a single digital chip to achieve

the satisfied accuracy. The solution presented in this study

is an easier implementation, which is dedicated to forging a

novel real-time on-chip implementing the algorithm with a

PPG sensor to estimate non-invasive cuffless blood pres-

sures in a digital chip.

The remainder of this study is organized as follows. The

proposed PPG sensor is discussed in Sect. 2. On-chip

digital signal processing and real-time algorithm in Sect. 3.
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Simulation and the experimental results are presented in

Sect. 4. Finally, Sect. 5 concludes this study.

2 Photoplethysmography

2.1 The photoplethysmography (PPG) sensor

Photoplethysmography and its medical applications have

been proved to be effective (Allen 2007; Dresher 2006;

Kraitl et al. 2005), since it is a simple, low-cost and non-

invasive optical device that can be used to detect micro-

circulation of tissue. Only a few electro-optic elements are

required for the implementation of PPG technology. A

novel platform with non-invasive method to measure the

blood pressures and heart rate is proposed, as shown in

Fig. 1, which demonstrates the work process of the front-

end analog circuit, an MCU and the associated algorithmic

computation.

A single-wavelength light source is used to calculate the

blood pressure, which is the red or the infrared light. Fig-

ure 2 shows the photo of the sensor, which has four dif-

ferent wavelengths of light-emitting diodes (LEDs) and a

photodiode (PD). The PD measures the change in volume

of the light illuminating the skin from a LED. The 660 nm

red light or 940 nm infrared light was used to estimate the

blood pressure. The other two wavelengths are 530 nm

green light and 850 nm infrared light, which are used to

study the effects of different wavelengths of lighting on

PPG. The system proposed a medical device, which may

not only obtain the heart rate (HR) and the blood pressures

but also the blood flow, the blood oxygen or even the blood

glucose with these four or more different wavelengths of

LED arrays. A transimpedance amplifier (TIA) circuit is

designed to convert the PD current into the voltage via a

series of a differential current-to-voltage (I–V) and a pro-

grammable gain amplifier of five channels, in order to

transform PPG signal into a near 22-bit-resolution dynamic

range of analog-to digital converter (ADC). Between ADC

and gain amplifier is a band-pass filter, which can remove

the slow-drifting baseline component (DC) caused by

motion artifacts and breathing, and high-frequency noises

caused by environmental lighting and electronics. The

acquired digital PPG signal enters the MCU after the ADC,

and then transmitted to a laptop computer for BP calcula-

tion by Bluetooth.

2.2 Blood pressure estimation

Based on the Bramwell-Hill equation (Zheng et al. 2014;

Langewouters et al. 1986; Maganaris et al. 1999), the blood

pressure is calculated based on the theory of pulse wave

velocity (PWV), following

PWV ¼

ffiffiffiffiffiffiffiffiffiffiffi

V

q
DP
DV

s

; ð1Þ

where q is the blood density, V is the volume of blood in

artery, DP is the variance between systolic (SBP) and

diastolic blood pressures (DBP), and DV is the corre-

sponding blood volume change. Due to the fact that the q,
V, and DV are nearly constant for each subject, Eq. (1) can

be re-expressed in a different form of

SBP� DBP ¼ qDV
V

ð L

PTT
Þ2 ¼ Ka �

1

PTT2
; ð2Þ

where PTT is the pulse transit time while Ka is a parameter

to be calibrated via experiments for a subject. PTT refers to

the time taken by a pressure wave to travel between two

arbitrary arterial sites and is inversely related to BP

(Sharma et al. 2017). In this study, the reflective PTT

(named R-PTT), which is one particular type of PTTs, is

considered for estimating BPs. In this study, this R-PTT is

Fig. 2 The layout of fabricated LED/PD module, where four different

wavelengths of emitted lights including the visible and invisible light

sources
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intended to be measured by the proposed sensor at wrist

artery, and is in fact this R-PTT can be captured well by the

duration between the peaks of the percussion (the 1st peak)

and reflected (the 2nd peak) waves in a cardiac pulsation

cycle (Kao et al. 2019; Tu and Chao 2019) for later BP

estimation based on the PWV theory. With R-PTT as PTT,

based on Eq. (2), SBP can be re-expressed by

SBP ¼ DBPþ Ka �
1

R�PTT2
: ð3Þ

On the other hand, an alternative way to quantify PWV

is to apply the Moens-Korteweg equation; (Moens 1878;

Korteweg 1878), that is,

Fig. 4 Spectrums of PPG

signals

Fig. 5 Frequency response of high-order band-pass Hamming window
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PWV ¼
ffiffiffiffiffiffiffiffiffi

Einh

2qr

s

; ð4Þ

where Ein is elastic modulus of artery, h is the thickness of

the artery, r is the radius of artery and q is the density of

blood. Based on the experiment results obtained by Bank

et al. 1995, the mean blood pressure (MBP) can be derived

as

MBP � 1

3
SBPþ 2

3
DBP

� �

¼ Kb þ
2

0:031
ln

Kc

R�PTT

� �

;

ð5Þ

where Kb and Kc are parameters to be calibrated via

experiments. Combining Eqs. (3) and (5) yields

DBP ¼ Kb þ
2

0:031
ln

Kc

R�PTT
� 1

3

Ka

R�PTT2
: ð6Þ

With R-PTTs extracted from the PPG waveforms mea-

sured by the developed BP sensor while SBPs/DBPs

obtained from a reference BP monitor, one is able to cal-

ibrate the parameters of Ka, Kb and Kc based on Eqs. (3)

and (6). The developed BP sensor is then ready for sensing

SBP and DBP with satisfactory accuracy. Note herein that

for some subjects, the second peak is not obvious and/or

too much noise around to find (Suzuki and Ryu 2014), the

second derivatives of the PPG waveform are calculated to

find the location of its valley, as shown Fig. 3, which is

also the location the second peak.

2.3 Digital signal processing

The raw PPG waveforms are often too noisy to identify

targeted R-PTTs in the waveforms. Effective filters need to

be designed to reduce the noise to derive successful PTTs.

To this end, the Fast Fourier Transform is first applied to

analyze the signal spectrum, which often presents varia-

tions due to physiological conditions such as gender and

age. Figure 4 shows the spectrum analysis of four kinds of

PPG signals. Most of the data measured are standard PPG

signals. Along with the standard PPG signals, PPG signals

with multiple reflected waves are also common. These

smaller reflected waves may have other physical meanings.

In an environment where the weak reflected waves are

disturbed by the ambient light, the signal is hard to be

identified due to noise. The normal PPG signal in Fig. 4

indicate the normal respiratory rate of 0.2–0.4 Hz and

normal heart of 0.8–2 Hz. People with high blood pressure

or obesity may have a higher heart rate, but normally it

does not exceed 3 Hz. Thus, a 1500-order band-pass

Hamming window, as shown in Fig. 5, is designed to

provide low cutoff frequencies at 0.6 Hz and a high cutoff

filter at 10 Hz to reduce the noise.

2.4 Feature extraction

The most important part of the PPG signal, which deter-

mines whether the blood pressure value is accurate, is the

characteristics of first peaks and second peaks. The first

peak is the maximum point in the heart period and is easy

to obtain. The second peak, called the reflected wave peak,

is sometimes not obvious and difficult to obtain. Figure 6

shows the PPG signal with a distinct reflected peak after

filtering. The positions of the reflected wave peaks can be

easily identified in these signals. Figure 7 shows the

comparison in the results of finding the second peaks

between the method of straightforward peak-finding and

that using the second derivatives, where it is clearly seen

that using the second derivatives finds effectively all the

secondary peaks, then R-PTT can be easily distilled. This

method greatly reduces the difficulty in feature extraction

Fig. 6 Peak detection on the filtered PPG waveforms

Fig. 7 Peak detection and the feature extraction based on second

derivatives of PPG
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of R-PTTT, then stabilizing the accuracy of the proposed

algorithm for estimating BPs.

3 Digital chip implementation

Having conducted PPG signal analysis and feature

extraction, the algorithm of BP estimation is to be imple-

mented a digital chip, as shown in Fig. 8. In the experiment

system, there are a filter designed on a chip to reduce the

noise caused by ambient environments. A moving average

filter is designed to reduce the noise of raw PPG signal.

Finally, a converter from analog to digital, the filter and the

chip with feature extraction is included in chip design.

3.1 Moving average filter on a digital chip

High-order hamming windows such as other high-order

multi-coefficient filters used in analysis is difficult to

implement in a small chip. To make the algorithm devel-

oped in the computer into a chip, it is necessary to simplify

the calculation process. Therefore, a moving average filter

look-up table is proposed to lessen the computation load

and reduce the area of a chip. Digital filters are classified

into two types: finite impulse response (FIR) and infinite

impulse response (IIR) filters according to their impulse

response types. The output response of the FIR filter is

dependent only on the input signal; whereas, the output

response of the IIR filter is dependent both on the input and

output signals. Thus, IIR filter has nonlinear phase and

stability issues. To reduce the complicated design process,

the moving average filter (MAF), which is a special case of

FIR filter, is chosen to realize the linear phase algorithm for

reducing PPG signal distortion. The filter used in the

implementation consists of two 40-order MAFs connected

in cascade. According to the convolution definition, the

sequences are the coefficients of two polynomials. The

coefficients of the ordinary product of the two polynomials

are the convolution of the original two sequences. From

discrete convolution, the coefficients were obtained for the

MAF in cascade. Figure 9 shows the response of the

designed moving average filter. Having been filtered, the

PPG signal is smoother. Figure 10 shows the original raw

signal and the signal filtered by MAF. Having applied fil-

tering, the first and second peaks of the signal can be

identified easily. Note herein that the resolution of the PPG

signal received by the ADC is 16 bits. For the accuracy of

the second derivative, the PPG signal resolution was

adjusted to three digits after the decimal point. In the

implementation of the chip, the processed signal is about

26 bits. Therefore, the simplified FIR filter is designed as

y½n� ¼ 1

n

X

N¼40

i¼0

x½n� i�; ð7Þ

where x is the incoming bit data while y is the output of the

designed moving averaging. For real-time operation, shift

registers are used for data buffering. There are 40 tempo-

rary registers, thus N = 40 in Eq. (7). The filter in Eq. (7) is

a 40-order moving average filter, to be implemented by a

digital chip. Note herein that the moving average filter

designed in this study cause a latency of (N - 1)/2 = 19.5,

where N is 40 as the filter length. Thus, the data-processing

rate is up to 500 Hz/19.5 = 25.641 Hz. The cutoff fre-

quency for low-pass filtering is set at 10 Hz to reduce the

noise. According to the Nyquist theorem, the sampling rate

must be faster than two times of the cutoff frequency.

Therefore, time resolution is not loosened in detecting the

R-PTT later, as detailed in the next subsection.

Fig. 10 The original PPG signal and its filtered

Fig. 11 PPG signal and its first/second derivatives
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3.2 Feature extraction on a digital chip

To extract the most important feature, R-PTT, the first- and

second-order differentiations are applied to the measured

raw PPG signals, as shown in Fig. 11. The first peak are

obtained based on the zero-crossings of the first deriva-

tives, while the second peaks are based on the zero-cross-

ings of the second derivatives, which are actually inflection

points of a cardiac PPG cycle. The associated algorithm is

coded in Veirlog, the pseudo-code elaborating the algo-

rithm is given in Tables 1 and 2. Also, the detection of

valleys is achieved by the same fashion as the peaks.

Having found the peaks and valleys, a checking algorithm

is implemented to ensure that one valley is found with two

peaks, the first and second, also found, to ensure the cor-

rectness of the entire algorithm. With the above ensured,

the heart rate can successfully be distilled. Note lastly that

the aforementioned algorithm allows repeated usages of

Table 1 The pseudo-code of

peak detection Algorithm 2 Peak Detection

Input: filtered signal (Filtered_Signal)

Output: the peak value and indexes (lastMaxVal, lastMaxIdx)

/*Step 1 (Shift register).*/

1: maxPeak_temp[0] <= Filtered_Signal;

2: maxPeak_temp[1] <= maxPeak_temp[0];

…

3: maxPeak_temp[4] <= maxPeak_temp[3];

/*Step 2 (Detect the characteristic of peak ).*/

4: if (maxPeak_temp[2] > maxPeak_temp[0]

5: && maxPeak_temp[2] > maxPeak_temp[1]

6: && maxPeak_temp[2] > maxPeak_temp[3]

7:  && maxPeak_temp[2] > maxPeak_temp[4]) begin

8:   nowMaxVal <= maxPeak_temp[2];

9:   nowMaxIdx <= scanIndex;

10: end

/*Step 3 (Make sure it is the largest peak in a pulse).*/

11: if (nowMaxIdx-lastMaxIdx < minPeriodDist && nowMaxVal > lastMaxVal) 

12: begin

13: lastMaxVal <= nowMaxVal;

14:   lastMaxIdx <= nowMaxIdx;

15: end

3508 Microsystem Technologies (2020) 26:3501–3516
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moving-average filtering to achieve the findings of peaks,

inflections and valleys.

With the peaks, inflections and valleys found, the fea-

tures of R-PTTs are extracted and then BPs can be calcu-

lated. Figure 12 shows preliminary measurement results of

R-PTT extraction. The measurement is conducted to

acquire 16 sets of PPG data from eight healthy persons

(mean ages 26 ± 6). The devices for measurement

includes PPG sensors, a digital chip for analysis of PPG

signal, an MCU and a computer for data analysis, display

and storage. The R-PTT measured show a distribution of

195 ± 10 ms. On the other hand, the pseudo-code elabo-

rating the algorithm of calculating BP is given in Table 3,

which implements the calculations detailed in Sect. 2.2. In

this algorithm, the natural logarithm computation involved

Table 2 The pseudo-code of

inflection point detection Algorithm 6 Inflection point detection

Input: the pairs and the signal after second differential 

(maxMinPairs,secDiff_Filtered_Signal)

Output: Inflection point (Inflection_Point)

/*Step 1 (Set upper and lower bounds in the period).*/

1: for (u = 1:end) begin;

2:   startIdx = maxMinPair[1][i];

3:   endIdx = maxMinPair[2][i];

4: end

/*Step 2 (Extract the value from the second derivative).*/

5: for (v = startIdx:endIdx) begin

6: positivePonit <= secDiff_Filtered_Signal[j]; 

7: negativePonit <= secDiff_Filtered_Signal[j+1];

8: end

/*Step 3 (Find the point which sign is transforms from positive to negative).*/

9: if (positivePonit >= 0 && negativePonit <=0) beging

10:   Inflectiona_Point <= positivePonit;

11: end

Fig. 12 Boxplot of measured R-PTTs
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in Eqs. (5) and (6) are implemented by a look-up

table (LUT) to reduce the computation load in the digital

chip. For the first-time calibration, R-PTT in Table 3 is

obtained from the first three cycles as the input of R-PTT0

to calibrate the parameters of Ka, Kb and Kc. Having

obtained these parameters, SBPs and DBPs can be derived.

Table 3 The pseudo-code of the

blood pressure algorithm Algorithm 7 Blood pressure algorithm

Input: the physiological parameter (RPTT)

Output: the blood pressure value (SBP, DBP)

/*Step 1 (Look up the logarithm table).*/

1: if ( RPTT == 51)       logTable <= 7448;

2: else if ( RPTT == 52)   logTable <= 7428;

…

3: else if ( RPTT == 200)  logTable <=6081;

4: else logTable <=0 ;

/* Step 2 (Calculate the value of DBP and SBP).*/

5: Ka <= (SBP0-DBP0)*RPTT0*RPTT0;

6: Kb <= DBP0 – logTable*2/31 + Ka/RPPT0/RPTT0/3; 

7: Kc = L;

8: DBP <= Kb + logTable*2/31 - Kc/RPPT/RPPT/3);

9: SBP <= DBP + Ka/RPTT/RPTT;

PPG Signal

Filtered PPG Signal

The first-order 
differential PPG Signal

The second-order 
differential PPG Signal

Fig. 13 Simulation of signal processing and the algorithm at register-transfer level
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Note herein that for each subject, only one reference

measurement on BP needs to be input for calibration,

identifying Ka, Kb and Kc.

4 Simulation and the experimental results

4.1 Simulation for register-transfer level

Simulations on the designed digital chip are conducted to

validate its expected performance. The inputs to the sim-

ulations are the raw PPG signals measured by the optical

sensor. A total of 3000 16-bit raw data sets are measured at

the sampling rate of 500 Hz for simulation validation. The

measured data sets are then input into the designed digital

chip to calculate heart rate (HR), SBP and DBP. Simulation

on the designed chip is conducted up to the register-transfer

level (RTL). The associated tool of Electronic Design

Automation (EDA) offered by the National Chip Imple-

mentation Center (CIC), Taiwan. The results are shown in

Fig. 13, where the raw, filtered, the first- and second-

derivatives of the measured PPG are clearly seen and

present as expected. The next step to the RTL-level syn-

thesis towards the digital chip implementation of the BP

algorithm is the gate-level simulation. The results are

shown in Fig. 14, where the raw, filtered, the first- and

second-derivatives of the measured PPG are also clearly

seen and present as expected, despite of some glitches

(shown as spikes) in the filtered, the first- and second-

derivatives of PPG. As shown in Fig. 10, the results of

Gate-Level Simulation are consistent with RTL-level

simulation. Furthermore, the glitches usually disappear in

reality with parasitic capacitances and resistances included,

thus the glitches do not undermine the accuracy of the next

step of algorithm, the extraction of R-PTT. With the raw,

filtered, the first- and second-derivatives of the measured

PPG successfully derived, another part of digital chip is

responsible for the extraction of R-PTT and then compu-

tation for HR, SBP and DBP. The gate-level model is

further converted to chip layout. The associated post-layout

simulation results are presented in Fig. 15, where the

computed HRs, SBPs and DBPs are shown. Figure 16

shows the IC layout of the designed signal processing and

algorithm, accomplished by the TSMC 0.18-lm process.

The operation frequency is 10 kHz. There are 100 test pins

in this IC. It has 1 pin for clk, which is 0 or 1; 1 pin for

rst_n, which is 0 or 1; 1 pin for in_valid, which is 0 or 1; 8

pins for each SBP0 and DBP0, which are 8-bit decimal

integers; 16 pins for PPG signal, which is a 16-bit decimal

integer; 9 pins for SBP, DBP and HR, which are 9-bit

decimal integers; 8 pins for core power and ground; and 30

pins for IO powers and grounds. Table 4 lists the expected

specifications of the designed chip including signal pro-

cessing and blood pressure algorithm. The supply voltage

is 1.8 V, while the chip size is 4 mm2.

PPG Signal

Filtered PPG Signal

The first-order 
differential PPG Signal

The second-order 
differential PPG Signal

Fig. 14 Simulation of signal processing and the algorithm at gate level

Table 4 Expected specification of blood pressure algorithm

Specification Pre-simulation Post-simulation

Supply voltage 1.8 V

IO voltage 3.3 V

Power dissipation (mW) 0.206 mW 0.51 mW

Chip size (lm2) 1994 9 1994 = 3,976,036 lm2
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4.2 Blood Pressure Algorithm Implemented
on a digital chip

The designed digital chip implementing the blood pressure

algorithm is next fabricated by the TSMC 0.18-lm process.

The photo of the chip is shown in Fig. 17a, while Fig. 17b

shows the test board of the chip. The experimental setup

for testing the chip is shown in Fig. 18. The experimental

system includes a power supply, two FPGA boards, a micro

control unit, and a personal computer. First, the I/O of

FPGA was connected to chip for using FPGA to control the

behavior of chip. The power supply is adjusted to a proper

voltage level, and connected to the digital voltage supply

pin of the chip. Then the test bench was built and the

associated firmware is burnt to the FPGA board. Due to the

limited FPGA pins, the two FPGA boards were employed.

One for inputting signals, while another for displaying

results. The input PPG signal is obtained by an optical PPG

sensor developed by the laboratory. These data are stored

in the read-only memory (ROM) on the FPGA boards. The

data sequentially enter the chip. The input clock is the

built-in clock on the FPGA boards. With the input PPG

data received by the chip, the signal processing and the

calculation of the blood pressure value are in operation and

then resulted in HR, SBP and DBP. The result is output by

the seven-segment display on one of FPGA boards. The

Fig. 15 Post layout simulation of the IC of the blood pressure algorithm

Fig. 16 The IC layout of the

blood pressure algorithm
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MCU and the computer are responsible for displaying the

original data stored in the ROM. Figure 19a shows the

resulted SBP calculated by the chip, while DBP in Fig. 19b

and HR in Fig. 20.

Besides testing with PCB boards, automatic test equip-

ment (ATE) was uesd. The ATE in CIC is the high-end

tester PS1600 of ADVANTEST V93000 SmartScale

C-CLASS. Before testing, ASCII vector file (.avc File)

Fig. 17 a The die photo of blood pressure algorithm; b the test board

of blood pressure algorithm IC

Fig. 18 The experiment setup for testing blood pressure algorithm IC

Fig. 19 The experimental results of a SBP; b DBP shown on the

FPGA board

Fig. 20 The experimental results for heart rate shown on the FPGA

board
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need to be prepared. An AVC FILE contains the vectors to

be used for function test. The chip is mounted onto a

device-under-test (DUT) board as shown in Fig. 21. DUT

Board is mounted on the DUT board stiffener. They are

mechanically connected to DUT interface. The chip testing

can be started after the pre-work is completed. The Shmoo

Spec test function is the main test functions involved with

an equation-based testing. The test results can be repre-

sented by the Shmoo plot shown in Fig. 22. The x-axis of

the Shmoo plot is the frequency, while the y-axis is the

operating voltage. The green part corresponds to function

pass, while the red part is function fail. This Shmoo plot

shows that the chip operates properly at various voltages

and frequencies. The highest operating frequency of the

chip in this paper is about 20 MHz.

4.3 Experimental results

The measured data of the sensor for calculating BPs are

obtained from 63 healthy subjects between 20 and 48 years

old. The subjects are required not to drink (alcohol), eat,

smoke or do exercise 2 h before measuring blood pressure.

The non-invasive blood pressure sensor is applied to the

subject’s wrist to sense the pulsation of the wrist artery.

The computation algorithm is developed with a calibration

process proposed along with the usage of a cuff-type blood

pressure monitor, OMRON HEM-7310. With the non-in-

vasive blood pressure sensor designed by our lab, the

experiment results of 63 different subjects, which accords

to the conditions above, demonstrates the feasibility of the

use of the algorithm implemented in the designed digital

chip. Figure 23a and b show the results of estimating SBP

and DBP in Bland–Altman plots, where the error of SBP is

- 0.318 ± 5.14 mmHg, while the error of DBP is

- 0.44 ± 1.97 mmHg. The mean absolute difference of

SBP is 3.27 mmHg. The standard deviation of SBP is

3.27 mmHg. The mean absolute difference of DBP is

1.21 mmHg. The standard deviation of DBP is

1.97 mmHg. Similar studies on SBP and DBP are extended

to HR. Figure 24 show the results of estimating HR also in

a Bland–Altman plot, where the error of heart rate is

0.37 ± 6.41 bmp. Based on the aforementioned experi-

mental results, the designed digital chip with blood pres-

sure algorithm implemented renders the predictions on

SBP, DBP and HR in Grade A, defined by the Association

for the Advancement of Medical Instrumentation (AAMI),

as shown in Fig. 25.

5 Conclusion

A fast digital chip is designed and fabricated successfully

to implement the algorithm for estimating blood pressures

(BPs) in real time by a non-invasive cuffless photo-

plethysmogram (PPG) sensor. The blood pressure

Fig. 21 The DUT board for testing the tape-out chip

Fig. 22 Shmoo plot
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algorithm with PPG sensor is expected to be able to cal-

culate SBP, DBP and HR quickly and accurately. The

blood pressure platform is developed with GUI for long-

term cuffless BP measurement. The resulted error of esti-

mating SBP is 3.27 ± 3.27 mmHg (mean absolute differ-

ence ± standard deviation). The error of DBP is

1.21 ± 1.97 mmHg. The experiment results of blood

pressure algorithm are in Grade A, which is defined by the

Association for the Advancement of Medical Instrumen-

tation (AAMI). Compared to other algorithms of earlier

studies based on BP estimation by using PPG signal in

Grade A (Duan et al. 2016; Mousavi et al. 2019; Gaurav

2016; Lazazzera et al. 2019), the proposed algorithm of this

study is easy to execute in a digital chip due to its

uncomplicated nature and provides acceptable results in

terms of accuracy. Furthermore, the proposed digital chip

with blood pressure algorithm implemented for a PPG

sensor is ready to be realized in wearable devices.
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