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Abstract
Nano-structures such as carbon nanotube, nanobeams, nanorods, nanoplates, nanowires, and nanorings are tremendously

used in various small-scale devices and investigating their dynamical behavior has been a hot research topic and can be

beneficial in manufacturing and designing new devices. Therefore, free vibration analysis of a rotating cantilever double-

tapered axially functionally graded material nanobeam is presented in this work. Due to the nano-scale dimension, classical

beam theories are incompetent at describing the behavior of nanobeams. Thus, the nonlocal Eringen elasticity theory is

adopted which considers the nonlocal scale effect for the small dimension effect of the structure of a nano-scale mech-

anism. The proposed nanobeam structure is assumed to taper linearly in two different axes, and its material is changing

nonlinearly along its length. The equation of motion of the proposed system is found utilizing the nonlocal Eringen theory,

and it is solved using a semi-analytical technique, differential transform method. Mode shapes and natural frequencies are

extracted as the solution of the equation of motion of the system. Furthermore, the effects of several parameters such as

nonlocal scale effect, rotational speed, hub radius, and taper ratios on the natural frequencies are investigated. Finally, a

comparison between the presented work and other reported results show an excellent agreement.

1 Introduction

Beams are crucial components in any mechanical structure

such as automotive and aircraft components, machine

frames, and other mechanical or structural systems that

contain beam structures and are designed to carry structural

loads. Flexure beams with small thickness have been used

widely in micro/nano manipulation mechanisms and grip-

pers. Many studies (Ghafarian et al. 2018, 2019; Zhang

et al. 2017; Pinskier and Shirinzadeh 2019; Gu et al. 2018)

have been conducted on the design, analysis, and opti-

mization of flexure beams for Micro/Nano electrome-

chanical systems’ (MEMS/NEMS) applications. Dynamic

analysis of micro/nano beams is essential as the strength

and desired performances of the structure directly related to

the dynamic characteristics. Therefore, during the past

decade, there have been important insights into the mod-

eling of the vibrational behavior of such micro/nano

structures. Nanobeams are an essential component which

have been used in biomedical sensors (e-nose), atomic

force microscopy (AFM), nanoscale memory devices,

photonic crystal nanobeam cavities, resonant Lorentz force

magnetic field sensors, and NEMS. CNTs, nanorods,

nanoplates, nanowires, nanorings, graphenes and micro-

tubules can also be formulated like a nanobeam. Classical

beam theories such as Euler–Bernoulli theory, Rayleigh

theory, Timoshenko theory (Ghafarian and Ariaei

2016a, 2019), Reddy theory, and Levinson theory are

inappropriate for modeling of small scale effect on nano-

beams. Therefore, many size-dependent continuum theo-

ries have been established for describing the mechanical

behavior of micro/nano scale mechanisms and structures.

Among these theories, nonlocal elasticity theory by Erin-

gen (1972, 1983) has been widely used and adopted to

explain the behavior of those minuscule mechanical sys-

tems (Ghafarian and Ariaei 2016b; Moutlana and Adali

2019; Yayli 2014; Santos and Soares 2012; Wang 2017;

Eptaimeros et al. 2020; Jha and Dasgupta 2019). Aranda-

Ruiz et al. (2012) calculated the natural frequencies of the

flapwise bending vibrations of a non-uniform rotating nano

cantilever, considering the true spatial variation of the axial

force due to the rotation. The nanobeam’s height was
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assumed to taper linearly along its length. The problem was

formulated using the nonlocal Eringen elasticity theory and

it was solved by a pseudospectral collocation method based

on Chebyshev polynomials. Aydogdu (2014) studied the

axial vibration of double-walled carbon nanotubes

(DWCNTs) using nonlocal elasticity theory considering the

van der Waals forces in the axial direction. Duan et al.

(2007) calibrated the small scaling parameter of the non-

local Timoshenko beam theory for the free vibration

problem of single-walled carbon nanotubes (SWCNTs).

The calibration exercise was performed by using vibration

frequencies generated from MD simulations at room

temperature.

On the other hand, FGMs are regarded as one of the

most promising candidates for future advanced composites

in many engineering sectors. These materials are deemed

to have an advantageous behavior over laminated com-

posites due to the continuous variation of their material

properties yet in all three dimensions, which alleviate

delamination, de-bonding, and matrix cracking initiation

issues. Therefore, the mechanical problems associated with

the structures constructed from FGMs have gained a huge

deal of attention during recent years (Zhang et al. 2019;

Rajasekaran 2013; Aubad et al. 2019; Rastehkenari 2019;

Gholipour and Ghayesh 2020). Shahba et al. (2013) studied

free vibration analysis of rotating tapered beams made of

FGMs using a finite element approach. Karamanli (2018)

investigated the free vibration behavior of two-directional

FG beams subjected to various sets of boundary conditions

by employing a third-order shear deformation theory. The

material properties of the beam were assumed to vary

exponentially in both directions. Ruocco et al. (2018)

presented the buckling and free vibration analyses of

nonlocal axially functionally graded Euler nanobeams

based on the Hencky bar chain (HBC) model. Gorgani

et al. (2019) studied the pull-in behavior of cantilever

micro/nano beams made of FGMs with small-scale effects

under electrostatic force. The Rayleigh–Ritz method was

implemented to approximate analytical solutions for the

pull-in voltage and pull-in displacement of the

microbeams.

Analytical and semi-analytical solutions of the partial

differential equations applied in describing engineering

problems are often difficult to obtain. Thus, researchers

have used different techniques to solve the differential

equations in engineering problems. Some of these applied

methods are differential quadrature method (DQM), gen-

eralized differential quadrature method (GDQM), homo-

topy perturbation method (HPM), homotopy analysis

method (HAM), optimal homotopy asymptotic method

(OHAM), Adomian decomposition method (ADM), finite

element method (FEM), and differential transformation

method (DTM) which have been used by numerous

scholars to solve the governing differential equations

describing the behavior of mechanical problems. Each of

the mentioned methods has its own advantages over the

other methods (Ghafarian and Ariaei 2016a, b, 2019; Ragb

et al. 2019; Shishesaz et al. 2019; Noghrehabadi et al.

2012; Aria and Friswell 2019). However, the analytical and

semi-analytical solution methods are preferred because of

the sense in the physics of the problem and convenience in

parametric studies Ghafarian and Ariaei (2016a).

DTM is an authentic, effective and precise technique with

the ability of simple formulation and implementation and

with a low computational cost. DTM employs the poly-

nomial form to estimate the exact solution based on the

Taylor series expansion. Throughout this technique, the

derived differential equations of motions of the mechanical

system as well as the boundary conditions are transformed

into algebraic equations. Accordingly, the accurate and

reliable results can be obtained throughout solving the

resultant algebraic equations, without requiring computa-

tional operations. On the whole, the simplicity and high

precision are the most distinguished aspects of DTM

(Ghafarian and Ariaei 2016a, b, 2019; Semnani et al. 2013;

Godara and Joglekar 2017).

As it was discussed in the literature review, so far some

research related to the vibration characteristics of the

rotating nanobeams made from different materials has been

done by the researchers using various theories. However,

according to the best knowledge of authors, there is no

comprehensive investigation on the vibration characteris-

tics of rotating double-tapered AFGM nanobeams consid-

ering two different taper ratios in the formulation and

considering a uniform nonlinear distribution of materials

throughout the structure. Therefore, in this paper, this issue

is investigated to fill the detected gap in the open literature

related to the mechanical vibration of rotating nanobeams.

It is worth pointing out that AFGM and variable section

properties of the considered rotating nanobeam leads to a

partial differential equation with variable coefficients. For

solving such equation, the DTM is employed as a semi-

analytical approach due to reliability, accuracy, and sim-

plicity of implementation.

Herewith, the governing differential equation alongside

the boundary conditions describing the dynamic behavior

of a rotating double-tapered AFGM nanobeam is derived

by adapting the Euler–Bernoulli beam model of nonlocal

Eringen elasticity theory. Subsequently, the separation of

variables is applied to the equation that yields an equation

containing the frequency of the system. Thereafter,

dimensionless parameters are defined to obtain the

dimensionless form of the governing equation as well as

the related boundary conditions. The algebraic equations

obtained by means of the transformation rules lead to a

characteristic equation which should be solved numerically
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to gain the dimensionless frequencies. To evaluate the

performance of the semi-analytical method, verification

and convergence study is adapted. The results show that the

presented methodology proves to be accurate. Finally,

some detailed numerical results are represented in which

the first four dimensionless frequencies and the corre-

sponding mode shapes are investigated. Consequently, the

effects of various involved parameters including nonlocal

scaling parameter, taper ratios, angular velocity, and hub

radius are explored comprehensively. Some important

results are revealed which may be useful for efficient

designing of the nano-structures benefiting from rotating

nanobeams such as nanosensors, biosensors, nano actua-

tors, and other NEMS devices.

2 Nonlocal elasticity theory

Eringen nonlocal elasticity theory has been widely used for

modeling of vibration of a nanobeam. Unlike the classic

beam theory, a size-dependent term is considered in this

theory which makes it compatible to predict vibration of a

nano-scale beam. The following nonlocal constitutive

stress–strain equation was proposed by Eringen (1983);

1� ðe0aÞ2r2
h i

rij ¼ Cijklekl ð1Þ

where rij, Cijkl and ekl are the nonlocal stress, classical

strain, and fourth-order elasticity tensors, respectively. e0 is

a constant determined independently for each material. a is

an internal characteristic length (distance between atoms,

lattice parameter, size of grain, granular distance, or dis-

tance between the C–C bonds, etc.). The parameter e0 is

estimated that the nonlocal elasticity model predicts satis-

factorily the atomic dispersion curves of plane waves

compared to that obtained from the atomistic lattice

dynamics.

A method of identifying the small scaling parameter e0
in the nonlocal theory is not known yet. As defined by

Eringen (1983), e0 is a constant specific to each material.

Eringen proposed e0 ¼ 0:39 by matching the dispersion

curves via the nonlocal theory for plane wave and Born–

von Karman model of lattice dynamics at the end of the

Brillouin zone. On the other hand, Eringen (1972), in his

study, proposed e0 ¼ 0:31 for Rayleigh surface wave

through nonlocal continuum mechanics and lattice

dynamics. In general, different values for e0 have been

presented for different types of problems based on the

matching of the results obtained with MD simulations to

those obtained with the nonlocal continuum mechanics.

Araujo dos Santos and Mota Soares (2012) studied the

vibration of a SWCNT and found that the values of e0 vary

with the number of natural frequency and the SWCNT

length and diameter. Furthermore, Duan et al. (2007)

claimed that instead of a constant value, the calibrated e0
values vary with respect to length-to-diameter ratios, mode

shapes, and boundary conditions of the SWCNTs.

3 Nonlocal equations of motion
of a rotating double-tapered AFGM
nanobeam

3.1 Material properties

In this study, it was assumed that the material properties of

the nanobeam such as Young’s Modulus E and mass den-

sity r vary continuously according to power law form.

Therefore, the material properties were considered to vary

through the nanobeam axis and the material characteristics

can also be assumed to vary based on power law distri-

bution, and thus can be described using the following

formulas;

E xð Þ ¼ EL þ ðER � ELÞ
x

L

� �n
ð2Þ

q xð Þ ¼ qL þ ðqR � qLÞ
x

L

� �n
ð3Þ

where subscripts L and R are the corresponding material

properties of the left and the right side of the nanobeam,

respectively, and n is the non-negative power law exponent

which dictates the material variation profile through the

axis of the nanobeam. Table 1 shows the materials which

were used for describing the nanobeam. To have a uniform

distribution of both material, n=2 is chosen as the

exponent.

3.2 Equation of motion

Nanotubes are central components to new rotating devices

such as miniature motors. The rotating CNT can be rep-

resented as a cantilevered nanobeam which is assumed to

be slender and satisfied Euler–Bernoulli beam theory. In

this section, the nonlocal equation of motion is obtained

based on the Euler–Bernoulli beam deformation theory for

one rotating double-tapered AFGM nanobeam.

Figure 1 shows a nanobeam of length L which is fixed to

a rigid molecular hub. The molecular hub has radius R and

rotates in a counter-clockwise direction at a constant

rotational speed, X. The nanobeam tapers through its

breadth and height by the coefficients of cb and ch,

respectively. Further, the material properties of the nano-

beam change through its length.

Based on the Euler–Bernoulli beam theory, the axial and

transverse displacement fields are represented as;
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uðx; y; z; tÞ ¼ �z
owðx; tÞ

ox
ð4Þ

wðx; y; z; tÞ ¼ wðx; tÞ ð5Þ

where w is the transverse displacement of the neutral axis

of the nanobeam. It is noteworthy that, based on some

studies in the literature which considered longitudinal

displacement as an independent variable for linear vibra-

tion (Lin and Wu 2005; Lin and Ro 2003), no effect was

observed on the results obtained for other displacements.

Considering Eqs. (4) and (5), the only non-zero strain term

of the Euler–Bernoulli beam theory is described by;

exx ¼
ou

ox
¼ �z

o2w

ox2
ð6Þ

The equation of motion of a rotating nanobeam based on

the Euler–Bernoulli beam theory is presented as;

oV

ox
þ qþ o

ox
T xð Þ ow

ox

� �
¼ qA

o2w

ot2
ð7Þ

where;

V ¼ oM

ox
ð8Þ

M ¼
Z

A

zrxxdA ð9Þ

where V is the shear force, q is the external force per unit of

length, T(x) is the axial force due to centrifugal accelera-

tion, r is the mass density, A is the nanobeam cross-sec-

tional area, M is the bending moment, and rxx is the axial

stress on the yz-section in the direction of x.

By considering Eqs. (1) and (6), it can be found that only

one equation exists to describe the stress–strain behavior of

the nanobeam;

rxx � e0að Þ2 o
2rxx
ox2

¼ Eexx ð10Þ

By performing surface integration of
R
AzðÞdA from both

sides of Eq. (10), and noting that the moment of inertia of

the nanobeam cross-section is Iy ¼
R
Az

2dA, the following

equation was derived;

M � e0að Þ2 o
2M

ox2
¼ �EIy

o2w

ox2
ð11Þ

By differentiating Eq. (8) with respect to x and substi-

tuting into Eq. (7), finding the term o2M
ox2 , and substituting it

into Eq. (11), Eq. (12) was resulted as follows;

M ¼ �EIy
o2w

ox2
þ e0að Þ2 qA

o2w

ot2
� o

ox
T
ow

ox

� �
� q

� �

ð12Þ

Now, by having the moment of inertia and using Eq. (8),

the shear force of the nanobeam was derived;

V ¼ � o

ox
EIy

o2w

ox2

� �

þ e0að Þ2 o

ox
qA

o2w

ot2
� o

ox
T
ow

ox

� �
� q

� �
ð13Þ

Using the shear force, Eq. (13), and substituting it back

into the Euler–Bernoulli equation of motion of a rotating

nanobeam, Eq. (7), the final version of the equation of

motion of a rotating nanobeam was obtained as;

qA
o2w

ot2
þ o2

ox2
EIy

o2w

ox2

� �
� o

ox
T
ow

ox

� �

� e0að Þ2 o2

ox2
qA

o2w

ot2
� o

ox
T
ow

ox

� �� 	

¼ q� e0að Þ2 o
2q

ox2
ð14Þ

As the nanobeam tapers linearly from its breadth and

height, the following assumptions were made;

cb ¼ 1� bL
b0

ð15Þ

ch ¼ 1� hL
h0

ð16Þ

Table 1 Material properties of

an AFGM nanobeam
Material Young’s modulus (E) (Gpa) Density (q) kg

m3

� �

Left: Zirconia (ZrO2) 200 5700

Right: Aluminium (Al) 70 2702

Fig. 1 Configuration of a rotating double-tapered nanobeam
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A ¼ A0ð1� cb
x

L
Þð1� ch

x

L
Þ ð17Þ

Iy ¼ Iy0ð1� cb
x

L
Þð1� ch

x

L
Þ
3

ð18Þ

where cb and ch should be considered lower than 1 to avoid

having zero nanobeam’s height and breadth between its

ends.

According to Ghafarian and Ariaei (2016a, b), the cen-

trifugal force T xð Þ at a distance x from the clamped end of

nanobeam can be expressed as follows;

T xð Þ ¼
Z L

x

qAX2 Rþ Kð ÞdK

¼ A1 L� xð Þ þ A2 L2 � x2

 �

þ A3 L3 � x3

 �

þ A4 L4 � x4

 �

þ A5 L5 � x5

 �

þ A6 L6 � x6

 �

ð19Þ

where Ai (i = 1,…,6) are constants and were formulated

and presented in ‘‘Appendix A’’. Substituting the FGM

formulations, Eqs. (2) and (3), the centrifugal force,

Eq. (19), and the taper assumptions, Eqs. (15)-(18), into the

Eq. (14), the equation of motion of a rotating Euler–Ber-

noulli double-tapered AFGM nanobeam was obtained as

follows;

B1

o2w

ot2
þ B2

o4w

ox4
þ B3

o3w

ox3
þ B4

o2w

ox2
þ B5

ow

ox
þ B6

o3w

oxot2

þ B7

o4w

ox2ot2

¼ q� e0að Þ2 o
2q

ox2

ð20Þ

Bi (i = 1,…,7) are functions of x and were shown in

‘‘Appendix B’’.

3.3 Boundary conditions

Boundary conditions of a cantilever nanobeam are descri-

bed as below;

Transverse displacement and angle of bending are zero

at the fixed end of nanobeam;

w ¼ 0; At; x ¼ 0 ð21Þ
ow

ox
¼ 0; At; x ¼ 0 ð22Þ

Bending moment and shear force are zero at the free end

of nanobeam;

M ¼ 0; At; x ¼ L ð23Þ
V ¼ 0; At; x ¼ L ð24Þ

4 Free vibration analysis of the system

4.1 Free vibration analysis

In this section, free vibration analysis of a rotating double-

tapered AFGM nanobeam is investigated. For this purpose,

initially, the external force was neglected, and later a

harmonic motion was assumed as the following form;

w x; tð Þ ¼ uðxÞeixt ð25Þ

where uðxÞ is the amplitude functions of transverse dis-

placement, and x is the circular natural frequency.

4.2 Dimensionless parameters, nonlocal
equation of motion, and boundary
conditions

For convenience and also comparing the results with other

articles, the following dimensionless parameters are

introduced:

x ¼ x

L

w ¼ w

L

u ¼ u

L

s ¼ e0a

L

d ¼ R

L

E ¼ EL � ER

EL

q ¼ qL � qR
qL

X ¼ X

ffiffiffiffiffiffiffiffiffiffi
qLA0

ELIy0

s
L2

x ¼ x

ffiffiffiffiffiffiffiffiffiffi
qLA0

ELIy0

s
L2

ð26Þ

where x is the dimensionless location along the length of

nanobeam, w is the dimensionless transverse displace-

ment,u is the dimensionless amplitude functions of trans-

verse displacement, s is the dimensionless nonlocal scaling

parameter, d is the dimensionless hub radius, E is the

dimensionless Young’s modulus, q is the dimensionless

density, X is the dimensionless rotational speed, and x is

the dimensionless natural frequency. Substituting Eq. (25)

and dimensionless parameters (26) into Eqs. (20) and (21)–

(24), the dimensionless form of the nonlocal equation of

motion, along with the nonlocal boundary conditions were

obtained, respectively, as explained in the following.
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5 Dimensionless nonlocal equation
of motion

The dimensionless nonlocal equation of motion was

derived and shown in Eq. (27);

C0uþ C1

du

dx
þ C2

d2u

dx2
þ C3

d3u

dx3
þ C4

d4u

dx4
¼ 0 ð27Þ

Ci (i = 0,…,4) are functions of x and were shown in

‘‘Appendix C’’. Equation (27) is a linear forth order

homogenous ordinary differential equation that describes

the behavior of the nanobeam system.

6 Dimensionless nonlocal boundary
conditions

The dimensionless nonlocal boundary conditions were

derived and shown in Eqs. (28)–(31);

Dimensionless transverse displacement at the fixed end

of nanobeam;

u ¼ 0; At; x ¼ 0 ð28Þ

Dimensionless angle of bending at the fixed end of

nanobeam;

du

dx
¼ 0; At; x ¼ 0 ð29Þ

Dimensionless nonlocal bending moment at the free end

of nanobeam;

M ¼ D2

d2u

dx2
þ D1

du

dx
þ D0u ¼ 0; At; x ¼ 1 ð30Þ

Dimensionless nonlocal shear force at the free end of

nanobeam;

V ¼ E3

d3u

dx3
þ E2

d2u

dx2
þ E1

du

dx
þ E0u ¼ 0; At; x ¼ 1

ð31Þ

Di (i = 0,1,2) and Ei (i = 0,1,2,3) are functions of x and

were shown in ‘‘Appendices D’’ and ‘‘E’’.

6.1 Differential transform method (DTM)

DTM is a beneficial and appropriate semi-analytical

method for finding the solution of a differential equation.

Generally, this technique consists of two differential and

inverse differential transformations. If function uðxÞ is

analytic in domain D, and x ¼ x0 represents any point in

this domain, the differential transformation of the function

uðxÞ is then presented by;

U mð Þ ¼ 1

m!

dmuðxÞ
dxm

� �




x¼x0

ð32Þ

where, uðxÞ is the original function and U mð Þ is the mth

order differential transformation of uðxÞ.
On the other hand, the inverse differential transforma-

tion of U mð Þ is also defined as;

u xð Þ ¼
X1
m¼0

UðmÞðx� x0Þm ð33Þ

In practical applications, the function u xð Þ is expressed
by a finite series and Eq. (33) can be rewritten as follows;

u xð Þ ¼
Xs
m¼0

UðmÞðx� x0Þm ð34Þ

Equation (34) implies that u xð Þ ¼P1
m¼sþ1 UðmÞðx� x0Þm is negligibly small. The number of

terms, s, is chosen as the convergence of natural frequen-

cies is satisfied. Also, x0 is considered as zero.

The properties that are useful in the transformation of

the differential equation and the boundary conditions are

tabulated in Tables 2 and 3, respectively.

By applying the DTM technique from Table 2, the

nonlocal equation of motion for a rotating double-tapered

AFGM nanobeam, Eq. (27), can be rewritten as follows;

F1Uðm� 4Þ þ F2Uðm� 3Þ þ F3Uðm� 2Þ þ F4Uðm� 1Þ
þ F5UðmÞ þ F6Uðmþ 1Þ þ F7Uðmþ 2Þ þ F8Uðm
þ 3Þ þ F9Uðmþ 4Þ
¼ 0

ð35Þ

In addition, by implementing the DTM technique from

Table 3, the nonlocal boundary conditions can also be

rewritten as follows;

U 0ð Þ ¼ 0; At; x ¼ 0 ð36Þ
U 1ð Þ ¼ 0; At; x ¼ 0 ð37Þ

Table 2 DTM theorems used for the equation of motion

Original function Transform function

f xð Þ ¼ g xð Þ � h xð Þ F mð Þ ¼ G mð Þ � H mð Þ
f xð Þ ¼ ag xð Þ F mð Þ ¼ aG mð Þ
f xð Þ ¼ g xð Þh xð Þ

F mð Þ ¼
Pm
j¼0

G m� jð ÞH jð Þ

f xð Þ ¼ dng xð Þ
dxn F mð Þ ¼ mþnð Þ!

m! G mþ nð Þ
f xð Þ ¼ xn

F mð Þ ¼ d m� nð Þ ¼ 0 if m 6¼ n
1 if m ¼ n

�
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M ¼
X1
m¼0

G1m m� 1ð Þ þ e0að Þ2 G2 þ G3m½ �
n o

U mð Þ

¼ 0; At;
x ¼ 1

ð38Þ

V ¼
X1
m¼0

H1m m� 1ð Þ m� 2ð Þ þ H2m m� 1ð Þf

þ e0að Þ2 H3 þ H4m m� 1ð Þ þ H5m½ �
o
U mð Þ ¼ 0; At;

x ¼ 1

ð39Þ

Coefficients Fi (i = 1,…,9), Gi (i = 1, 2, 3), and Hi

(i = 1,…,5) were derived and shown in ‘‘Appendices F,

G’’, and ‘‘H’’, respectively. It is worthy of mention that the

function coefficients represented in ‘‘Appendices C, D, E,

F, G’’, and ‘‘H’’ are dimensionless. M and V are the

transformed dimensionless nonlocal bending moment and

shear force at the free end of the nanobeam, respectively.

Applying the nonlocal boundary conditions expressed in

Eqs. (36)–(39) in Eq. (35) and considering U 2ð Þ ¼ C1 and

U 3ð Þ ¼ C2, the following expression was obtained;

Ai1 xð ÞC1 þ Ai2 xð ÞC2 ¼ 0; i ¼ 1; 2 ð40Þ

where C1 and C2 are constant, and Ai1 xð Þ and Ai2 xð Þ are
polynomials with respect to x. The dimensionless natural

frequencies are the eigenvalues of Eq. (40) and they were

calculated by solving the following determinant when

equals to zero;

A11 xð Þ A12 xð Þ
A21 xð Þ A22 xð Þ










 ¼ 0 ð41Þ

This determinant provides a single polynomial equation

for determining the dimensionless natural frequencies, x.
To determine the value of the jth natural frequency, the

following convergence criterion may be used;

x qð Þ
j � x q�1ð Þ

j








� e ; j ¼ 1; 2; 3; . . . ð42Þ

where q is the iteration counter, xj is the estimated value

of the jth dimensionless natural frequency, and e is a tol-

erance parameter and a sufficiently small number. After

calculating the natural frequencies, the mode shapes can be

obtained by deriving the following relation from Eq. (40);

C2 ¼ �
A11 xj


 �

A12 xj


 �C1 ð43Þ

Applying Eq. (43), Uj mð Þ can be expressed in terms of

xj and C1 as follows;

Uj mð Þ ¼ Uðxj;C1Þ ð44Þ

Having Uj mð Þ related to each natural frequency and

implementing inverse of DTM, the mode shape related to

that natural frequency was obtained by the following

equation;

uj xð Þ ¼
Xs
m¼0

Uj mð Þxm ð45Þ

7 Results and discussions

In this section, the obtained results of the mathematical

modeling are presented and comparisons are made to the

previous studies to prove the accuracy of modeling and

results.

7.1 FGM properties

The proposed nanobeam system is made of FGM. This

means that the mechanical properties of the nanobeam are

dependent on the specific position in itself and are chang-

ing by position. This trend in the proposed modeling was

Table 3 DTM theorems used

for the boundary conditions
x ¼ 0 x ¼ 1

Original B.C Transformed B.C Original B.C Transformed B.C

f 0ð Þ ¼ 0 F 0ð Þ ¼ 0 f 1ð Þ ¼ 0 P1
m¼0

F mð Þ ¼ 0

df
dx 0ð Þ ¼ 0 F 1ð Þ ¼ 0 df

dx 1ð Þ ¼ 0 P1
m¼0

mF mð Þ ¼ 0

d2f

dx2
0ð Þ ¼ 0 F 2ð Þ ¼ 0 d2f

dx2
1ð Þ ¼ 0 P1

m¼0

m m� 1ð ÞF mð Þ ¼ 0

d3f

dx3
0ð Þ ¼ 0 F 3ð Þ ¼ 0 d3f

dx3
1ð Þ ¼ 0 P1

m¼0

m m� 1ð Þ m� 2ð ÞF mð Þ ¼ 0

d4f

dx4
0ð Þ ¼ 0 F 4ð Þ ¼ 0 d4f

dx4
1ð Þ ¼ 0 P1

m¼0

m m� 1ð Þ m� 2ð Þ m� 3ð ÞF mð Þ ¼ 0
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formulated by Eqs. (2) and (3), which n ¼ 2 was assumed.

Figures 2, 3 and 4 show how the mechanical properties are

changing by changing in the exponent and the position

along the length of the nanobeam. Figure 2 is the 3D model

of this trend with respect to x and n. Figure 3 is the contour

of this 3D model and numbers inside of the left figure show

the Young’s Modulus and the numbers inside of the right

figure show the mass density. It is obvious that at the very

left side of the nanobeam (x ¼ 0) the only material is

Zirconia and at the very right side of the nanobeam (x ¼ L)

the only material is Aluminium. Figure 4 shows the trend

of changing of E and r along the length of the nanobeam

for the exponent equals to 2. According to Fig. 4, the local

Young’s modulus and mass density decrease when

becoming closer to the end x = L. The Young’s modulus

reduces faster than the mass density as getting closer to the

Fig. 2 Variation of Young’s modulus and mass density with respect to the exponent and dimensionless location along the length of nanobeam

Fig. 3 The contour of Young’s modulus and mass density with respect to the exponent and dimensionless location along the length of nanobeam
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end x = L. Reasons for that are the dimensionless Young’s

modulus reduction (EL�ER

EL
� 100 ¼ 65%) is higher than the

dimensionless density reduction (
qL�qR
qL

� 100 ffi 52:6%).

7.2 Validation of results

For validation purposes, the results are compared with

Shahba et al. (2013) and Aranda-Ruiz et al. (2012). Shahba

et al. (2013) investigated the vibration analysis of an

AFGM tapered rotating beam. Material and geometry

properties of the analysis were chosen as shown in Tables 1

and 4, respectively. Table 5, shows the first five dimen-

sionless natural frequencies obtained from the presented

study and Shahba et al. (2013). It can be seen that good

accuracy was achieved.

Investigation of a rotating nanobeam was done by

Aranda-Ruiz et al. (2012) and the results are compared

with the presented study. The geometry properties of the

analysis were chosen as shown in Tables 6. Figure 5 shows

the result of this comparison which the first three dimen-

sionless natural frequencies were plotted against different

dimensionless rotational speeds. It can be noted that the

results had a good overlap and the accuracy of the mod-

eling was guaranteed.

Fig. 4 Variation of Young’s modulus and mass density with respect

to the dimensionless location along the length of nanobeam (n ¼ 2)

Table 4 Geometry properties of an AFGM tapered rotating beam

X cb ch A0

(m2)

Iy0 (m4) s d L (m)

10.6521 0 0.6 0.0225 1.17187e-5 0 0 6

Table 5 First five dimensionless natural frequencies of an AFGM

tapered rotating beam

Mode no. Present Shahba et al. (2013)

1 12.6432 12.3292

2 30.0557 29.3931

3 57.1080 57.0114

4 95.9109 97.0683

5 146.9954 150.0166

Table 6 Geometry properties of a rotating ZrO2 nanobeam

cb ch A0 (nm
2) Iy0 (nm

4) s d L (nm)

0 0 8 8/3 0.2 1 250

Fig. 5 Variation of dimensionless natural frequency against the

dimensionless rotational speed of a rotating nanobeam, filled

(Present); unfilled (Aranda-Ruiz et al. 2012)

Table 7 Geometry properties of an AFGM double-tapered rotating

nanobeam

X cb ch A0 (nm2) Iy0 (nm4) s d L (nm)

3 0.4 0.4 8 8/3 0.1 0.5 250
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7.3 Results of the presented nanobeam system
and mathematical modeling

All numerical results presented in this section are based on

the numerical data tabulated in Tables 1 and 7.

Slenderness Ratio (SR) is defined as the length of the

nanobeam to the smallest size of the cross-section of it. The

behavior of a nanobeam is closer to the nonlocal Euler–

Bernoulli beam theory by a larger SR quantity due to the

fact that the effects of shear deformation and rotatory

inertia become negligible. In the presented work, the

smallest size of the cross-section (h) is changing through

the nanobeam’s length from h0=2 nm to hL=1.2 nm. Con-

sequently, the SR changes from 125 to 208.3. Therefore, as

a result of having large SR (meaning slender nanobeam), it

can be concluded that there is no significant difference

between the vibrational frequencies of Euler–Bernoulli and

Timoshenko nanobeams and the nonlocal Euler–Bernoulli

beam theory can be used to describe the behavior of the

considered nanobeam system (Kikidis and Papadopoulos

1992; Aydin 2013).

In Fig. 6, the convergence of the first four dimensionless

natural frequencies is introduced. Here, it was necessary to

take 95 terms to evaluate up to the fourth dimensionless

natural frequency to four-digit precision. Therefore, the

number of the terms, s, mentioned in Eq. (34) is 95 for the

Fig. 6 Convergence of the first

four dimensionless natural

frequencies

Table 8 First four natural frequencies of an AFGM double-tapered

rotating nanobeam

Mode No Dimensionless natural frequency (x)

1 6.9302

2 21.8540

3 45.0039

4 71.0352

Fig. 7 Mode shapes of an AFGM double-tapered rotating nanobeam
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Fig. 8 Effect of the

dimensionless nonlocal scaling

parameter on the natural

frequencies of an AFGM

double-tapered rotating

nanobeam

Fig. 9 Effect of rotational speed

and hub radius on the natural

frequencies of a rotating double-

tapered AFGM nanobeam
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first four dimensionless natural frequencies. Additionally,

here it is seen that higher modes appear when more terms

are taken into account in DTM application. Thus,

depending on the order of the required mode, one must try

a few values for the term number at the beginning of the

numerical calculations in order to find an adequate number

of terms.

Table 8 shows the first four dimensionless natural fre-

quencies of a rotating double-tapered AFGM nanobeam.

Figure 7 shows the corresponding mode shapes of those

natural frequencies obtained from Eq. (45).

Figure 8 shows the importance of considering the non-

local Eringen theory and specifically the nonlocal scaling

parameter in analyzing a nanobeam system. It can be seen

Fig. 10 Effect of the height taper ratio on the natural frequencies of a rotating double-tapered AFGM nanobeam

Fig. 11 Effect of the breadth taper ratio on the natural frequencies of a rotating double-tapered AFGM nanobeam
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that increasing s causes an increase in the first natural

frequency and a decrease in the remaining three. As s ¼ 0,

shows the behavior of the nanobeam with classical Euler–

Bernoulli theory, the natural frequencies are different when

the nonlocal parameter is being counted and it shows the

importance of this parameter. The most interesting result is

that the importance of this parameter becomes clearer when

the attention is directed towards the higher natural

frequencies.

The effects of rotational speed and hub radius on natural

frequencies were investigated and the results are shown in

Figure 9. It was seen that by increasing rotational speed,

the natural frequencies increase and this trend is also

occurring when the hub radius increases. In addition,

rotational speed and hub radius have more impact on the

higher natural frequencies than the lower ones and the rate

of changing the natural frequencies due to changing those

two parameters is more evident on the higher natural fre-

quencies as well. It is noted that natural frequencies remain

constant by changing hub radius for a non-rotating double-

tapered AFGM nanobeam which makes sense, because

without rotation there is no centrifugal force applied to the

nanobeam, and the only important relationship between the

hub and the nanobeam is the boundary conditions between

them.

The proposed nanobeam tapered linearly from both its

height and breadth. The results of this tapering effect from

its height are plotted in Figure 10. As it is very obvious

from Eq. (16), ch can be between 0 to 1. From the results, it

can be understood that by increasing the height taper ratio,

or in the other words by making it tapered quicker, the first

natural frequency increases but the other ones decrease.

This trend of changing in the value of natural frequencies

due to the changing in height taper ratio is more evident

when it gets to the higher natural frequencies.

Based on Eq. (15), cb can be between 0 to 1. Therefore,

the effect of the breadth taper ratio on the natural fre-

quencies is shown in Fig. 11. It must be emphasized that by

increasing the breadth taper ratio the natural frequencies

increase.

Looking at the results of the effect of height and breadth

taper ratio on the natural frequencies, it can be concluded

that by increasing mode number, the effect of height taper

ratio on the natural frequencies becomes more dominant

than the effect of breadth taper ratio. In other words, the

height taper ratio plays a key role compared to the breadth

taper ratio when the mode number increases.

8 Conclusion

In this article, free vibration analysis of a rotating double-

tapered AFGM nanobeam was presented. It was assumed

that the height and the breadth of nanobeam taper linearly

along its length and moreover, the mechanical properties of

it change nonlinearly along its length. Using the nonlocal

Eringen theory, the equation of motion of the proposed

system and the boundary conditions were developed.

Afterward, the separation of variables solution was applied

to obtain an equation containing the frequency. Then, DTM

and related rules were employed to convert the obtained

equation as well as the boundary conditions to the form of

algebraic equations, from which, a characteristic equation

was extracted. Solving the resultant characteristic equation

yielded the dimensionless natural frequencies. Addition-

ally, the corresponding mode shapes were obtained and the

effect of several parameters such as nonlocal scaling

parameter, rotational speed, hub radius, height and breadth

taper ratios were investigated on the natural frequencies

and the results were presented. Finally, the results were

compared with those reported in the literature and an

excellent agreement was observed. Moreover, the follow-

ing results were obtained for a rotating double-tapered

AFGM nanobeam system;

• The value of the first natural frequency is increased by

increasing the nonlocal scaling parameter and the rest is

decreased.

• The importance of the nonlocal scaling parameter

becomes clearer when the attention is directed towards

the higher natural frequencies.

• Increasing rotational speed and hub radius cause an

increase in the natural frequencies.

• Rotational speed, hub radius, and height taper ratio

have more impact on the higher natural frequencies

than the lower ones and the rate of changing the natural

frequencies due to changing those parameters is more

evident.

• Increasing the breadth taper ratio causes an increase in

the natural frequencies. Moreover, increasing the height

taper ratio causes an increase in the first natural

frequency but a decrease in the rest.

The results given in this paper present some comple-

mentary information about the exact size-dependent

vibration behavior of the rotating cantilever double-tapered

AFGM nanobeams. Therefore, the paper and its results can

be applicable in an efficient design of the nano-structures in

which the rotating nanobeams play a pivotal role.
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Appendix A

Coefficients of the centrifugal force (Eq. 19)

A1 ¼ A0X
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A0X
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2
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� cb þ ch
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A0X
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Appendix B

Function coefficients of the equation of motion of the

dynamical system (Eq. 20)
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Appendix C

Function coefficients of the dimensionless equation of

motion of the dynamical system (Eq. 27)
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Appendix D

Function coefficients of the dimensionless bending moment

(Eq. 30)

Appendix E

Function coefficients of the dimensionless shear force

(Eq. 31)

D0 ¼
L

ELIy0
e0að Þ2 A0LqL �x2


 �
� A0L qL � qRð Þ �x2


 �
x2


 �
1� cb þ chð Þxþ cbchx

2

 �� �n o

D1 ¼
L

ELIy0
e0að Þ2 6A6ðLxÞ5 þ 5A5ðLxÞ4 þ 4A4ðLxÞ3 þ 3A3ðLxÞ2 þ 2A2Lxþ A1

h in o

D2 ¼
L

ELIy0

� Iy0EL

L
þ Iy0 EL � ERð Þx2

L

� �
1� cb þ 3chð Þxþ 3 cb þ chð Þchx2�

chð Þ2 ch þ 3cbð Þx3 þ cb chð Þ3x4
� �

þ

e0að Þ2
� A1 þ A2Lþ A3L

2 þ A4L
3 þ A5L

4 þ A6L
5


 �
þ

A1xþ A2LðxÞ2 þ A3L
2ðxÞ3 þ A4L

3ðxÞ4 þ A5L
4ðxÞ5 þ A6L

5ðxÞ6
� �

( )

8>>><
>>>:

9>>>=
>>>;

E0 ¼
L2

ELIy0

e0að Þ2

L
A0qL �x2


 �
L � cb þ chð Þ þ 2cbchxð Þ � A0 qL � qRð Þ �x2


 �
L 2x� 3 cb þ chð Þx2 þ 4cbchx

3

 �� �( )

E1 ¼
L2

ELIy0

e0að Þ2

L

A0qL �x2ð ÞL� A0 qL � qRð Þ �x2ð ÞLx2

 �

1� cb þ chð Þxþ cbchx
2


 �
þ

30A6ðLÞ5x4 þ 20A5ðLÞ4x3 þ 12A4ðLÞ3x2 þ 6A3ðLÞ2xþ 2A2L
� �

" #( )

E2 ¼
L2

ELIy0

� Iy0EL

L2
� cb þ 3chð Þ þ 6 cb þ chð Þchx� 3 chð Þ2 ch þ 3cbð Þx2 þ 4cb chð Þ3x3
� �

þ
Iy0 EL � ERð Þ

L2
2x� 3 cb þ 3chð Þx2 þ 12 cb þ chð Þchx3 � 5 chð Þ2 ch þ 3cbð Þx4 þ 6cb chð Þ3x5
� �

þ
2 e0að Þ2

L
A1 þ 2A2Lxþ 3A3L

2ðxÞ2 þ 4A4L
3ðxÞ3 þ 5A5L

4ðxÞ4 þ 6A6L
5ðxÞ5

� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

E3 ¼
L2

ELIy0

� Iy0EL

L2
þ Iy0 EL � ERð Þx2

L2

� �
1� cb þ 3chð Þxþ 3 cb þ chð Þchx2�

chð Þ2 ch þ 3cbð Þx3 þ cb chð Þ3x4
� �

þ

e0að Þ2

L

� A1 þ A2Lþ A3L
2 þ A4L

3 þ A5L
4 þ A6L

5

 �

þ
A1xþ A2LðxÞ2 þ A3L

2ðxÞ3 þ A4L
3ðxÞ4 þ A5L

4ðxÞ5 þ A6L
5ðxÞ6

� �
 !

8>>><
>>>:

9>>>=
>>>;

3672 Microsystem Technologies (2020) 26:3657–3676

123



Appendix F

Function coefficients of the transformed dimensionless

equation of motion of the dynamical system (Eq. 35)
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Appendix G

Coefficients of the transformed dimensionless bending

moment (Eq. 38)
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Appendix H

Coefficients of the transformed dimensionless shear force

(Eq. 39)
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