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Abstract
This paper investigates the nonlinear instability of a non-Newtonian fluid of the Walters’ B type. The fluids fill the regions

inside and outside a vertical circular cylinder. An axial electric field of uniform strength is pervaded along the axis of the

jet. The fluids are saturated in porous media. Typically, the nonlinear analysis is based on solving the linear governing

equations of motion, then applying the convenient nonlinear boundary conditions. This methodology yields a nonlinear

characteristic equation which governs the behavior of the interface deflection. As the nonlinear terms are omitted, a linear

dispersion relation arises. Therefore, the stability criteria are analytically analyzed and numerically confirmed. The non-

linear approach depends on the multiple time scale technique together with the support of the Taylor theory. This approach

resulted in a Ginzburg–Landau equation. Consequently, the stability criteria are achieved in both analytical and numerical

analysis. Furthermore, by means of the expanded frequency analysis, a bounded approximate solution of the amplitude of

the surface waves is accomplished. The homotopy perturbation method (MPM) is utilized to obtain an approximate

distribution of the conducted artificial frequency. Additionally, the generating function of the interface is graphically

represented. Several special cases are reported upon convenient data choices. Regions of stability and instability are

addressed. In the stability profile, the electric field intensity is plotted versus the wave number. The influences of the

parameters on the stability are identified. The nonlinear stability approach divides the phase plane into several parts of

stability/instability.

1 Introduction

Electrohydrodynamics (EHD) is concerned with the inter-

action design of electric and flow fields, at which the

Ohmic model is extremely an accurate approximation.

Such interaction occurs as a result of the influence of the

Coulomb force on a medium, subsequently, as a result of

the work done by the electric field in the flow of currents.

In this case, the movement of the medium gives rise to

redistribution of the volume charges, which yields as the

change of the electric field. In other words, EHD may be

regarded as a divaricate of fluid mechanics concerning the

effects of electric forces. Actually, it includes the impacts

of the electric field in a moving medium; for instance, see

Melcher and Taylor (1969) and Saville (1997). Melcher

and Taylor (1969) introduced a review of the mechanism of

EHD on the interface shear stress. Saville (1997) intro-

duced a review dealing with the establishment of the leaky

dielectric model and experimental tests designed to indi-

cate its usefulness. Several applications of EHD in various

fields; ranging from dynamics in a biological system,

dielectric phoretic orientation, the expulsion of liquids, to

atmospheric and cloud physics. The EHD stability is very

essential in the applications spread from electro-kinetic

assays to electro-spray ionization. Chen (2011) gave a

review on the EHD stability, at which the basic foundations

of this topic and introduced some models, were illustrated.

Recent works on the nonlinear EHD stability showed some

behavior of the system not predicted throughout the linear

stability theory. El-Sayed et al. (2014a) studied the phe-

nomenon of the viscous potential theory in nonlinear sta-

bility of electro-visco-elastic of two superposed dielectric

fluids. Throughout this work, the multiple time scales,
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technique, were utilized. As a result, a Ginzburg–Landau

equation was achieved. Additionally, they concluded that

the three-dimensional disturbances are more unstable than

the two-dimensional ones, which were occurring for most

physical parameters except the kinematic viscosities. El-

Sayed et al. (2010) studied a weakly nonlinear theory of

wave propagation in two superposed dielectric fluids

streaming in the presence of the vertical electric field, and

in the absence of surface charges at the interface. They

found that the dimensions (two or three) of the system have

a dual role (stabilizing as well as destabilizing). El-Sayed

et al. (2011) investigated the weakly nonlinear stability

analysis of wave propagation in two superposed dielectric

fluids streaming in the presence of vertical electric field

producing surface charges. The method of multiple scales

resulted in a nonlinear Klein–Gordon equation with com-

plex coefficients describing the behavior of the perturbed

system at the critical point. Recently, Moatimid et al.

(2019) studied the problem of EHD stability of a vertical

infinite cylindrical liquid sheet embedded between two

dielectric perfect incompressible cylindrical liquids. To

relax the mathematical manipulation, they utilized the

viscous potential theory. Their analysis reveals coupled

Mathieu equations. Away from the symmetric and anti-

symmetric modes, they considered a general case for the

surface deflections.

A non-Newtonian fluid is a fluid whose viscosity is

variable based on applied stress or force. The most com-

mon example of a non-Newtonian fluid is cornstarch dis-

solved in water. The behavior of Newtonian fluids like

water can be described exclusively by temperature and

pressure. An interesting example of a non-Newtonian fluid

is flowing inside the human body, which is the blood. The

non-Newtonian fluids have received considerable interest

in many physical and technological applications. They are

more realistic than the Newtonian fluids. A special class of

fluids is known as visco-elastic fluids. The latter exhibits

properties of elasticity in addition to viscosity. Therefore,

the study of visco-elastic fluids has gained increasing

importance in the last decades. Furthermore, they have

more and more industrially important. Sharma and Chand

(1999) studied the instability of streaming Walters’ B

elastico-viscous fluid in porous media. They found that in

the special case, when perturbations in the direction of

streaming are ignored, the system can be stable or unstable,

depending upon the kinematic visco-elasticity, medium

porosity and medium permeability. Kumar and Singh

(2010) studied the Rayleigh–Taylor instability of two

superposed Walters’ B fluids. In the case of the

stable stratification, the system seems to be stable under

certain conditions. El-Sayed et al. (2014b) studied the

nonlinear Kelvin–Helmholtz instability of two superposed

semi-infinite of the Walters’ B dielectric fluids in porous

media. They considered a normal electric field in the

absence of the surface charges. By utilizing the multiple

time scale technique, the analyzed the stability criteria in

linear as well as the nonlinear approaches. Keeping in mind

the importance of the non-Newtonian fluids, Kumar (2017)

considered the effect of a suspended particle on the Wal-

ters’ B fluids. The fluid is heated from below in porous

media, and in the presence of a uniform magnetic field. It

was observed that the magnetic field postpones the onset of

convection, while the medium permeability and the sus-

pended particles hasten the onset of convection. Recently,

Barik et al. (2018) made an attempt to study the effects of

elasticity, suction/injection, porous media in the flow of

visco-elastic fluids of the Walters’ B type. They entered the

flow domain without the boundary layer approximation.

Furthermore, they discussed the viscous and non-conduct-

ing flow as a special case.

Bau (1982) investigated the stability analysis of a plane

interface between two superposed fluid layers saturated in

porous media, at which, he derived the neutral stability

criteria in the case of Darcian as well as non-Darcian fluids.

Additionally, in both cases, the instability happens such

that the velocities should exceed some critical value.

Zakaria et al. (2008) investigated the stability profile of

streaming magnetic fluids saturated in porous media. Their

model involved three incompressible magnetic fluid layers.

They indicated that the thickness of the middle layer has a

destabilizing role. Furthermore, dual roles were obtained in

view of the initial streaming and the porosity in the sta-

bility configuration. Al-Karashi and Gamiel (2017) inves-

tigated the interface stability of three fluid layers, which

were fully saturated in porous media. Their linear stability

approach leads to two coupled Mathieu equations. They

found that the porosity had a dual influence on the stability

picture. Recently, Moatimid et al. (2018) investigated the

influence of an axial periodic field on streaming flows

throughout three coaxial infinite cylinders. The three fluids

are saturated in fully saturated porous media. Furthermore,

the numerical calculations indicate that the coefficients of

mass and heat transfers as well as the streaming have a

destabilizing role; in contrast, the porosity had a stabilizing

influence. Recently, Moatimid et al. (2019) introduced a

few representatives of porous media in the problem of a

streaming cylindrical sheet. Their analysis resulted in

damped differential equations with complex coefficients.

These equations were combined to obtain a single disper-

sion equation. They concluded that Darcy’s coefficients, as

well as the dielectric constants, played a stabilizing influ-

ence in the stability configuration.

As well-known from all previous perturbation methods

ranging from the traditional, straightforward methods until

the multiple-scales method, all of them depend mainly on a

small parameter. This parameter must have existed in the
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given differential equation. Consequently, the problem

cannot be solved without the existence of such a parameter.

He (1999) is considered as the first author, who overcomes

this difficulty by imposing an artificial embedded param-

eter d 2 0; 1½ � in the given differential equation. The

solution may be achieved by classifying the problem into

two parts. One of them is termed as the liner, which has an

exact solution; simultaneously, the other part defines the

nonlinear one. Therefore, the artificial parameter lies

between the two previous parts. In this approach, He

(1999) introduced a promising and powerful analytical

method, which is abbreviated as (HPM). This method is

applied to obtain an analytical approximate solution for

numerous nonlinear differential equations that arise in

sciences and mathematical physics. A comparison with the

HPM and the other perturbation methods reveals that HPM

resulted in more accurate solutions. El-Dib (2017a) intro-

duced a novelty approach on the HPM to treat the exciting

nonlinear differential equations. In other words, modula-

tion on the HPM is done to analyze a nonlinear differential

equation with periodic coefficients. His modification may

be applied for linear as well as nonlinear differential

equations. His approach reveals the transition curves.

Therefore, stable/unstable regions are identified. Further-

more, El-Dib (2017b) suggested a modified version of the

HPM by exiting the method of multiple scales. He applied

his technique to some nonlinear oscillators. Additionally,

the stability picture for the parametric resonance is

graphed. Moatimid et al. (2018) studied the problem of an

infinite cylindrical sheet in the presence of an exciting axial

electric field. They obtained a couple of Mathieu equations.

To relax the mathematical manipulation, they utilized the

matrix concept. In their work, a coupling of the HPM with

the multiple time scales method is done. Therefore, their

approach does not need a small parameter in the given

equation. Moreover, the stability analysis reveals both the

resonance and non-resonance cases. Recently, El-Dib and

Moatimid (2018) adapted the HPM to obtain exact solu-

tions of linear as well as nonlinear differential equations.

The basic idea in their approach is to choose a suitable trial

function, usually, in the form of a power series. The can-

cellation of the first order approximate solution guarantees

that all higher orders are, also, canceled. Accordingly, the

remaining zero-order solution will be supported to become

an accurate one. Recently, Fedorov et al. (2019) demon-

strated that the HPM may be utilized to obtain an analytical

approximate to their model. They showed that the obtained

solutions are in good agreement with the existing numeri-

cal methods. In addition, their analysis reveals different

HPM operators. More recently, Moatimid et al. (2020)

made a coupling of the Laplace transforms and HPM to

obtain an approximate analytical solution of the interface

profile between two hydro-magnetic Darcian flow, and

separated by a cylindrical interface.

The viscous potential theory plays an essential role in

simplifying the mathematical analysis when studying the

stability problems; for instance, see Joseph (2003, 2006).

Joseph (2003) showed how the viscosity of a viscous fluid

in the potential flow away from the boundary layers enters

the Prandtl’s boundary layer equations. Joseph (2006)

introduced an attempt to identify the main events in the

history of thought about the rotational flow of viscous

fluids. Therefore, throughout the viscous potential flow, the

viscosity in the Navier–Stokes, as well as the vorticity, are

vanishing. Simultaneously, the viscous stresses are not

zero. In the light of this theory, the tangential stresses are

not included, whereas, the viscous effects are contributed

only in the normal stress balance. Funada and Joseph

(2001) analyzed the viscous potential flow of Kelvin–

Helmholtz instability. Their analysis resulted in an explicit

dispersion relation, at which the effects of surface tension

and viscosity on the normal stress are not neglected. Fur-

thermore, the stability criterion for viscous potential flow is

expressed by a critical value of the relative velocity.

Funada and Joseph (2003) analyzed the linear theory of

capillary instability of threads of Maxwell fluids. Their

analysis extended the analysis of viscous potential flow, as

given by Joseph (2003, 2006), to visco-elastic fluids of

Maxwell type. The viscous potential flow has been widely

utilized in recent years. It attracts many authors in studying

the linear as well as nonlinear stability problems of phys-

ical interest. El-Sayed et al. (2014a) investigated the non-

linear EHD Kelvin–Helmholtz instability of two

superposed visco-elastic fluids of the Walters’ B type. To

relax the mathematical manipulation, they used the viscous

potential flow theory. In the light of the viscous potential

theory, recently, Moatimid and Mostapha (2019) analyzed

the nonlinear instability of the surface waves propagating

through two jets of viscoelastic fluids obey the Oldroyd B

model. The flow is getting through porous media under the

action of a uniform axial electric field. General dispersion

relation and neutral curves are addressed and plotted for the

different parameters. Awasthi et al. (2012) studied the

viscous corrections of the potential flow analysis of Kel-

vin–Helmholtz instability of two viscous fluids in the

presence of a tangential magnetic field. They demonstrated

that the irrotational shearing stresses have a stabilizing

effect in the presence of heat and mass transfer throughout

the interface. Recently, Moatimid et al. (2019) studied the

influence of a uniform axial electric field on a cylindrical

streaming sheet. To avoid the mathematical manipulation;

their analysis was based on the viscous potential theory.

As aforementioned, there is growing importance of non-

Newtonian fluids in chemical engineering, modern tech-

nology and industry, therefore, the investigation of such
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fluids is desired. There are many models follow the visco-

elastic fluids. Among these fluids, the Walters’ B model

exists. Therefore, this paper attempts to investigate a

nonlinear stability approach to Walters’ B fluid. To sim-

plify the analysis, the mathematical treatment depends

mainly on the viscous potential theory. Because of the

instability in porous media meets an interest in geophysics

and bio-mechanics, the current paper is considered

throughout porous media. Circular vertical cylinders are

filled with a Walters’ B fluid, are considered. An axial

uniform axial electric field acts on the inner as well as outer

the two fluids. The stability criteria are obtained, analyti-

cally and numerically confirmed. Furthermore, the profile

of the solution of the surface deflection is approximately

calculated. To clarify the presentation of the problem; the

rest of the paper is organized as follows: Sect. 2 is devoted

to introducing the formulation of the problem, it includes

the governing equations of motion and the corresponding

appropriate nonlinear boundary conditions. Additionally,

the method of solution, by means of the normal mode

analysis, and the governing nonlinear characteristic equa-

tion is given in this section. The linear dispersion relation,

and stability analysis are introduced throughout Sect. 3.

Furthermore, the linear stability analysis of the linear

approach is achieved throughout this section. The nonlinear

stability that results in a Ginzburg–Landau equation toge-

ther with the theoretical and numerical calculations are

presented in Sect. 4. In the light of the HPM, with the aid

of the expanded frequency concept, a bounded approximate

solution of the surface elevation is derived in Sect. 5.

Moreover, a numerical estimation of this profile is added to

this section. The obtained results are summarized as con-

cluding remarks in Sect. 6. This section is included the

main outcomes of the effects of the various including

physical parameters in the analysis of linear as well as the

nonlinear stability of the problem at hand.

2 Formulation of the problem

A system consists of two homogeneous, incompressible,

dielectric, and streaming visco-elastic Walters’ B fluids,

along the axis of the jet, is considered. Throughout the

following formulation, the subscripts 1 and 2 symbolize the

parameters associated with the inner, and outer fluids,

respectively. The dynamic viscosity, and dynamic visco-

elasticity are referred to as: l; and l0, respectively. The
uniform density, dielectric constants, are referred to as: q;
and e, respectively. The flows are saturated throughout

porous media, at which Darcy’s coefficient is indicated by

the symbol m. For simplicity, the porosity may be consid-

ered as a unity. Both of the two cylindrical fluids are

streaming with a uniform velocities, which are referred by

U. The system is scrutinized under the influence of a uni-

form axial electric field, tangential to the interface between

the two media, whose strength is denoted by E0. The

gravitational forces ðgÞ that act along the negative z-di-

rection are taken into consideration. For more appropriate,

the cylindrical polar coordinate system ðr; h; zÞ is utilized.
In the equilibrium state, the z-axis is taken along the axis of

symmetry of the system. A sketch of the physical model is

given in Fig. 1.

Typically, as given throughout the pioneering work of

Chandrasekhar (1961), the liquid jet is stable for all the

asymmetric mode m 6¼ 0, but it becomes unstable at the

axisymmetric mode m ¼ 0. Consequently, the most inter-

esting mode of disturbance is the axisymmetric mode.

Therefore, from now on, the case of m ¼ 0 is only con-

sidered. The disturbed cylinder, especially, considering the

Fourier component with the wave number k and the

cylindrical symmetry, the inner and outer surfaces, is given

by

r ¼ Rþ gðz; tÞ; ð1Þ

where gðz; tÞ is a general unknown function which repre-

sents the surface deflection behavior.

Therefore, after a small and finite departure from the

equilibrium state, the interface profile may be expressed as:

Sðr; z; tÞ ¼ r � R� gðz; tÞ: ð2Þ

Therefore, the unit outward normal vector of the inter-

faces may be written as:

n ¼ rS= rSj j ¼ ðer � gz ezÞð1þ g2z Þ
�1=2; ð3Þ

where er and ez are unit vectors along the r- and z-direc-

tions, respectively.

Fig. 1 Sketch of the model in the undisturbed state
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The governing equations of motion of an incompressible

fluid; for instance, see El-Sayed et al. (2014a), may be

written as:

qj
ovj

ot
þ ðvj:rÞvj

� �
¼ �rPj � mj vj � qjgez

þ lj � l0j
o

ot

� �
r2vj; j ¼ 1; 2;

ð4Þ

where vj ¼ vjðr; z; tÞ is the fluid velocity, and Pj represents

the pressure.

The zero-order solution of Eq. (4), yields:

P0j ¼ �qjgz� mj Uj þ kj; ð5Þ

where kj is an arbitrary integration constant.

As shown in the previous formulation of the problem,

the fluids are assuming as perfect flows. Therefore, one

may assume that the fluids are being irrotational flows.

Simultaneously, the perturbed velocity may be written as:

vj ¼ Ujez þr/j ¼
o/j

or
er þ Uj þ

o/j

oz

� �
ez: ð6Þ

Because of the incompressibility condition, the potential

function /jðr; z; tÞ must satisfy the following Laplace

equation:

r2/j ¼ 0 : ð7Þ

Typically, as shown by many researchers, the solutions

of governing distribution functions will be based on the

normal modes analysis. Therefore, following Chan-

drasekhar (Chandrasekhar 1961), one may write and

/jðr; z; tÞ ¼ /̂jðr; tÞeikz þ c:c: ; ð8Þ

where the notation c:c: represents the complex conjugate of

the preceding term.

The finite solutions of the Laplace’s equation are then

become

/̂1ðr; tÞ ¼ A1ðtÞI0ðkrÞ; ð9IÞ

and

/̂2ðr; tÞ ¼ A2ðtÞK0ðkrÞ; ð9IIÞ

where A1ðtÞ and A2ðtÞ are arbitrary time-dependent func-

tions to be determined in light of the favorable nonlinear

boundary conditions. Moreover I0ðkrÞ and K0ðkrÞ represent
the modified Bessel functions of the first and second kinds,

respectively.

The integration of the linear equation of motion (4)

resulted in the Bernoulli’s formula, which gives the dis-

tribution function of the pressure as:

Pj ¼ �qj
o/j

ot
þ i k Uj/j

� �
� mj /j: ð10Þ

On the other hand, in accordance with the Maxwell

equations; for instance, see Melcher (1981), for the quasi-

static approximation, on neglecting the influence of the

magnetic field, they may be written as:

r � ejEj ¼ 0; ð11Þ

and

r� Ej ¼ 0: ð12Þ

As given in the formulation of the problem, no surface

currents are assumed to be present at the surface of sepa-

ration. Therefore, the electric field may be expressed in

terms of the scalar electro-static potentials wjðr; z; tÞ. i.e.
Ej ¼ E0 � rwjðr; z; tÞ, such that the total perturbed elec-

tric fields can be expressed as:

Ej ¼ �
owj

or
er þ E0 �

owj

oz

� �
ez: ð13Þ

In other words, the electrically insulating fluid justifies

the stationary form of the Maxwell equations, which are

reduced to the Laplace’s equation for the electric potential

wjðr; z; tÞ in each fluid layer. Consequently, the combina-

tion of Eqs. (11) and (13) yields

r2wj ¼ 0: ð14Þ

As expressed previously in Eq. (8), the electric poten-

tials may be written as:

ŵ1ðr; tÞ ¼ B1ðtÞI0ðkrÞ; ð15IÞ

and

ŵ2ðr; tÞ ¼ B2ðtÞK0ðkrÞ; ð15IIÞ

where B1ðtÞ and B2ðtÞ are arbitrary time-dependent func-

tions to be evaluated by using the appropriate nonlinear

boundary conditions.

2.1 Nonlinear boundary conditions

The general solutions of the velocity and electric potential

distributions, as given in Eqs. (9I, and 9II) and (15I, and

15II), must satisfy the following convenient nonlinear

boundary conditions:

At the free interface r ¼ Rþ gðz; tÞ:

1. The conservation of mass across the interface, which is

so-called the kinematic condition, yields

DS

Dt
¼ 0 at r ¼ Rþ gðz; tÞ ; ð16Þ

where D=Dt represents the material derivative

operator.
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2. The jump of the tangential components of the electric

is continuous at the interface, results

n� Ej

�� �� ¼ 0: j ¼ 1; 2; ð17Þ

where �k k ¼ �2 � �1 denotes the jump of the external

and internal fluid layers, respectively.

3. The jump of the normal components of the electric

displacement is continuous at the interface, requires

n : ej Ej

�� �� ¼ 0: j ¼ 1; 2; ð18Þ

At this stage, on substituting from Eqs. (9I, and 9II) and

(15I, and 15II) into Eqs. (16)–(18), one finds the special

solutions which are consistent with the aforementioned

nonlinear boundary conditions. They can be written as

follows:

/1 ¼
gt þ U1 gz
� �

I0ðkrÞ
k I1ðkRÞ � iI0ðkRÞgz
� � ; ð19Þ

/2 ¼ �
gt þ U2 gz
� �

K0ðkrÞ
k K1ðkRÞ þ iK0ðkRÞgz
� � ; ð20Þ

w1 ¼
E0 ðe1 � e2Þ I0ðkrÞgz �i K0ðkRÞ þ K1ðkRÞgz

� �
K

; ð21Þ

and

w2 ¼
E0 ðe1 � e2ÞK0ðkrÞgz i I0ðkRÞ þ I1ðkRÞgz

� �
K

; ð22Þ

where

K ¼ k e2 I0ðkRÞ � iI1ðkRÞgz
� �

K1ðkRÞ þ iK0ðkRÞgz
� ��

þe1 I1ðkRÞ � iI0ðkRÞgz
� �

K0ðkRÞ þ iK1ðkRÞgz
� ��

:

The previous distributions of the potential functions /j

and wj include the nonlinear terms in the elevation

parameter g. This nonlinearity is occurring in the light of

the nonlinear boundary conditions that are illustrated

above. Dropping the nonlinear terms, a linear profile comes

out and is equivalent to those obtained in literature by

Moatimid and Mostapha (2019) and Moatimid (1995). At

this end, the boundary-value problem has been completed

solved.

To analyze the stability of the system, the remaining

boundary condition arises from the normal component of

the stress tensor. In accordance with the presence of the

amount of surface tension, this normal component must be

discontinuous. The total stress tensor can be formulated as

follows; for instance, see El-Sayed et al. (2014a):

rij ¼ �Pdij þ eEiEj �
1

2
eE2dij þ 2ðl

� l0
o

ot
Þ n � ðn � rÞr/½ �ð Þ; ð23Þ

where dij is the Kronecker delta.

n � Fk k ¼ T r � n; ð24Þ

where F is the total force acting on the interface, in view of

the two-dimensions disturbances, which is defined as:

F ¼ rrr rrz
rzr rzz

� �
nr
nz

� �
; ð25Þ

where nr, nz are the components of the unit outward normal

vector n.

On substituting from the foregoing outcomes in

Eq. (25), after lengthy, but straightforward calculation, one

gets the following nonlinear characteristic equation:

gtt þ a1gzt þ a2gzz þ ðb1 þ ic1Þgt þ ðb2 þ ic2Þgz ¼ NðgÞ;
ð26Þ

where the nonlinear term NðgÞ represents all the quadratic

and cubic terms in the variable g, ai; bi and ci are constants.

They are all listed in the ‘‘Appendix’’.

From the zero- order of the normal stress tensor, one

gets

k2 � k1 ¼ ðq2 � q1Þgzþ m2 U2 � m1 U1ð Þ � T

R
þ 1

2
ðe2

� e1ÞE2
0:

ð27Þ

The stability analysis of the current work, throughout

the linear as well as the nonlinear approach, depends

mainly on studying the nonlinear characteristic equation as

given in (26).

3 Linear stability analysis

Before dealing with the general case, for more conve-

nience, the stability analysis throughout a linear point of

view will be analyzed. In the light of this approach, the

linearized analysis of the nonlinear equations that are given

by Eq. (26) arises when the nonlinear terms of the surface

elevation are ignored.

Therefore, the linearized dispersion equations can be

written as follows:

gtt þ a1gzt þ a2gzz þ ðb1 þ ic1Þgt þ ðb2 þ ic2Þgz ¼ 0:

ð28Þ

For more convenience, assume a uniform monochro-

matic wave train solution of Eq. (28) in the following form:

gðz; tÞ ¼ c eiðk z�x tÞ þ c:c: ð29Þ

where c is the amplitude of the wave train solution.

For a nontrivial solution of c in Eq. (29), the dispersion

relation is then become:

x2 þ ða1 þ ib1Þxþ ða2 þ ib2Þ ¼ 0; ð30Þ

2018 Microsystem Technologies (2020) 26:2013–2027
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where the coefficients a1; a2;b1 and b2 are known from the

context.

The stability criteria of the dispersion relation (30) are

judged by the Routh–Hrutwitz theory (Zahreddine and El-

Shehawey 1988). Therefore, the stability criteria may be

written as:

a1 [ 0; ð31Þ

and

a2a
2
1 þ a1b1b2 � b22 [ 0: ð32Þ

The calculation showed that a1 is independent of the

electric field intensity E2
0. Simultaneously, the second

inequality may be expressed as a form of E2
0 in the

following:

CE2
0 þ K[ 0; ð33Þ

where C and K are known from the context.

Before dealing with the numerical calculations, for more

convenience, the stability criteria that are given by the

inequalities (31) and (32) must be written in a suitable non-

dimensional form. This can be done in a number of ways

depending primarily on the choice of characteristics of

time, length, and mass. For this purpose, consider that the

parameters, g=x2 and T=x2 to symbolize the characteris-

tics of time, length and mass, respectively. The other non-

dimensional quantities may be given as:

q1 ¼ q q2; e1 ¼ e e2; m1 ¼ m m2; l1 ¼ l l2; l
0
1 ¼ l0 l02;

q2 ¼ q�Tx4= g3; m2 ¼ m�Tx5= g3; k ¼ k�g=x2;R ¼ R�x2=g;

V2 ¼ V�g=x; E2
0 ¼ E�2

0 Tx2=g; l2 ¼ l�T=x g; l02 ¼ l0�T=g

For simplicity, the ‘‘*’’ mark may be ignored in the

following analysis.

As stated before, the implication of the inequality (31)

must be considered. Therefore, all the following figures are

plotted in a certain domain, where this condition is auto-

matically satisfied. Additionally, the calculations indicated

that the parameter C [ 0 is always of positive significance.

This shows the stabilizing influence of the tangential

electric field, which is an early result. It is verified by many

authors; for instance, Melcher and Taylor (1969), and the

references therein.

Our interest is focused on the relation (33). For this

purpose, the electric field intensity log E2
0 will be plotted

versus the wavenumber of the surface waves (k). In the

following figures, the stable region is referred to by the

letter S. Meanwhile, the letter U stands for the unsta-

ble region. It is convenient to indicate the influence of the

various physical parameters in the stability configuration.

Keeping in mind that the considered non-dimensional

procedure deals with the ratios of the various physical

parameters. For instance; q refers to the ratio between the

inner and outer densities, respectively. Therefore, the fol-

lowing figures are plotted for a system having the partic-

ulars:

q ¼ 5; U ¼ �0:1; R ¼ 0:1; e ¼ 1:5; m ¼ 0:8; l ¼ 0:3

and l0 ¼ 0:1. The influence of the ratio of streaming U on

the stability picture is displayed in Fig. 2. All the physical

parameters are held fixed except U. As seen, this fig-

ure shows that the parameter U plays a destabilizing

influence, especially, for large values of the wave number.

This result is in agreement with the result that was already

obtained by Moatimid (2003), and others. The influence of

the ratio of the Darcy coefficient m is pictured in Fig. 3. The
system chosen here was the same as in Fig. 2, but a single

value of ðU ¼ � 0:1Þ, and a variation of the Darcy coef-

ficient m. As shown from this figure, the increase in the

parameter m causes an increase in the instability region. It

follows that m has a destabilizing effect, especially, at small

values of wavenumber. This is a physical significance,

because of the presence of this term in the equation of

motion plays a drag force, or resistance to wave motion.

This result is in agreement with the result that was already

obtained by Moatimid et al. (2019), and others. Figure 4 is

depicted to indicate the influences of the ratio of dynamic

viscosity l. As indicated, all the physical parameters hold

fixed, except this parameter. It was observed that l has a

destabilizing effect. These effects are enhanced at large

values of the wavenumber. This result is in correspondence

to the previous results that were achieved by El-Sayed et al.

(2014a). Finally, Fig. 5 is depicted to indicate the influ-

ences of the ratio of dynamic visco-elasticity l0. It was
observed that l0 has a destabilizing effect. This influence is

enlarged at large values of the wavenumber. This result is

in agreement with the result that was already obtained by

El-Sayed et al. (2014b).

Fig. 2 Plots the linear stability diagram as given in inequalities (33)
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4 Nonlinear Ginzburg–Landau equation

As given through the linear stability analysis, the interface

surface deflection g ¼ gðz; tÞ had a special form which is

given in Eq. (29). In this case, the nonlinear characteristic

Eq. (2) may be written in an algebraic equation as follows:

Dðk;xÞg ¼ cðk;xÞg2 þ bðk;xÞg3; ð34Þ

where D x; kð Þ, c x; kð Þ and b x; kð Þ are the linear and

nonlinear coefficients, respectively.

The following the analysis will be based on the multiple

time scale technique (Nayfeh 1976). This technique

depends mainly on a small parameter d, say. It measures

the ratio of a typical wave length, or periodic time, relative

to a typical length, or the time scale of modulation.

Therefore, one may assume that d is a small parameter that

defines the slow modulation. In the light of this approach,

the independent variables z and t, which are measured on

the scale of the typical wavelength and period time, can be

extended to introduce alternative, independent variables,

Zn ¼ dnz and Tn ¼ dnt n ¼ 0; 1; 2; . . .; ð35Þ

where

L
o

oz
;
o

ot

� �
g ¼ 0: ð36Þ

Considering Z0; T0 as the appropriate variety of fast

variations and Z1; T1; Z2; T2 are referring to the slow

ones. The differential operators can now be expressed as

the derivative expansions:

o

oz
¼ k

o

oh
þ d

o

oZ1
þ d2

o

oZ2
þ � � � and o

ot

¼ �x
o

oh
þ d

o

oT1
þ d2

o

oT2
þ � � � ; ð37Þ

where h ¼ kZ0 � xT0 refers to the lowest order.

It is more favorable to expand the operator ~L in the

following form:

~L ik;�ixþ id
o

oZ1
;
o

oT1

� �
þ id2

o

oZ2
;
o

oT2

� �
þ � � �

� �
:

ð38Þ

The expression of the operator ~L can be expanded in

powers of d. Using Taylor’s theorem about ðk;�xÞ, one
retains only the terms up to Oðd2Þ. On that account,

~L ! L0 þ d L1 þ d2L2 þ � � � ; ð39Þ

where

L0 � ðk;�xÞ o

oh
; ð40IÞ

L1 � i
oL0

ox

� �
o

oT1
� i

oL0

ok

� �
o

oZ1
; ð40IIÞ

and

L2 � i
oL0

ox

� �
o

oT2
� i

oL0

ok

� �
o

oZ2
� 1

2

o2L0

ox2

� �
o2

oT2
1

� 1

2

o2L0

ok2

� �
o2

oZ2
1

þ 1

2

o2L0

ok ox

� �
o2

oZ1oT1
: ð40IIIÞ

Expressing the expansion of the operator (39) into

Eq. (29), one finds:

L0 þ d L1 þ d2L2
� �

g ¼ 0: ð41Þ

The aforementioned analysis follows a perturbation

procedure to obtain a uniform valid solution. Indeed, this

treatment requires the cancellation of secular terms.

Fig. 3 Plots the linear stability diagram as given in inequalities (33)

Fig. 4 Plots the linear stability diagram as given in inequalities (33)

Fig. 5 Plots the linear stability diagram as given in inequalities (33)
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The stability procedure of Eq. (34) was discussed and

analyzed in more details throughout our previous works as

given in Moatimid and El-Dib (2004), and Moatimid

(2006). Therefore, on using similar arguments as given in

these references, one obtains the following Ginzburg–

Landau equation:

i
oc
os

þ ðPr þ i PiÞ
o2c

of2
¼ ðQr þ i QiÞ c2c; ð42Þ

where c is the complex conjugate of c,

Pr þ i Pi ¼ � 1

2

oD

ox

� ��1

V2
g

o2D

ox2
þ 2Vg

o2D

ox ok
þ o2D

ok2

� �
;

Qr þ i Qi ¼
oD

ox

� ��1
2c
X

þ 3b

� �
;

f ¼ dðz� VgtÞ; s ¼ d2t;

ð43Þ

and the group velocity may be written as Vg ¼ � oD
o k

oD
ox

� ��1
:

Equation (42) addresses the demeanor of modulated

waves. Instead of the complex coefficients, the real coef-

ficient of such equation, yields the well-known Schrödinger

equation. The latter equation has an exact solution.

Whereas, the complex coefficients for making the analysis

become more difficult. For simplicity, in the following, an

attempt is made to achieve the stability criterion for such

an equation. For this purpose, one may express the solution

for c f; sð Þ in the following form (Liu and Chang 2010):

cðf; sÞ ¼ eiðj f�XsÞ þ c:c: ð44Þ

Inserting the proposed solution as given in Eq. (44) into

Eq. (42), one gets

X ¼ j2Pr þ Qr

� �
þ i j2Pi þ Qi

� �
: ð45Þ

In the light of this solution, the stability criterion that the

imaginary part of the frequency must be greater than zero;

therefore, the stability condition would be given by the

following inequality:

j2Pi þ Qi\0: ð46Þ

After lengthy, but straightforward calculations, the

transition curve, may be arranged in a fourth-degree

polynomial of E2
0 as:

G4ðE2
0Þ

4 þ G3ðE2
0Þ

3 þ G2ðE2
0Þ

2 þ G1 E
2
0 þ G0 ¼ 0: ð47Þ

In order to illustrate the stability criteria throughout the

nonlinear stability approach, the transition curves are given

in Eq. (47) will be analyzed. Considering a similar proce-

dure as presented in the previous Section to find the non-

dimensional quantities of all physical parameters. There-

fore, in what follows, numerical calculations for the sta-

bility criterion as given in the inequality (46) will be done.

In the light of the nonlinear approach, the stability criteria

are plotted throughout Figs. 6, 7, 8 and 9. The transition

curves are given in Eq. (46). For simplicity, the previous

non-dimensional will be taken into account. It should be

noted that the numerical calculations showed that the

coefficient G4w has always of a negative sign. This shows

that the electric field intensity has a stabilizing influence,

which is an already result proved by many research studies;

for instance, see Moatimid (1995), and reference herein.

Figure 6 is plotted for a system having the particulars:

q ¼ 40; U ¼ 20; R ¼ 1:5; e ¼ 5; m ¼ 0:6; l ¼ 7; l0 ¼ 3

and j ¼ 0:9. In accordance with this choice of a particular

system, the numerical calculation showed that there are

two, integrated, positive real roots, whereas, the other two

roots are of complex conjugate nature. Actually, this is an

algebraic sense. As seen through the linear stability theory,

logE2
0 will be plotted versus the wavenumber k. Therefore,

Fig. 6 is depicted to indicate the transition curves. As seen

from this figure, the nonlinear stability is controlled by,

only, two integrated curves. It is verified, in the light of the

inequality (46), that the region bounded by these two

curves is a stable one. In contrast, the region outside these

curves is unstable region. The following figures confirm the

previous data. Figure 7 displays the influence of the ratio of

the streaming U, for a system having the same particulars

as given in Fig. 6. As seen from this figure, this parameter

has a destabilizing influence. This result is corresponding

to the result that was already verified by El-Sayed et al.

(2014a). Figure 8 is depicted to indicate the influences of

the ratio of the Darcy coefficient m. As indicated, all the

physical parameters hold fixed, except the parameter m. It
was observed that m has a stabilizing effect. This result is in

agreement with the result that was already obtained by El-

Dib (2003). Finally, Fig. 9 is depicted to indicate the

influences of the ratio of dynamic viscosity l on the sta-

bility picture. It is observed that l has a stabilizing effect.

This result is in agreement with the result that was already

obtained by El-Sayed et al. (2014a, b).

Fig. 6 Plots the nonlinear stability diagram as given in (47)
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5 The nonlinear expanded frequency

The objective of this Section is to accomplish an approx-

imate solution for the surface deflection. As aforemen-

tioned, the nonlinear approach resulted in the nonlinear

characteristic that is given in Eq. (26). It represents a

nonlinear second-order differential equation with complex

coefficients of the interface displacement gðz; tÞ . Actually,
the analysis of this equation, in its present form, is rather

difficult. Physically, the nature of the amplitude elevation

gðz; tÞ must be a real function. To facilitate the following

calculations, one may consider the time dependent only. In

other words, let g ¼ gð0; tÞ ¼ cðtÞ. Therefore, the previous
characteristic Eq. (26) may be separated into their real and

imaginary parts as follows:

c00 þ l1 c
0 þ l2 cþ l3 c

2 þ l4 c c
0 þ l5 c c

00 þ l6 c
3 þ l7 c

2 c0

þ l8 c
2 c00

¼ 0;

ð48Þ

and

m1 c
0 þ m2 cþ m3 c

2 þ m4 c c
0 þ m5 c

3 þ m6 c
2 c0 ¼ 0;

ð49Þ

where li; mi ði ¼ 1; 2; . . .Þ are well-known from the con-

text. To avoid the lengthy of the paper, they will be omitted

from the text.

To be more comprehensible, the combination of

Eqs. (48) and (49) may be achieved by cancelling the term

c0 between them, the resulting equation can be written as

follows:

c00 þ -2 cþ s1 c
2 þ s2 c c

00 þ s3 c
3 þ s4 c

2 c00 ¼ 0; ð50Þ

where -2; si; ði ¼ 1; 2; . . .Þ is well-known from the con-

text. This coefficient plays the influence of the natural

frequency of the problem. Typically, it must be positive.

To avoid the lengthy of the paper, they will be omitted.

Now, the nonlinear amplitude Eq. (50) has real coeffi-

cients. It represents a generalized cubic nonlinear differ-

ential equation. The solution for this equation needed

initial conditions. For this purpose, the following initial

conditions may be inserted:

c 0ð Þ ¼ 0; c0ð0Þ ¼ 1: ð51Þ

For this purpose, the homotopy formula of the consid-

ered parametric equation becomes:

c00 þ -2 cþ d s1 c
2 þ s2 c c

00 þ s3 c
3 þ s4 c

2 c00
� �

¼ 0; d
2 0; 1½ �:

ð52Þ

The following analysis will be based on the expanded of

the artificial frequency analysis; see for instance El-Dib

and Moatimid (2019). In accordance with this approach,

consider an artificial frequency r2, so that it may be

expanded as follows:

r2 ¼ -2 þ
X1
j¼1

d j- j: ð53Þ

Combining Eqs. (52) and (53), the homotopy equation

of this combination, may be rewritten as:

Fig. 7 Depicts the variation of the ratio of the velocity U of Eq. (47)

Fig. 8 Depicts the variation of the ratio of the Darcy coefficient m of

Eq. (47)

Fig. 9 Depicts the variation of the ratio of dynamic viscosity l of

Eq. (47)
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c00 þ r2 c
þ d �ð-1 þ d-2Þcþ s1 c

2 þ s2 c c
00 þ s3 c

3 þ s4 c
2 c00

� �
¼ 0:

ð54Þ

Taking the Laplace transform to both sides of Eq. (54),

considering the initial conditions that are given in Eq. (51),

the result becomes:

LT cðt; dÞf g ¼ S

S2 þ r2
� 1

S2 þ r2
LT

d �ð-1 þ d-2Þcþ s1 c
2 þ s2 c c

00 þ s3 c
3 þ s4 c

2 c00
� �� �

:

ð55Þ

Employing the inverse transform of both sides of

Eq. (55), one finds:

cðt; dÞ ¼ L�1
T

S

S2 þ r2

� �
� L�1

T

1

S2 þ r2
LT d �ð-1 þ d-2Þcþ s1 c

2 þ s2 c c
00 þ s3 c

3 þ s4 c
2 c00

� �� �	 

:

ð56Þ

In accordance with the regular HPM, the time-depen-

dent function cðt; dÞ may be expanded as:

cðt; dÞ ¼
X1
n¼0

dncnðtÞ ¼ c0ðtÞ þ dcðtÞ þ d2c2ðtÞ þ � � � ð57Þ

Utilizing the expansion of the dependent parameter

cðt; dÞ as given in Eq. (57), and then equating the coeffi-

cients of indicial powers d on both sides, one gets

d0: c0ðtÞ ¼
1

r
sinðr tÞ ; ð58Þ

d: c1ðtÞ ¼ �L�1
T

1

S2 þ r2
LT �-1c0 þ s1 c

2
0 þ s2 c0 c

00
0 þ s3 c

3
0 þ s4 c

2
0 c

00
0

� �	 

;

ð59Þ

and

d2:c2ðtÞ ¼ �L�1
T

1

s2 þ r2
LT �-2c0 � -1c1 þ 2s1 c0c1 þ s2 ðc0 c001 þ c1 c

00
0Þ

�	

þ3s3 c
2
0c1 þ s4 ðc20 c001 þ 2c0c1 c

00
0Þ
�


:

ð60Þ

On substituting from Eq. (58) into Eq. (59), one finds:

c1ðtÞ ¼ �L�1
T

1

S2 þ r2
LT

1

2r2
s1 � r2s2
� �

þ 1

4r3
ð3s3 � 4-1r

2 � 3s4r
2Þ sinðr tÞþ

1

4r3
ð�s3 þ s4r

2Þ sinð3r tÞ þ 1

2r2
ðr2s2 � s1Þ cosð2r tÞ

8>><
>>:

9>>=
>>;

2
664

3
775:

ð61Þ

The uniformly valid expansion requires the cancellation

of the secular terms. Therefore, the coefficient of the

function sinðr tÞ must be excluded. Therefore, the param-

eter -1 is determined as:

-1 ¼
3

4r2
s3 � s4r

2
� �

: ð62Þ

It follows that the periodic solution of c1ðtÞ becoming:

c1ðtÞ ¼
s2r2 � s1

2r2
þ 2 s1 � s2r2ð Þ

3r4
cosðr tÞ

þ 3 s3 � s4r2ð Þ
32r5

sinðr tÞ þ �s1 þ s2r2

6r4
cosð2r tÞ

þ �s3 þ s4r2

32r5
sinð3r tÞ:

ð63Þ

Again, substituting from Eqs. (58), and (63) into

Eq. (60), one finds that the cancellation of the secular

terms, requires

-2 ¼
63s23 � r2ð150s3s4 þ 320s21Þ þ r4ð352s1s2 þ 87s24Þ � 32s22r

6

384r6
:

ð64Þ

On using similar arguments as given before, after

lengthy, but straightforward calculations, one finds the

solution c2ðtÞ is:

c2ðtÞ ¼
�1

46080r9

~s1 þ ~s2 sinðr tÞ þ ~s3 cosðr tÞ þ ~s4 sinð2r tÞ þ ~s5 cosð2r tÞ

þ~s6 sinð3r tÞ þ ~s7 cosð3r tÞ þ ~s8 cosð4r tÞ þ ~s9 sinð5r tÞ

 !
:

ð65Þ

As before, the approximate bounded solution of the

equation of motion that is given in Eq. (50) may be written

as follows:

cðtÞ ¼ lim
d!1

c0ðtÞ þ dc1ðtÞ þ d2c2ðtÞ
� �

; ð66Þ

where c0ðtÞ ; c1ðtÞ and c2ðtÞ are the time-dependent func-

tions as given by Eqs. (58), (63) and (65), respectively.

Actually, the approximate solution in Eq. (68) requires

that the arguments of the trigonometric functions must be

of real value. For this purpose, combining Eqs. (55), (64)

and (66), one finds the following characteristic equation:

r8 þ a1 r
6 þ a2 r

4 þ a3 r
2 � a4 ¼ 0; ð67Þ

where a1 ¼ 1
12

�12-2 þ s22 þ 9s4
� �

; a2 ¼ �1
384

352s1s2þð
288s3 þ 87s24Þ; a3 ¼ 5

6
s21 þ 25

64
s3s4 and a4 ¼ 21s2

3

128
:

Substituting about -1, and -2 into Eq. (53), one finds

that it represents the equation of fourth degree in r2. The
necessary stability requirements need that r to be real and

positive. Equation (67) may be rewritten as follows:
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r2 ¼ a4
a3

� 1

a3
d r8 þ a1 r

6 þ a2 r
4

� �
: ð68Þ

To obtain an approximate value of the artificial fre-

quency r, following the HPM, one may write the homo-

topy equation as follows:

r2 ¼ a4
a3

� d
a3

r8 þ a1 r
6 þ a2 r

4
� �

: ð69Þ

Typically, d is the embedding homotopy parameter.

Furthermore, one assumes that

r ¼ r0 þ dr1 þ d2r2 þ � � �. Following the same procedure

as given previously, one finds the solution r20 is:

r20 ¼
a4
a3

; ð70Þ

after lengthy, but straightforward calculations, one finds an

approximate value of the artificial frequency as:

r ¼
ffiffiffiffiffiffiffiffiffi
a4
8a173

r 8a83 � 4a2a
6
3a4 þ 7a22a

4
3a

2
4 � 4a1a

5
3a

2
4 þ 18a1a2a

3
3a

3
4

�4a43a
3
4 þ 11a21a

2
3a

4
4 þ 22a2a

2
3a

4
4 þ 26a1a3a

5
4 þ 15a64

 !
:

ð71Þ

Actually, the distribution of the approximate solution

that is obtained by Eq. (71) depends mainly on the value of

r0. This requires:
a4
a3

[ 0; ð72Þ

The inequality (72) may be written in the following

form:

~a1E
2
0 þ ~b1 [ 0 ; ð73Þ

where ~a1, and ~b1 are known from the context.

Simultaneously, as stated above, the natural frequency

-2 must be positive, requires:

~a2E
2
0 þ ~b2 [ 0 : ð74Þ

where ~a2, and ~b2 are known from the context.

Actually, the stability criteria depend, as stated previ-

ously, the implication of condition (73), together with the

inequality given in (74). Take into account, a similar pro-

cedure as presented in Sect. 3 to use the non-dimensional

quantities of all physical parameters.

Following the particulars of the system as: q ¼ 2; U ¼
3; R ¼ 0:02; e ¼ 4; m ¼ 0:6; l ¼ 2 and l0 ¼ 9. The pre-

sent calculations showed that the parameters, and ~a2 are

always of positive significance. This shows, again, that the

electric field intensity has a stabilizing influence. As seen

through the linear and nonlinear stability theory, logE2
0 is

plotted versus the wave number of the surface waves k.

In what follows, numerical calculations are estimated to

confirm the stability criteria in (73), and (74). For more

convenience, the two criteria are plotted in one figure,

Therefore, Fig. 10 is depicted for this purpose, as follows,

the equality of (73) is pictured in a solid curve, meanwhile,

the equality of (74) is graphed in a dotted one. Further-

more, the stable region, corresponding to he equality of

(73), is referred by the letter S1. Simultaneously, the

unstable region is symbolizes by the letter U1. On the other

hand, these two regions are referred by the letters S2, and

U2, in analogy with the second condition. As indicated

from this the stability is judged by the solid curve.

Therefore, the remaining curves are plotted in the light of

the first condition. Consequently, Figs. 11, 12 and 13. Are

displayed in the light of the inequality (73). Figure 11

shows the influence of the ratio of U on the stability pic-

ture. As seen from this figure, this parameter has a desta-

bilizing influence. This influence has, already, seen through

as well as the nonlinear theory. Similar influences of the

parameters m, and l are seen. To avoid the lengthy of the

paper, they are excluded. In contrast with the linear sta-

bility theory, the ratio of dynamic visco-elasticity l0, plays
a dual ole in the stability picture. This influence has been

pictured in Fig. 12. Finally, a numerical calculation of the

approximate bounded solution that is given by Eq. (49),

together with the criteria (73) and (74) will be plotted at

Fig. 10 Displays the contribution of the two criteria (73) and (74)

Fig. 11 Depicts the variation of the ratio of the velocity U of

inequality (73)
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z ¼ 0, in Fig. 13. As shown previously, this solution

depends mainly on the expanded frequency r.

6 Concluding remarks

This present paper is concerned with the linear as well as

nonlinear stability analysis of a vertical cylindrical inter-

face among two perfect, homogeneous, and incompressible

dielectric fluids. The fluids are considered as non-Newto-

nian visco-elastic fluids of the Walters’ B type. The system

is pervaded by a uniform axial electric field. Typically, as

given by our foregoing works; for instance, see Melcher

(1981), and Moatimid et al. (2020), the nonlinear analysis

is conducted from the linear solutions of the governing

equations of motion together with the convenient nonlinear

boundary conditions. To relax the mathematical manipu-

lation, a simplified formulation of the viscous potential

flow theory is adopted. Several specific cases are approved

across adequate data information. As a special case, when

ignoring the nonlinear terms, the linear stability criterion

has been obtained. The numerical calculations, throughout

the linear approach, confirmed similar results as that were

given by many researchers. Following similar arguments

that were given by El-Sayed et al. (2014a), it follows that

the stability criteria are judged. Consequently, the

nonlinear characteristic equation results in the Ginzburg–

Landau equation. This equation controls the nonlinear

stability criterion of the system. This criterion is illustrated

graphically throughout a set of figures. In the light of the

nonlinear characteristic equation, the behavior of the sur-

face elevation is analyzed. Because of the real nature of the

surface deflection, the nonlinear characteristic equation is

split into real and imaginary parts. The combination of

these two equations resulted in a second order nonlinear

ordinary differential equation of real coefficients. By cou-

pling the HPM together with Laplace transforms, the

concept of the expanded frequency achieved a bounded

approximate solution. Again, the HPM is utilized to obtain

an approximate solution of the expended artificial fre-

quency. A numerical calculation is utilized to graph the

amplitude of the surface waves. The influences of some

physical parameters had been shown. The concluding

remarks may be drawn along the following points:

The investigation of the linear stability analysis yields

the following results:

• The differential equation throughout the linear stability

approach is given by Eq. (28).

• The linear dispersion relation is given in Eq. (30).

• The numerical calculations showed that the parameters;

U; m; l and l0 have destabilizing influences on the

stability profile. These results are confirmed by the

different authors.

The investigation of the nonlinear stability analysis

yields the following results:

• The nonlinear characteristic equation that controls the

stability criteria is conducted in Eq. (27).

• The nonlinear Ginzburg–Landau equation, which gov-

erns the nonlinear stability criterion, is given by

Eq. (42).

• A simplified solution of the previous solution is given in

Eq. (44). Actually, this solution facilitates stability

conditions. The numerical calculations indicated only

two integrated curves. The inner region is stable,

whereas, the outer region is unstable.

• As in the linear approach, the nonlinear strategy

confirms the same influence of the parameter U. In

contrast, the parameters l, and m have a stabilizing

impact on the stability picture.

The nonlinear frequency expanded, yields the following

results:

• The combination of the real and imaginary parts of the

nonlinear characteristic equation, results in Eq. (50),

which represents the distribution function of the surface

deflection cðtÞ.

Fig. 12 Depicts the variation of the ratio of dynamic visco-elasticity

l0 of inequality (73)

Fig. 13 Depicts the approximate solution of Eq. (66)
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• The approximate solution of the distribution function of

the interface is given by Eq. (66).

• The criterion of the real artificial frequency is governed

by the inequality (73).

• The criterion of the real natural frequency is governed

by the inequality (74).

• A set figures are plotted to display the criteria of the

positive significance of both the natural and artificial

frequencies.

Appendix

The coefficients that are appearing in Eq. (26) may be

listed as follows:

c ¼
I0ðkRÞ 2l01k

2 � q1
� �
kI1ðkRÞ

þ
K0ðkRÞ 2l02k

2 � q2
� �
kK1ðkRÞ

� l02 � l01
R

;

a1 ¼
U1 l01k

2ðI0ðkRÞ þ I2ðkRÞÞ � q1I0ðkRÞ
� �

k c I1ðkRÞ

þ
U2 l02k

2ðK0ðkRÞ þ K2ðkRÞÞ � q2K0ðkRÞ
� �

k c K1ðkRÞ
;

a2 ¼
T

R2
;

b1 ¼
2ðl1 � l2Þ

c R
� I0ðkRÞ 2l1k

2 þ m1ð Þ
k c I1ðkRÞ

� K0ðkRÞ 2l2k
2 þ m2ð Þ

k c K1ðkRÞ
;

c1 ¼ � q1U1I0ðkRÞ
c I1ðkRÞ

� q2U2K0ðkRÞ
c K1ðkRÞ

;

b2 ¼ �U1 l1k
2ðI0ðkRÞ þ I2ðkRÞÞ þ m1I0ðkRÞð Þ

k c I1ðkRÞ

� U2 l2k
2ðK0ðkRÞ þ K2ðkRÞÞ þ m2K0ðkRÞð Þ

k c K1ðkRÞ
;

c2 ¼ � I0ðkRÞK0ðkRÞ e1 � e2ð Þ2E2
0

c e1I1ðkRÞK0ðkRÞ þ e2I0ðkRÞK1ðkRÞð Þ

� q1U
2
1I0ðkRÞ

c I1ðkRÞ
� q2U

2
2K0ðkRÞ

c K1ðkRÞ
:
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