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Abstract
This paper presents a novel hybrid algorithm that includes the superior properties of strong algorithms which have been

developed in recent past. The study involves minimization of transmission loss in IEEE networks through the efficient

placement of flexible alternating current transmission system (FACTS) devices. In this work two types of devices namely

thyristor controlled series compensator (TCSC) and static VAR compensator (SVC) are used in IEEE 14 bus and IEEE 30

bus systems. The main objective of active power loss reduction is achieved through the minimization of installation cost of

these devices which is considered as the fitness function for the optimization algorithms. In this paper Moth flame

optimization (MFO) in its natural form as well as in hybrid form called JAYA blended MFO (JMFO) is applied for the

study. The results obtained are compared with existing technique like particle swarm optimization (PSO).

1 Introduction

With the increase in the electrical power demand, the stress

on the power system conditions is also rising. This results

in the increase in difficulty in the power system operation,

instability in the power flow and higher losses. Apart from

this the untapped sectors in the transmission system due to

environmental and economic issues is a major concern of

power network designers and policy framers. The rapid

progress in the self-commutated power electronic devices

has led to the proposition of flexible alternating current

transmission system (FACTS) devices. FACTS devices

have been introduced and experimented for power system

areas in detail by Hingorani et al. (2000). FACTS con-

trollers are linked to more than one improvements in the

power system networks. They can be implemented for

enhancement of system loadability (Duan et al. 2015),

improve the system security (Vaidya and Rajderkar 2011),

reduce transmission losses (Jumaat et al. 2011), elevate the

voltage stability (Sundareswaran et al. 2009) and manage

congestion in complex grids (Singh and David 2001; Sute

and Rajderkar 2012). However in order to make proper

utilization of FACTS, the type of FACTS devices to be

used, their ratings and their location must be decided

appropriately.

The power system experts have shown keen interest in

exploring various types of FACTS devices like the series

connected thyristor controlled series compensator (TCSC)

and static synchronous series compensator (SSSC), or the

shunt connected static VAR compensator (SVC) and static

compensator (STATCOM), or the shunt-series devices like

unified power flow controller (UPFC). However, as dis-

cussed earlier their location, type and size play a major role

in their operation and its effect on the network operation.

Therefore in the last few decades numerous attempts have

been made towards the optimal placement of such FACTS

devices in different IEEE bus systems through various

classical optimization techniques which can be named as

linear programming methods, non-linear programming

methods and mixed integer non-linear programming

methods (Sharma 2006). Apart from these methods fuzzy

application has also been made for achieving the above

mentioned objectives (Phadke et al. 2012; Ushasurendra

and Parathasarthy 2012; Bhattacharyya and Gupta 2014;

Gitizadeh and Kalantar 2009). In spite of having desirable

convergence these classical methods suffer some set-backs

like trapping in local solutions and mandatory assumptions

like differentiability, continuity and convexity of the

mathematical problem.
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These drawbacks can be avoided through the algorithms

that are meta-heuristic in nature such as genetic algorithm

(GA), differential evolution (DE), particle swarm opti-

mization (PSO), gravitational search algorithm (GSA) and

the like. These are nature inspired algorithms which

ascertain the convergence to global solutions (minima or

maxima as the problem requires) and can be easily applied

to problem irrespective of the number of variables and

nature of the problem. The techniques generate a random

set of possible solutions and find the best possible among

them which ensures evaluation of each and every possible

solutions existing in the search space.

Genetic algorithm (GA) was the foremost algorithm to

be tested for the objective of optimal placement of FACTS

devices to improve the transfer capability of a system by

Gerbex et al. (2001). The optimal locations of FACTS

have been selected using GA (Cai et al. 2004) for efficient

operation of generators in a deregulated electricity supply

system. UPFC has been used for the improvement in power

security of the system through appropriate placement using

DE algorithm (Shaheen et al. 2011). DE has been imple-

mented for the placement of TCSC and SVC in an IEEE 30

bus network to increase its loadability to 200% of the base

load (Bhattacharyya and Goswami 2012) and a comparison

with PSO is done. The loadability of a system has been

improved with the minimum cost for the installation of

FACTS devices through a standard PSO technique (Sara-

vanan et al. 2007) where multiple types of devices like

TCSC, SVC and UPFC are chosen. The well established

PSO technique have been modified to non-dominated

sorting particle swarm optimization (NSPSO) (Benabid

et al. 2009) and this technique has been used for the opti-

mal placement of SVCs and TCSCs in order to improve the

voltage stability, minimize the real power losses and to

reduce the voltage deviation. Similarly, PSO has been

improvised to improved particle swarm, optimization

(IPSO) (Ravi and Rajaram 2013) for the optimization of

the location, rating and control settings of a STATCOM so

that the voltage deviations are minimized in an IEEE 30

bus network. Adaptive form of PSO has been hybridized

with simulated annealing (APSO-SA) (Tabatabaei et al.

2011) to determine the optimal location and ratings of

TCSC and SVC which can increase the voltage stability

index and loading factor of the system along with reducing

the active power losses and cost of investment in an stan-

dard IEEE 14 bus network. Apart from this a modified form

of PSO (MPSO) is applied to IEEE 30 bus system for the

maximization of the load delivering capacity of the net-

work (Parastar et al. 2007). Similarly, the real power losses

in various IEEE networks have been reduced through

TCSC by appropriate placement using PSO and GA

(Rashed et al. 2007). The optimal location and rating for

appropriate placement of FACTS devices has been hunted

through various optimization techniques discussed like ant

colony optimization (ACO) (Fughar and Nwohu 2014),

artificial bee colony (ABC) (Sumpavakup et al. 2010),

gravitational search algorithm (GSA) (Rashedi et al. 2007),

bees algorithm (BA) (Idris et al. 2010). Cuckoo search

(CS) (Nguyen et al. 2016) in its virgin and modified form

known as modified cuckoo search (MCS) (Akumalla et al.

2016) and adaptive form as adaptive cuckoo search (ACS)

(Taleb et al. 2016) has also been tested for the optimal

placement of FACTS. The available transfer capacity of a

system is enhanced using cat swarm optimization (CSO)

(Nireekshana et al. 2016) in contingency condition through

FACTS devices. There has been remarkable work where

meta-heuristic algorithms have been efficiently applied for

improving the power system operations by optimization of

more than one objective which are framed as multi-ob-

jective functions (Ranganathan and Kalavathi 2016; Ara

et al. 2012). FACTS devices like TCSC and SVC have

been employed for the optimal power flow (OPF) problem

also using different optimization techniques like novel

symbiotic organisms search (SOS) algorithm (Prasad and

Mukherjee 2016) and touring ant colony optimization

(TACO) technique among a few to be named. Teaching

learning based optimization (TLBO) has been applied for

the loss minimization in a network through efficient us e of

SVC in the system.

In this paper, a recently developed algorithm named as

Moth flame optimization (MFO) (Mirjalili 2015) has been

examined through application in various standard IEEE bus

systems for the minimization of loss in the network. The

devices under consideration in this work are TCSC and

SVC which are placed optimally in the networks to reduce

the active power loss occurring in the lines. The results are

compared with PSO and a hybrid concept using the

strengths of both these algorithms is implemented for the

fore-mentioned objective of loss minimization as well.

2 Allocation of FACTS devices

The main aim of this work is to locate FACTS devices in

the best possible sections of the network to reduce the

power loss occurring in the lines to minimum. In order to

achieve this, MFO in its natural form as well as MFO

blended with JAYA algorithm and PSO are tested sepa-

rately as independent algorithms as well as in a hybrid

manner. The placement of FACTS devices needs an

overview on the modeling of the devices to be placed and

the mathematical analysis of the problem which has been

covered in this section.
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2.1 FACTS device modeling

In this paper two FACTS devices namely TCSC and SVC

have been considered for the minimization of real power

loss in the lines. A schematic model of both these devices

in shown below in Fig. 1 taken from Jumaat et al. (2012).

2.1.1 Thyristor controlled series compensator (TCSC)

A TCSC comprises of a capacitor bank in parallel with the

pair of thyristor controlled inductive branch in anti-parallel

manner. the schematic diagram of a TCSC is shown in

Fig. 1a. The complete unit shown below is connected in

series with the transmission line. The effective reactance of

the unit can be given as Eq. 2.1 in Jumaat et al. (2012):

xTCSC ¼ xC � xL
xC
p ½2ðp� aÞ þ sinð2aÞ� � xL

; ð2:1Þ

where xC and xL are the reactance offered by the capacitor

and reactor respectively and a is the firing angle of the

thyristors. The rating of TCSC to be installed is treated as

one of the independent variables to be optimized can be

written as:

xTCSC ¼ rTCSC � xLine; ð2:2Þ

where xLine is the reactance of the line where TCSC is

placed and rTCSC is the degree of compensation provided by

the device. The limits of the degree of compensation are

predetermined between [�0:8; 0:2] in order to avoid any

situation of over and under compensation. The reactance of

TCSC can be varied by variation in the firing angle and it

changes the line reactance where it is connected as per the

equation:

xnewLine ¼ xoldLine þ xTCSC; ð2:3Þ

where xoldLine and x
new
Line refer to the reactance of the line before

and after placement of TCSC.

2.1.2 Static VAR compensator (SVC)

SVC is modeled as a reactive power injecting device

connected in shunt with the bus. A schematic model of

SVC is shown in Fig. 1b. SVC consists of a pair of

thyristors connected in anti-parallel manner with a capac-

itor bank in shunt. The unit is connected in shunt at the bus

where compensation is desired. SVC is capable of

exchanging reactive power at the bus and accordingly it

can provide inductive or capacitive compensation. The

reactive power exchanged by SVC is given in Eq. 2.4 from

Jumaat et al. (2012):

QSVC
i ¼ �V2

i � BSVC ð2:4Þ

where Vi is the magnitude of voltage at the ith bus and BSVC

is the susceptance of the SVC given as:

BSVC ¼
xL � xC

p ½2ðp� aÞ þ sinð2aÞ�
xC � xL

; ð2:5Þ

where xC and xL are the reactance offered by the capacitor

and reactor respectively and a is the firing angle of the

thyristors.

2.2 Objective function

The main frame of any optimization problem depends on

the objective function based on certain pre-defined equality

and inequality constraints. The problem can be mathe-

matically framed as:

Minimize Fobjðx; uÞ; ð2:6Þ

subject to:

gðx; uÞ ¼ 0 ð2:7Þ

hðx; uÞ� 0; ð2:8Þ

where Fobj represents the objective function to be opti-

mized, x stands for the dependent variables of the opti-

mization problem like the real and reactive power

Fig. 1 Schematic diagram of

TCSC and SVC
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generated at the slack bus, reactive power generation of the

generators, voltage magnitudes and angles of the bus

voltages and u refers to the independent variables of the

optimization problem which include the location, type (in

case of multi-type FACTS device installation) and ratings

of the FACTS devices to be installed. The objective of this

work is to minimize the active power loss in the trans-

mission loss in the network given as:

Ploss ¼
XN3

i¼1

Pg;i �
XN3

i¼1

Pd;i; ð2:9Þ

where Pg;i refers to the active power generated at the ith

bus and Pd;i refers to the active power delivered at the ith.

2.3 Constraints

The real and reactive power balance equations as given in

Jumaat et al. (2012) represent the equality constraints

g(x, u) are given by the operational limits as follows:

Pg;i � Pd;i � jVij
XN3

j¼1

jVjj Gi;jcos di � dj
� ��

þBi;jsin di � dj
� ��

¼ 0

8 i 2 ½1;N3�Qg;i � Qd;i � jVij
XN3

j¼1

jVjj Gi;jsin di � dj
� ��

þBi;jcos di � dj
� ��

¼ 0 8 i 2 ½1;N3�
ð2:10Þ

and the inequality constraints, h(x, u) are given below in

Eq. 2.11 from Jumaat et al. (2012):

Pmin
g;i �Pg;i �Pmax

g;i 8 i 2 ½1;N1�Qmin
g;i �Qg;i �Qmax

g;i

8 i 2 ½1;N1�Vmin
l;j �Vl;j �Vmax

l;j

8 j 2 ½1;N3�dminl;j � dl;j � dmaxl;j

8 j 2 ½1;N3�xmintcsc � xtcsc � xmaxtcscQ
min
SVC �QSVC �Qmax

SVC

ð2:11Þ

where N1 is the total number of generating units, N2 is the

total number of transmission lines, N3 is the total number

of buses, Pg;i is the active power at ith generator bus

i 2 ½1;N1�, Qg;i is the reactive power at ith generator bus

i 2 ½1;N1�, Vj is the voltage magnitude at jth bus j 2 ½1;N3�,
di and dj is the voltage angle at the ith and jth buses

respectively, xtcsc is the reactance of TCSC where xtcsc 2
½ � 0:8; 0:2� (Gerbex et al. 2001), QSVC is the reactive

power rating of SVC where QSVC 2 ½ � 100; 100� (Gerbex
et al. 2001).

2.4 Fitness function formulation

The optimal allocation involving the location and rating of

FACTS devices is accomplished taking the installation cost

of devices into account. The objective of this paper is to

minimize the transmission loss without violating the con-

straints. The minimization is achieved through meta-

heuristic techniques where the fitness function plays a key

role in selection or rejection of the randomly selected

variables.The fitness function can be framed mathemati-

cally as per the Eq. 2.12 as given in Saravanan et al.

(2007):

IC ¼ C � S� 1000; ð2:12Þ

where IC refers to the installation cost of devices in US$, C

is the cost of FACTS device in US$/KVar and S is given as

Eq. 2.13:

S ¼ jQ2 � Q1j; ð2:13Þ

where Q1 and Q2 are the reactive power flowing in the lines

before and after the installation of FACTS devices

respectively. The cost C depends upon the type of FACTS

device installed. The cost for TCSC and SVC can be

written as Eq. 2.14 taken from Cai et al. (2004):

CTCSC ¼0:0015S2 � 0:7130Sþ 153:75

CSVC ¼0:0003S2 � 0:3051Sþ 127:38:
ð2:14Þ

3 Optimization techniques applied
to the problem

The problem of optimal allocation of FACTS devices is

approached through three different techniques. Firstly a

standard swarm based method of particle swarm opti-

mization (PSO) is applied followed by a recently devel-

oped technique called Moth flame optimization (MFO)

(Mirjalili 2015) and JAYA blended methodology with

MFO named as JAYA blended MFO (J-MFO) which has

been proposed for the first time by the authors. The concept

of JAYA algorithm has been proposed by Rao (2016). The

algorithm emphasizes on the elimination of the worst

results to reach the best and optimal solution. This tech-

nique not only ensures faster results but also the better ones

which has been shown in Subhashini and Chinta (2019).

This feature has encouraged the authors to take up the

existing problem of FACTS allocation and solve it by

enhancing the performance of MFO through the incorpo-

ration of JAYA algorithm with it.
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3.1 Moth flame optimization (MFO)

Moth flame optimization (Mirjalili 2015) is a recently

developed swarm algorithm based on the nature of moths

where they travel in dark following a light source. Here the

moths are treated as the search agents and the flame is the

best possible optimum solution where the moths need to

reach. The moths are represented as a 2-dimensional matrix

comprising of randomly selected values lying in the range

pre-defined for the control variables to be optimized:

½M� ¼ ½½L�½T�½R��; ð3:1Þ

where [L] gives the location for the FACTS devices as:

½L� ¼

L11 L12 :: L1Nd

L21 L22 :: L2Nd

::

::

LNp1 LNp2 :: LNpNd

2

6666664

3

7777775
ð3:2Þ

[T] is the type of each FACTS device whether TCSC or

SVC. While TCSC is denoted by a fixed number 1, SVC is

represented as 2:

½T � ¼

T11 T12 :: T1Nd

T21 T22 :: T2Nd

::

::

TNp1 TNp2 :: TNpNd

2

6666664

3

7777775
ð3:3Þ

and finally [R] gives the rating of the devices to be installed

at the concerned locations. Mathematically it is represented

as:

½R� ¼

R11 R12 :: R1Nd

R21 R22 :: R2Nd

::

::

RNp1 RNp2 :: RNpNd

2

6666664

3

7777775
ð3:4Þ

where Nd and Np are the number of FACTS devices to be

placed and population size of the search space respectively.

The fitness of each moth is evaluated by substituting the

moth positions in Eq. 2.9 which is represented as:

½OM� ¼ ½OM1;OM2; . . .;OMNp
�T : ð3:5Þ

The flames on the other hand represent the values yielding

the best fitness. The acceptance or rejection of the proposed

values depends on the value of fitness function evaluated

from the moths and flames separately and then compared.

The key equation from Mirjalili (2015) which governs the

movement of the moths in the search space is given as:

Mnew
i ¼ Di � ebt � cosð2� p� tÞ þ Fj; ð3:6Þ

where Mnew
i gives the new updated position of ith moth b is

a constant equal to 1 Fj is the position of the jth flame t is a

random number in [�1; 1] depending on the distance of

moth from the flame Di is the distance of the ith moth from

the jth flame and can be written mathematically as:

Di ¼ jFj �Mij: ð3:7Þ

3.2 JAYA blended MFO (J-MFO)

In the present work a novel hybrid optimization technique

has been developed known as JAYA blended MFO (JMFO)

algorithm. The original JAYA algorithm (Rao 2016) is

based on the concept of using both the best solution and the

worst solution in the position update equation of search

agents during the optimization process as given below:

x
j
i ðk þ 1Þ ¼ x

j
i ðkÞ þ a j

i ðkÞ x
j
bestðkÞ � jx j

i ðkÞj
� �

� b j
i ðkÞ x j

worstðkÞ � jx j
i ðkÞj

� �
;

ð3:8Þ

where k is the iteration index, i denotes the search agent

index, j represents the variable associated with the ith agent

and a and b are random numbers lying in the range [0, 1].

x
j
bestðkÞ and x

j
worstðkÞ define the position of the jth variable

of the ith agent at the kth iteration corresponding to the best

and worst individual respectively. The philosophy here is

to add the differential position of the best to current posi-

tions with the current position and at the same time remove

the differential position of the worst to the current position

from the current position to avoid the greedy situation

generally encountered while only best positions are refer-

red in the position update equation. Thus while attempt has

been made to formulate a hybrid strategy considering Moth

flame optimization (MFO) (Mirjalili 2015) technique with

JAYA algorithm (Rao 2016), it is observed that the original

MFO algorithm has already incorporated the best solution

(in terms of Flame position Fj referring to Eq. 3.8) in the

moth position update equation Mi. So the concept bor-

rowed from JAYA algorithm to be included in the MFO

algorithm is the term devoting the differential position of

the worst to the current positions. However a spiraling

motion is considered instead of a linear MFO between the

moth and the flame, the same nature is protected. While

worst term is taken into cognizance in the modified MFO

algorithm blended with the JAYA algorithm. The moth

update position of Eq. 3.9 now transformed to:

Mnew
i ¼ Dbest

i � Dworst
i

� �
� ebt � cos 2� p� tð Þ

þ Fbest
j � Fworst

q

� �
:

ð3:9Þ
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Here Fbest
j and Fworst

j represent positions corresponding to

the jth best individual and qth worst individual. This pro-

posed JMFO algorithm has also been applied to the case

studies to highlight its performance enhancement over the

original MFO and with other competitors:

Dbest
i ¼ jFjbest �MijDworst

i ¼ jFkworst �Mij: ð3:10Þ

3.3 Methodology of allocation of FACTS using
various algorithms

This section deals with the algorithm for the optimal

allocation of FACTS devices using the various meta

heuristic techniques mentioned above in Sects. 2.1, 2.2

and 2.3. The purpose of this optimization study is to

minimize the active power loss in the transmission lines

and keeping the bus voltages within the limits. In order to

achieve this two types of FACTS devices namely TCSC

and SVC are used. The fitness function for the optimization

process is the installation cost of the devices and the

variables to be optimized are the location and rating of the

devices to be stationed at various points in the network.The

steps involve din the process are as follows:

– Step 1: The network data are read and load flow is

executed without installation of FACTS devices. The

initial voltage and loss constraints are set.

– Step 2: The major parameters of the optimization

techniques like wmax, wmin, c1, c2 in case of PSO, b in

case of MFO and J-MFO are initialized and stored. The

other parameters like population size (here 50), size of

each agent (depending upon the number of devices to

be installed), maximum number of iterations (here

1000) and number of runs are also initialized

– Step 3: An initial population of search agents (particle

sin case of PSO and moths in case of MFO and JMFO)

giving the location and rating of devices to be installed

is randomly generated within the boundaries predefined

for the location and ratings of the devices. Mathemat-

ically it is given as:

½u� ¼ ½½L�½T�½R��; ð3:11Þ

where [L] represents the set of locations of FACTS

devices, [T] gives the type of device (whether TCSC or

SVC at each location) and [R] is the rating of each one

of the devices those are placed at corresponding loca-

tions. The type of device [T] is incorporated as a entity

in the control variable only if more than one type of

device is placed. The size of each sub matrix [L],

[T] and [R] depends on the number of devices to be

incorporated.

– Step 4: The network parameters are updated as per the

ratings of the devices after placing them at the

respective locations. The load flow is executed for the

updated configuration of the system and the constraints

are checked for boundary conditions as mentioned

in Eq. 2.11. The active power loss is also evaluated in

the load flow operation. The loss obtained with various

search agents are sorted and check for the constraint

satisfaction.

– Step 5: The fitness of each search agent is calculated

using Eq. 2.9. The search agent with the best fitness is

selected and stored. They are denoted as Pbest;old and

Gbest;old in case of PSO and Mbest;old and OMbest;old in

case of MFO and JMFO.

– Step 6: The positions of the agents in the search space

are updated as per the update Eqs. 3.6 and 3.9 and Step

4 is repeated again.

– Step 7: The load flow for the updated positions is

carried out and

– Step 8: The fitness of each search agent is calculated

using Eq. 2.9. The search agent with the best fitness is

selected and stored. They are denoted as Pbest;new and

Gbest;new in case of PSO and Mbest;new and OMbest;new in

case of MFO and JMFO.

– Step 9: The process from Step 6 to Step 8 are repeated

till the termination criteria is satisfied. The final search

agent with best fitness i.e., minimum installation cost

and minimum power loss is retained as the final

optimum values for the control variables.

4 Results and discussions

The efficacy of the existing technique called MFO and the

proposed modification called JMFO has been established

through their application to optimal FACTS allocation

problem in standard IEEE 14 bus and 30 bus systems

(Jumaat et al. 2012). The results obtained thereby are

compared with a well known standard technique like PSO.

The population size is taken as 50, maximum number of

iterations are 1000 and the experiments are carried out for

20 independent runs. The study is carried out in two phases

where both single and multiple device placement is done.

The computational resources used for the fulfillment of the

task are codes written in MATLAB 2016b with additional

package of Mat Power and the simulation is done on a 2.60

GHz i5 PC with 8GB RAM. A comparison study of the

minimization of power loss and installation cost of devices

with TCSC and SVC using various optimization techniques

is given below in Table 1.
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4.1 IEEE 14 bus system with single FACTS device

In this section all the three algorithms have been tested

with IEEE 14 bus system for investigation of the optimal

location and rating of a TCSC and a SVC in order to reduce

the transmission loss. Initially the network is tested with

single TCSC and SVC separately and remarkable results

have been obtained. While a single TCSC minimizes the

loss from 12.75 MW in an uncompensated system to 11.24

MW, 10.89 MW, 10.44 MW using PSO, MFO and JMFO

respectively. On the other hand SVC could minimize the

loss better by reducing it to 11.29 MW, 10.54 MW and

10.15 MW with PSO, MFO and JMFO respectively. The

optimal location for TCSC detected using JMFO is at line

number 14 between bus 9 and bus 14 of rating � 0:004614

p.u and the same for SVC is found to be at bus number 9

with a rating of 54MVAR. The convergence curve for the

two devices given in Fig. 2a for TCSC and Fig. 2b for SVC

show that JMFO gives better minimization than MFO and

PSO. It can be seen in Table 1 that the installation cost of

both TCSC and SVC i.e., 154:62 US$ and 127:17 US$

respectively, are minimum with the optimal locations and

ratings found using JMFO.

4.2 IEEE 30 bus system with single FACTS device

The performance of MFO and JMFO has been compared

with standard PSO technique for the objective of loss

minimization of an IEEE 30 bus network. TCSC and SVC

are considered for the same in separate cases. The con-

vergence curves in Fig. 3 establish JMFO better than MFO

and PSO by giving lower minimum for the installation cost

of the devices. JMFO when applied to the systems, the

optimal location of TCSC is found to be at line number 18

running between the buses 1 and 15 with a rating of

� 0:007254 p.u. Similarly, the bets location for SVC which

gives the minimum power loss is found to be bus number

27 with a SVC rating of 36 MVAR. While with TCSC, PLoss

is minimized to 14.01 MW SVC reduced the power loss to

14.00 MW against 16.21 MW of uncompensated system

power loss. The minimum installation cost of TCSC and

SVC is obtained as 153:54 US$ and 127:80 US$ using

JMFO as the optimization technique

Table 1 Minimization of active power loss through various optimization techniques using single FACTS device

IEEE systems Type of device Ploss without FACTS (MW) PSO MFO JMFO

Ploss (MW) IC (US$) Ploss (MW) IC (US$) Ploss (MW) IC (US$)

14 TCSC 12.75 11.24 155.28 10.89 155.15 10.44 154.62

SVC 11.29 128.54 10.54 127.64 10.15 127.17

30 TCSC 16.21 15.69 154.29 14.54 154.66 14.01 153.54

SVC 15.78 128.62 14.29 128.14 14.00 127.80

The bold numericals signifies the minimum installation cost and minimum power loss values obtained using the proposed technique
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4.3 IEEE 30 bus system with multiple FACTS
device

Optimal location for placement of single and multiple types

FACTS devices has been tested on IEEE 30 bus system

using MFO in its virgin form as well as newly proposed

JMFO. The experiments were carried out by varying the

number of FACTS devices implemented in the network in

order to determine the optimal number of devices which

would give the minimum loss. The results obtained have

been compared with a standard swarm based technique,

PSO. The comparison based on loss minimization for

multiple devices in three different cases has been reported

in Table 2. It is observed that with 4 TCSCs of ratings

�0:0027 p.u, 0.000518 p.u, �0:00711 p.u and 0.000842

p.u placed optimally at line numbers 5, 14, 18 and 36 could

reduce the loss to 13.51 MW. Similarly SVCs of ratings

�45MVAR, 18MVAR and 36MVAR placed at bus 9, bus

14 and bus 18 could bring down the transmission loss to

13.86 when JMFO is applied. The optimal combination of

FACTS when TCSC and SVC are used together for the

objective of power loss minimization. It is found that a

configuration of 3 TSCSs and 2 SVCs can give the mini-

mum power loss of 13.32 MW in comparison to 16.21 MW

of an uncompensated device.The convergence curves for

optimal number of devices in IEEE 30 bus system is shown

in Fig. 4 which proves JMFO as the better performing

algorithm.

5 Conclusion

A novel form of JAYA blended MFO for the minimization

of active power loss during transmission has been pre-

sented in this paper. Two types of FACTS devices namely

TCSC and SVC have been used for reducing the power loss

in IEEE 14 bus and IEEE 30 bus systems. The objective of

power loss reduction is achieved through various opti-

mization techniques like PSO, MFO and JMFO where the

installation cost of FACTS devices is considered for

evaluating the fitness of the agents. it is worth mentioning

that the concept of elimination of worst agents improves

the performance of the algorithm greatly there by making

JMFO significantly superior to the other techniques. The

convergence curves also support the above statement in

favor of JMFO.
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Table 2 Minimization of active power loss through various optimization techniques using multiple FACTS device

Type of devices No. of devices PSO MFO JMFO

Ploss (MW) IC (US$) Ploss (MW) IC (US$) Ploss (MW) IC (US$)

TCSC 4 14.01 3:6� 104 13.69 3:2� 104 13.51 2:7� 104

SVC 3 14.59 7:2� 105 14.22 6:4� 105 13.86 6:1� 105

BOTH 3 TCSC ? 2 SVC 14.21 8:1� 105 13.74 7:6� 105 13.32 7:2� 105

The bold numericals signifies the minimum installation cost and minimum power loss values obtained using the proposed technique
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