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Abstract
This paper presents a model predictive control-based fault detection and reconstruction algorithm for longitudinal control

of autonomous driving using a multi-sliding mode observer. In order to secure the safe longitudinal control of a vehicle, a

numbers of factors must be ensured, such as the reliability of the longitudinal information, the data on the forward object

from the environment sensor, and the acceleration of the ego vehicle. Thus, we propose a reasonable failure detection

scheme for the acceleration signal of the host vehicle and the relative values of the front object of the radar. In order to

identify the faults of the radar and the vehicle acceleration sensor related to the automated longitudinal control, the multiple

sliding mode observer and prediction of model predictive control (MPC) algorithm are applied. The relative acceleration is

reconstructed by applying a sliding mode observer (SMO) with clearance and relative speed measurements. The upper and

lower limits of longitudinal acceleration were computed by analyzing human driving data under the preceding vehicle and

reconstructed acceleration. A proper acceleration range can be defined precisely based on several reconstructed upper and

lower bounds by using a multiple sliding mode observer with stored prediction data of relative values, making it possible to

effectively identify the fault of the host vehicle’s acceleration sensor. By applying MPC for this study, optimal control

input and prediction of relative states can be obtained that are more reasonable than those using the linear prediction model.

The proposed fault detection algorithm can identify the abnormal state of the environment sensors by using the accu-

mulated past sensor data. By comparing the stored prediction of relative states with the stored data on current states for a

given period, the signal faults of the longitudinal target information can be detected from environment sensors. With these

fault indices of states, the final fault diagnoses of sensors can be determined by assessing confidence through statistical

analysis of 27 sets of normal driving data. In order to obtain a reasonable performance evaluation, this study uses actual

driving data and a 3D full vehicle model constructed in the MATLAB/Simulink environment. The test results reveal that

the proposed algorithm can successfully detect the fault of the radar and acceleration sensor of the automated driving

vehicle.

1 Introduction

In recent years, major carmakers have begun to introduce

vehicles with partially automated driving capabilities

developed using Advanced Driver Assistance Systems.

While the performance of the driving technology is also

important, monitoring and responding to failures of sensors

and algorithms is becoming essential in order to secure the

safety of the automated driving system. In particular, a

problem with the signal used for autonomous driving

control could lead to very serious accidents on the road.

Therefore, developing an algorithm to monitor and diag-

nose sensors and algorithm faults is crucial for the com-

mercialization of such vehicles. Along with the

development of algorithms to secure driving performance,

a number of other algorithms—fault detection, isolation,

diagnosis, and tolerant control—have been actively

developed in various research institutes, companies, and

universities.
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The scheme of sensor fault detection and isolation using

a particular sliding mode observer was proposed along with

some validations and applications in (Tan and Edwards

2002; Edwards et al. 2000; Tan and Edwards 2003). Yan

and Edwards (Yan and Edwards 2007) proposed an

approach for robust fault estimation and reconstruction for

a class of nonlinear systems using a sliding mode observer.

Nah et al. (2010) designed a fault diagnosis algorithm for

yaw-rate sensors, lateral acceleration sensors, steering

wheel angle sensors, as well as the steer-by-wire, throttle-

by-wire, and brake-by-wire processes of autonomous

vehicles, and verified the performance of the algorithm

through hardware-in-the-loop simulation (HiLs). Jeong

(2015) proposed a fault detection methodology to monitor

vehicle sensors and actuators, and verified it via data-based

simulation and real-time vehicle test. In order to prevent

misdiagnosis, the adaptive threshold was adopted with

consideration of model and sensor uncertainty. Li et al.

(2017) developed a new disturbance-decoupled fault

reconstruction design for a continuous linear time-invariant

system. The fault diagnosis techniques and their applica-

tions were reviewed from model- and signal-based per-

spectives by Gao et al. (2015). A functional reference

structure for autonomous driving was described at the

logical level regardless of any dependence on a specific

implementation by Behere and Törngren (Behere and

Törngren 2016). Garoudja et al. (2017) developed a sta-

tistical model-based fault detection and identification

algorithm for photovoltaic systems based on a statistical

approach. Jo et al. (2015) proposed a development

methodology that facilitates the design and development of

an automated vehicle by demonstrating the process of

implementation. The application of a neural network-based

fault detection to detect and track fault data injection

attacks on the cooperative adaptive cruise control layer of a

platoon of connected vehicles in real time was proposed in

(Sargolzaei et al. 2016). Qin et al. (2017) developed a

distributed fault diagnosis scheme for a formation system

with velocity sensor faults, then verified its performance

through simulations and real-time tests. In addition, in

order to obtain the residuals of the sensor faults to diag-

nose, an extreme learning machine (ELM) prediction

model was constructed to predict the output of the sensor of

an underwater autonomous vehicle by Li (2017). Xiang

et al. (2017) developed a two-layered fault treatment sys-

tem consisting of a risk analysis subsystem and an intelli-

gent decision subsystem.

Additionally, various optimization algorithms have been

investigated to derive optimal solutions for automated

driving control, and of these, a number of studies on model

predictive control have been presented. Lee (2011)

reviewed the major developments and achievements of

research and industrial/commercial activities on model

predictive control over the last three decades. Luo et al.

(2010) proposed an adaptive cruise control algorithm with

multi-objectives based on a model predictive control

framework to meet the requirements of not only safety and

car-following, but also driving comfort and fuel efficiency.

A model predictive control approach for controlling the

active front steering systems of autonomous vehicle sys-

tems was developed by Falcone et al. (2007). Suh et al.

(2016) presented the design and evaluation of a model

predictive control algorithm for automated driving on a

motorway using a vehicle traffic simulator, and this algo-

rithm was successfully implemented on a vehicle electronic

control unit (ECU) evaluated on a real-time vehicle traffic

simulator by comparing the vehicle behavior of manual

driving.

In order to design fail-safe environment-aware sensors

for ADAS and autonomous driving, a dual system for each

module or sensor integration is required. However, not only

is it uneconomical to have the same sensors fitted to all

vehicles multiple times, but it is also inefficient from a

structural point of view. In this study, a fault detection

method that does not require additional duplicated sensors

is proposed by using a vehicle sensor, environment sensor,

MPC algorithm results, and road data analysis. From a

practical perspective, this approach can be an effective and

reasonable way to apply the fail-safe of ADAS and

autonomous driving.

In this research, a fault detection and reconstruction

algorithm using a multi-sliding mode observer for the

acceleration sensor of the host vehicle and radar was pre-

sented in order to secure the safety of an autonomous

vehicle’s longitudinal control. We focused on the current

states of the ego vehicle and foregoing target measure-

ments: acceleration, relative velocity, and clearance. In

order to control an autonomous vehicle, MPC is applied

based on radar and vehicle sensor information, and the

desired control command over the predicted time horizon is

computed and stored. The predicted cumulative data may

be applied as failure detection reference values for envi-

ronment sensors for longitudinal control, such as radars or

cameras. The maximum and minimum acceleration bounds

were derived by using a longitudinal kinematic model-

based sliding mode observer. The acceleration bounds were

defined using the probabilistic longitudinal acceleration

distribution of a human driver under normal driving con-

dition analyzed from actual data logs. By constructing a

multiple sliding mode observer, we can obtain a number of

allowable acceleration range that makes it possible to

define reasonable acceleration bounds to enhance the per-

formance of the acceleration fault detection. In addition, as

opposed to single acceleration diagnosis using the Single

sliding mode observer (SMO), rational fault diagnosis can

be achieved by utilizing multiple acceleration normal
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ranges based on the construction of multiple SMO. More-

over, the prediction result of MPC is more rational than

that of the linear prediction model. Using the prediction

result from the model predictive control solution, the pre-

dictive fault diagnostic algorithm was developed to detect

and diagnose fault signals in radar sensors.

The proposed algorithm was designed to monitor unu-

sual signals for the fault of an offset situation. In the case of

holding and turning off conditions, each sensor can auto-

matically identify these abnormal signals. We conducted a

performance evaluation via actual driving data-based off-

line simulation in the MATLAB/SIMULINK environment.

The rest of this paper is composed as follows. The

second section shows the overall architecture and

scheme of the algorithm for functional safety for autono-

mous driving. The third section explains the scheme of the

model predictive control applied in this study. The fourth

section describes the multi sliding mode observer-based

relative acceleration reconstruction and fault detection

algorithm of the acceleration sensor and radar. The fifth

section presents the actual data-based performance evalu-

ation for three fault injection cases by using two data sets in

each case. Finally, a conclusion is provided in the sixth

section.

2 Overall architecture
and scheme of algorithm for functional
safety for autonomous driving

The overall model schematic diagram of the fault detection

and reconstruction algorithm based on a model predictive

controller and 3D full vehicle model is depicted in Fig. 1.

The model predictive controller computes the desired

control input (ades) by predicting the designated horizon by

using the preceding target data (c; vrel) and the host

vehicle’s current acceleration (as). In a previous study,

applying a linear prediction to fault detection was shown to

lead to performance limitation (Oh and Yi 2017; Oh et al.

2018) Therefore, reasonable and accurate prediction results

can improve the fail diagnosis performance of the proposed

approach, so we used the prediction of clearance and rel-

ative velocity (cpre, vrel;pre) obtained from the MPC algo-

rithm. In addition, by using the analysis of longitudinal

acceleration standard deviation (ras ) through driving data,

the fault diagnosis of each sensor fail can be conducted.

For the longitudinal control of autonomous vehicles, the

system determines a proper speed by considering the in-

lane front target in its heading direction. In this study, since

we want to identify the fault of longitudinal control, a

normal driving situation with the preceding vehicle is

assumed. The driving condition considered in this case is

shown in Fig. 2.

The proposed safety system architecture for autonomous

driving vehicles in this study is composed of three major

stages: (1) perception, (2) decision, and (3) control with

regard to the functional perspective. First, in the perception

stage, detection, isolation, and classification are conducted

in order to determine the fault level. In the decision stage,

the present fault level of the implemented system was

determined by using the detected, isolated, and classified

fault signals obtained in the previous stage. Finally, in the

control stage, appropriate control action–ceding, emer-

gency braking, and stop-were executed by using the

determined fault level to avoid crash accidents. In this

paper, we proposed the longitudinal fault detection algo-

rithm as the first stage for autonomous vehicles.

3 Model predictive control formulation

Model predicted control (MPC) represents a type of control

algorithm that uses the current dynamic state to predict the

future response of the plant as well as to provide an opti-

mized solution for future predictions in which the objective

function is minimized. MPC is a well-known control

scheme which can compute an optimized solution by using

the prediction method as shown in Fig. 3, and it has been

used in several studies (Lee 2011; Mayne et al. 2000;

Falcone et al. 2008; Li et al. 2011; Oh et al. 2015).

In this study, the MPC is adopted to determine the

optimized longitudinal control input and expected target

values, such as clearance and relative velocity, for

Fig. 1 Overall model schematics of MPC, 3D full vehicle model, and

fault detection and reconstruction algorithm

Fig. 2 Driving situation of a subject vehicle with an in-lane preceding

vehicle
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reasonable fault detection. In this study, the clearance (c)

and relative velocity (vrel) from the radar and the acceler-

ation (as) from the vehicle acceleration sensor were used as

the inputs, while the desired acceleration (ades;command) for

the control input and the prediction (cpre,vrel;pre) of the

relative values of the target, such as relative displacement

and velocity, were obtained from the MPC algorithm.

Figure 4 shows a block diagram of the detailed MPC

algorithm applied to proposed fault detection.

The MPC algorithm determines an optimized control

sequence by minimizing a performance index on the valid

area. Once the control sequence has been calculated, the

first element of the control sequence can be applied to the

actual vehicle model as a desired motion, and then the

process is repeated. The vector formulation of the MPC

problem is provided in the mathematical programming

framework, which allows us to use the Quadratic Pro-

gramming (QP) algorithm scheme. The following equiva-

lent QP formulas and state space equation must be

considered in the model in vector space.

In order to construct the MPC algorithm for longitudinal

control and fault detection, the longitudinal position error

(ex) and relative velocity error (e _x) are defined as follows:

ex ¼c� cd

e _x ¼vrel ¼ vp � vs
ð1Þ

where,

cd ¼ vx � tp þ c0

In Eq. (1), vp and vs refer to the velocities of the pre-

ceding and subject vehicles, respectively. c is the current

clearance and cd is the desired clearance between the

preceding and subject vehicles, respectively. Further, vx
and tp respectively represent the relative velocity and

preview time. c0 represents the minimum clearance to

avoid collision. Then, the state-space linear equation is

defined as shown below.

_exðtÞ
_e _xðtÞ

� �
¼ 0 1

0 0

� �
exðtÞ
e _xðtÞ

� �
þ 0

�1

� �
as þ

0

1

� �
ap ð2Þ

where ap and as are the longitudinal accelerations of the

subject vehicle and preceding vehicle, respectively. In

order to facilitate the state prediction of the MPC algo-

rithm, the discretized state space equation is derived from

Eq. (2) under the assumption that the mean of the pre-

ceding vehicle’s longitudinal acceleration is zero. The time

gap (Dt) for discretization is defined as a value of 0.01 s in

this study.

eðk þ 1Þ ¼ AdeðkÞ þ BduðkÞ
ypðkÞ ¼ CweðkÞ

ð3Þ

where,

Ad ¼
1 Dt
0 1

� �
; Bd ¼

0

�Dt

� �
; Cw ¼ 1 0

0 1

� �

The yp is the output of the discretized system, and the

control input, uðkÞ, represents the desired acceleration of

the current step k. The matrix Ad represents the system

matrix of the preview model while the matrix Bd is the

input. The Cw matrix is the weighting matrix used to

construct performance index J. In addition, the factors of

the weighting of the prediction horizon are defined as a

hyperbolic tangent equation.

Equation (4), shown below, is the performance index J

defined in this study to compute the optimal solution and

predicted states.

min
u~

J ¼ y~�
py~p þ Ru~�D�Du~ ð4Þ

where,

y~p ¼ ½ypðk þ 1Þ � � � ypðk þ NÞ��

u~¼ ½uðkÞ � � � uðk þ NÞ��

R ¼ diagð�Rðk þ 1Þ � � � �Rðk þ NÞ Þ

D ¼

1 �1 0 0 0

0 1 �1 0 0

0 0 1 . .
.

0

0 0 0 . .
.

�1

0 0 0 0 1

2
66666664

3
77777775

The N and R represent the prediction step (the value of

N is 20) and weighting factor for input, respectively. And

X (t)r

pX (t)X(t)

u (t)∗

t t+1 t+2 t+N t+T

N: Control Horizon 

T: Prediction Horizon

Current

t+3 L L

Past Prediction

Fig. 3 Model Predictive Control (MPC) scheme

Fig. 4 Block diagram of Model Predictive Control
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the k is the step of present state. Then, the predictive model

y~p is expressed as follows:

y~p ¼ MeðkÞ þ Hu~þ FuðkÞ ð5Þ

where,

M ¼ CwAd CwA
2
d � � � CwA

N
d

� ��

H ¼

0 0 � � � 0

CwBd 0 � � � 0

..

. ..
. . .

. ..
.

CwA
N�2
d Bd CwA

N�3
d Bd � � � 0

2
66664

3
77775

F ¼ CwBd CwAdBd � � � CwA
N�1
d Bd

� ��
In Eq. (5), matrices M, H, and F can be respectively

constructed from the system, input, and disturbance

matrices of the state space equation defined in Eq. (4). The

u~ indicates the desired acceleration for the longitudinal

control of N-step prediction horizon for autonomous driv-

ing. In addition, to drop the y~p terms in Eq. (4) by using

Eq. (5), the cost function can be arranged as Eq. (6). With

this cost function, the constraints of the control input as

well as the desired acceleration can be derived by using D

and L which, represent the upper and lower acceleration

limits, respectively.

min
u~

1

2
u~�Puþ f �u~ subject to Du~� L ð6Þ

where,

D ¼ ½Dupper; Dlower��; L ¼ ½L�upper; L�lower �
�

Dupper ¼ IN�N ; Dlower ¼ �IN�N

Lupper ¼ aupper;l im �
1

..

.

1

2
64
3
75
N�1

; Llower ¼ alower;l im �
�1

..

.

�1

2
64

3
75
N�1

aupper;l im and alower;l im represent the maximum and

minimum acceleration limit values. The Lupper and Llower in

the constraint of Eq. (6) are the array of length N (pre-

diction step) with the respective limits of acceleration,

aupper;l im and alower;l im. Further, the P and f matrices in

Eq. (6) are defined as follows:

P ¼ RD�Dþ H�H ð7Þ
f ¼ H�ðMeðkÞ þ FUÞ ð8Þ

In order to test the convexity of Eq. (6) for the MPC, the

positive definiteness of matrix P has been evaluated. The

quadratic function described in Eq. (6) is convex if and

only if matrix P is positive semi-definite. In addition, the

function is strictly convex if and only if the matrix P is

positive definite. Various methods can be used to test the

positive definiteness of the matrix, and the eigenvalue-

based test has often been used to test whether or not the

quadratic function is convex. Based on Eq. (7), matrix P

can be rewritten using matrices Cw, Ad, and Bd. In Eq. (7),

the matrix terms, D�D and H�H, are symmetric matrices

with calculation results as follows.

D�D ¼

1 �1 0 � � � 0

�1 2 �1 . .
. ..

.

0 �1 2 . .
.

0

..

. . .
. . .

. . .
.

�1

0 � � � 0 �1 2

2
666666664

3
777777775

H�H ¼

0 CwBd � � � CwA
N�2
d Bd

0 0 � � � CwA
N�3
d Bd

..

. ..
. . .

. ..
.

0 0 � � � 0

2
66664

3
77775

0 0 � � � 0

CwBd 0 � � � 0

..

. ..
. . .

. ..
.

CwA
N�2
d Bd CwA

N�3
d Bd � � � 0

2
66664

3
77775

ð9Þ

According to Eq. (9), the resulting matrix P in Eq. (7) is

also real symmetric, and its eigenvalues and eigenvectors

are real and orthogonal. Moreover, matrix P is found to be

diagonalizable by an orthogonal matrix. In order to make

the quadratic function defined in Eq. (6) convex, weighting

factor R for input and weighting matrix Cw for error state

should be defined so that the eigenvalues of a real sym-

metric matrix P are all positive. All of the eigenvalues of

matrix P were computed to be positive, as shown in Fig. 5.

Therefore, the quadratic function defined in Eq. (6) is

strictly convex, and the optimal inputs that make the

equation minimize can be calculated based on quadratic

programming. Then, the optimal control input (u~opt) can be

computed based on the Quadratic Programming solver

provided by MATLAB. We can also use the following

equation to obtain the prediction errors of the relative

states.

e~D;pre ¼ C�1
p Me~DðkÞ þ Hu~opt þ FuðkÞ
� �

ð10Þ

where,

Cp ¼
Cw 0 0

0 . .
.

0

0 0 Cw

2
64

3
75

By using actual driving data such as preceding vehicle

velocity and subject vehicle velocity, the optimal solution

of the MPC algorithm can be calculated; specifically, the

optimal longitudinal control input and the prediction of
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relative values. In Fig. 6a, the velocity profiles of the data-

1 log are shown. The results from MPC, desired acceler-

ation input, and prediction of relative values are presented

in Fig. 6b and c.

Data-1:

The dashed lines in Fig. 6b and c represent the predicted

states (clearance and relative velocity between the pre-

ceding vehicle and subject vehicle) by the MPC algorithm

constructed in this study. Using the results of the MPC

algorithms described in this section, the following section

describes the fault detection and acceleration reconstruc-

tion based on a sliding mode observer.

4 Fault detection and reconstruction
algorithm based on sliding mode observer

Previous studies have proposed fault detection based on a

single sliding mode observer (Oh and Yi 2017; Oh et al.

2018). The single sliding mode observer was applied to

reconstruct the relative acceleration between the preceding

vehicle and the subject vehicle by using only the current

state estimation result. Then, the upper and lower limits for

reasonable acceleration were computed, which made it

possible to diagnose the acceleration fault. In this study, in

order to improve the performance of acceleration fault

detection with this type of approach, a generation of mul-

tiple and proper reasonable acceleration range is required.

By applying model predictive control with radar mea-

surement (x), such as clearance (c) and relative velocity

(vrel), to the high level controller of autonomous driving,

the predicted relative values (xpre) for the designated time

horizon are computed rationally with consideration of the

optimized control solution. If accumulated data with pre-

diction (xpre;accum) are used to generate multiple recon-

structed allowable acceleration boundaries (arel;re;pre½k�)

consisting of upper (�arel;re;pre½k�) and lower bounds

(arel;re;pre½k�), the performance of the acceleration fault

detection will be rationally enhanced. Using reconstructed

(a) Velocity profiles

(b) MPC solution of longitudinal acceleration

(c) Prediction resulted from MPC
(Black Solid line: Measured states, 

Colored Dashed line: 20 Predicted states from MPC)

(d) Enlarged plot of first subplot (c) [0~10 sec]
(Black Solid line: Measured states, 

Colored Dashed line: 20 Predicted states from MPC)

Fig. 6 Characteristics of Data-1 and MPC solutions

-2 -1 0 1 2
Real 107

-1

-0.5

0

0.5

1
Im

ag
in

ar
y

Eigenvalues of P matrix

Eigen values

Fig. 5 Eigenvalues of P matrix in complex plane
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acceleration limits, we can determine signal information

from the vehicle acceleration sensor (as) better than we

could using the previous approach. Furthermore, with

stored prediction of relative values, the fault detection

index of the radar (IR) is obtained by using the predictive

fault detection algorithm. Thus, in this study, we propose

multiple sliding mode observer-based acceleration fault

detection by accumulating past state prediction and gen-

erating multiple allowable ax ranges. The multi sliding

mode observer-based fault detection scheme is described in

the block diagram shown in Fig. 7.

As shown in Fig. 7a, the proposed algorithm largely

consists of two parts: radar and acceleration fault detection.

First, we compute the optimized control input for the

predication horizon determined using MPC with the rela-

tive information of the front vehicle obtained through the

radar, then perform fault diagnosis on the radar using the

accumulated information. Secondly, the acceleration fault

detection is performed by generating several allowable

acceleration boundaries using multiple SMO, as shown in

the block diagram in Fig. 7b. The multi-SMO selects val-

ues from the current point-in-time basis from accumulated

historical prediction results, reconstructs the acceleration

through individual SMOs, and calculates multiple allow-

able upper and lower acceleration bounds through statisti-

cal analysis of the acceleration results.

We applied the sliding mode observer to detect fault by

reconstructing the relative acceleration using a longitudinal

kinematic vehicle model as follows:

d

dt

x1
x2

� �
¼ 0 1

0 0

� �
x1
x2

� �
þ 0

1

� �
ap þ

0

�1

� �
as ð11Þ

where x1 and x2 are respectively the states of the clearance

and relative speed acquired from the front radar; ap and as
are the mean accelerations of the foregoing and subject

vehicle, respectively. In order to formulate the sliding

mode observer, the output—y—is defined using observa-

tion matrix C as follows:

y ¼ C
x1
x2

� �
ð12Þ

where,

C ¼ 1 1½ �

We defined the observer equation to reconstruct the

relative acceleration as shown in Eq. (13). The recon-

structed relative acceleration was used to derive the upper

and lower limitations used in fault detection.

_̂x ¼ Ax̂þ Gv ð13Þ

where,

A ¼ 0 1

0 0

� �
; G ¼ 0

1

� �

The x̂ and v represent the estimated state and the dis-

continuous injection term, respectively. Coordinate trans-

formation was necessary to guarantee the sliding mode

observer’s convergence stability. We defined the transfor-

mation matrix with the observation matrix and its null

space matrix in the sliding mode observer. The coordinate

transformation is derived as follows:

xc ¼ Tcx ð14Þ

Tc ¼ nullðCÞ C½ �T ð15Þ

where C is the observation matrix and xc represents the

transformed state.

Then, we can derive the transformed space state equa-

tion using the given transformation and partitioned error

dynamics.

_xc ¼ TcAT
�1
c xc þ TcB ap � as

� �
ð16Þ

_e1 ¼ Ac;11e1 þ Ac;12ey þ Gc;1v

_ey ¼ Ac;21e1 þ Ac;22ey þ Gc;2v
ð17Þ

By defining the term of discontinuous injection as

shown in Eq. (18), the output error (ey) can exist on the

sliding surface: S ¼ ey : ey ¼ 0
� 	

.
Fig. 7 Fault detection architecture based on Multiple Sliding Mode

Observer
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v ¼ qsignðeyÞ ð18Þ

where q refers to the magnitude of the injection term.

According to the eta-reachability condition, the output

error can converge along the sliding surface with proper q.
Since the output error can converge to zero, the equivalent

output injection term can be derived as shown below.

veq ¼ �G�1
c;2Ac;21e1 ð19Þ

For the eigenvalue computation of the (1,1) element of

the partitioned system matrix in Eq. (16), TcAT
�1
c , is

required to verify the stability of e1, as follows:

Ac;11 � Gc;1Gc;2Ac;21 ¼ �1 ð20Þ

Since the quantity of the (1,1) element of the system

matrix, TcAT
�1
c , always has a - 1 value, the error

dynamics for estimating states are definitely stable. Using

the sliding mode observer designed in this section, the

performance evaluation for the acceleration reconstruction

was conducted using actual driving logs. The relative

acceleration reconstruction result obtained using real

driving data log is shown in Fig. 8. In Fig. 8a, we can

observe that the subject vehicle’s velocity is most likely to

affect the speed of the preceding vehicle. The reconstructed

relative acceleration result is presented in Fig. 8b. Fig-

ure 8c shows that the estimation errors for the state and

output have converged to zero in a finite period.

Based on the aforementioned state transformation and

stability check, the derived equivalent injection term is

found to be equal to relative acceleration by Eqs. (11) and

(13). In addition, the reconstructed relative acceleration has

been used to set the acceleration limits for fault detection.

veq ¼ ap � as ¼ arel;r ð21Þ

Assuming that the delay effect of the environment

sensor is negligible, the final output of radar is used by the

sliding mode observer. In the cases of other environment

sensors, such as lidar and vision, since they may have a

sensing delay that influences the operation performance,

we need to devise an algorithm to cope with the delay

problem. In order to obtain the upper and lower accelera-

tion bounds to perform fault detection, the host vehicle’s

acceleration for x-direction was calculated using the fol-

lowing equation:

as ¼ ap � arel;r ð22Þ

where arel;r is the reconstructed relative acceleration. If the

host vehicle and preceding vehicle are connected with

vehicle-to-vehicle (V2V) communication, accurate accel-

eration information of the preceding vehicle can be

obtained. In this study, the algorithm was designed to

obtain information of the foregoing vehicles collected by

environment sensor-based recognition without a

communication connection. Therefore, the acceleration of

the preceding vehicle was estimated by using the relative

distance and speed information obtained from the radar.

(a) Velocity profiles

(b) Reconstructed relative acceleration

(c) State estimation result

(d) State and output errors

Fig. 8 Evaluation results for relative acceleration reconstruction

based on actual driving data
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In addition, in order to identify and apply the charac-

teristics of vehicle acceleration, the probabilistic distribu-

tion of longitudinal acceleration was derived from the

actual driving data of the foregoing vehicle’s acceleration.

In a previous paper, we conducted acceleration analysis

using 16 sets of driving data under typical low speed

driving conditions (0 * 25 m/s) to derive the character-

istics of normal acceleration distribution. By analyzing the

acceleration data obtained from that study, the average

value of acceleration from all driving data is 0.0728 with a

standard deviation of 0.6698 m/s2 (Oh and Yi 2017). Based

on this mean and standard deviation, we can estimate the

upper and lower limits to define the allowable acceleration

range.

as;upper ¼ ap;þ3r � arel;r

as;lower ¼ ap;�3r � arel;r
ð23Þ

By applying three standard deviations (3r) for the upper
and lower acceleration limits, the range of 3-sigma bounds

is guaranteed to cover 99.7% of the sample population. If

the longitudinal acceleration measured by the in-vehicle

sensors of autonomous vehicle lies within the upper and

lower bounds, the algorithm determines that the accelera-

tion sensor has not failed. However, if the measured ax falls

outside of the calculated limits, the proposed algorithm

determines that the acceleration sensor is defective. The

fault detection results obtained using a single sliding mode

observer (SMO) are shown in Fig. 9a (Oh and Yi 2017)

By using several sliding mode observers with stored

prediction results of state estimation, we can reconstruct

multiple relative acceleration to produce several upper and

lower bounds of longitudinal acceleration for use in fault

detection. Based on these multiple acceleration limits, it is

possible to define a reasonable acceleration range for the

current vehicle. Although more reconstructed accelerations

can make various allowable ranges, in this study, five

SMOs were designed and applied using data stored prior to

three, six, nine, 12, and 15 steps for computation efficiency.

Since the reliability of the stored data decreases over a

longer period, the appropriate acceleration fault index was

derived by applying a weighting array (W) of the data over

time as follows:

IA ¼
Xnp
k¼1

wi � fa;i ði ¼ 3k � 2Þ ð24Þ

where

W ¼ w1 w2 � � � wnp

� � Xnp
i¼1

wi ¼ 1

 !

The fa;i is a logical value if the current acceleration is

out of the ax range defined in the ith previous step. The np
is the number of sliding mode observers designed, and we

use the value of six in this study. The wi is the i-th com-

ponent of the weighting array, and is defined as a high

weight for values near the current. In this study, the

weightings were set to be reduced by 5% per three pre-

dicted steps from current step k. Figure 9b describes the

multi sliding mode observer-based ax fault detection.

(a) Single SMO-based acceleration limits

(b) Multi SMO-based acceleration limits

Fig. 9 Acceleration limits: normal driving (with 3r)
Fig. 10 Fault detection concepts of relative values by using stored

prediction states
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Figure 9 Acceleration limits: normal driving (with 3r).
If there are no signal faults in the acceleration sensor,

the measured information of acceleration should be within

the range of the 3r limits calculated in Eq. (22).

In order to detect environment sensor faults, we used the

N-step prediction result of MPC described in the previous

section. On the left side of Fig. 10, each column represents

an MPC solution calculated at the time of the blue or gray

painted box. The blue box at the bottom of the left column

is the control input calculated at present, while the white

box column directly above it represents the predicted

control input of the N-step prediction horizon calculated

through MPC. Likewise, the second column from the left

shows the result of accumulating MPC solutions calculated

from the previous k-1 step, and the longer the vertical rows

further to the right are, the farther the solution will be from

the past. In this study, we aim to diagnose faults by using

control inputs computed based on a current point-in-time

basis to determine whether they exist within the range of

proper acceleration calculated through reconstructed

accelerations. Thus, a horizontal line containing red col-

ored boxes means refers to predicted control input of the

current point-in-time basis among the predictions of

accumulated past MPC solutions. For example, among the

predictions made at the time of the past (k-1) step, the

second value from the bottom of the column is the value of

interest in the present time base. Similarly, among the

prediction results at the past (k-N) step, the (N ? 1)th

value from the bottom is the value of interest. Therefore,

the blue and red boxes enclosed by the dashed red line are

used to determine whether they exist in the appropriate

acceleration range.

For the fault detection of the relative values of x1 and x2,

we calculated the limits of each state according to the

analysis of the derived acceleration distribution. If the

measured states are within the predicted upper and lower

bounds, it is determined that there is no fault. Meanwhile,

if at least one measured state is not located in the range of

the predicted bounds, it is determined that unexpected fault

signals exist. The concept of the fault detection of relative

values with predicted limits is described on the right side of

Fig. 10.

In this study, in order to identify the fault of the envi-

ronment sensor such as a radar, we proposed an index that

reflects the fault ratio. The fault ratio is a ratio in terms of

the accumulated and predicted states. Therefore, the fault

index (IR) of relative values, relative distance, and relative

velocity obtained from the front environment sensor can be

derived as follows:

IR ¼ Nf

N
ð25Þ

where N is the number of prediction steps and Nf is the

number of faults computed using Fig. 10.

The fault indices of the radar and acceleration sensor

defined earlier have values between 0 and 1. In order to

diagnose the sensor status using the derived indices (IA,

IR;x1 , IR;x2 ), a suitable level of threshold indices is required.

It is necessary to minimize the rate of false-positives of

fault detection by properly setting the threshold values. In

order to analyze the false-positive characteristics of the

fault indices, the proposed algorithm was applied to 27 sets

of normal driving data. The driving data were stored under

relatively low traffic congestion and a smooth changing

speed profile. As shown in Fig. 11, the simulation result

based on normal driving data show that no fault index was

produced for approximately 94% of the total simulated

time, while false-positives occur for the remaining 6% of

the total simulation period, as shown in Fig. 11. The sim-

ulation results that accounted for this 6% were analyzed to

produce the statistical characteristics of false-positive

indices. Figure 12 and Table 1 summarize the statistical

analysis of false-positives based on driving data. In this

study, we intend to introduce the scheme of effective fault

diagnosis by introducing the concept of confidence level

counting, and we use the average and standard deviation

values obtained prior to determining the suitability of the

fault index. In this study, the statistical characteristics of

vehicle acceleration are used to limit the valid range of

accelerations, which results in false-positive diagnosis

in situations such as abrupt deceleration or acceleration.

Therefore, in order to prevent such misdiagnosis, the

concept of the confidence level of the fault index is

introduced.

if Ij �EðIjÞ þ rðIjÞ
ConfidIj½k� ¼ ConfidIj½k�1� þ 1

else

ConfidIj½k� ¼ ConfidIj½k�1� � 1

end

ð26Þ

Fig. 11 Probability distribution of fault indices result for each state

obtained from 27 normal driving data with no fault
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where j ¼ A; Rx1 ;Rx2 and k is the current step. The EðIjÞ
and rðIjÞ are the expectation and standard deviation of each
fault index, respectively. With this fault confidence, we can

determine the fault of each sensor by comparing the fault

confidence with the designated threshold: ten for this study.

Since the proposed algorithm operates on given systems

with 100 Hz rates, it is possible to detect failures within a

minimum of 100 ms due to the set threshold. If the

behavior information of the foregoing vehicle is obtained

using vehicle-to-vehicle communication, the evaluation

criteria of confidence can be reduced, which will facilitate

accurate and fast diagnosis. Furthermore, it is necessary to

take into account the variation in the confidence level

during the time period of acceleration and deceleration; the

sampling time of the overall system and each sensor should

be considered when implementing the threshold into the

actual system.

By applying these proposed algorithms, the next section

presents the performance evaluation via actual manual

driving data with reasonable fault signals.

5 Simulation-based performance evaluation
using actual driving data

In order to conduct a reasonable evaluation of the proposed

algorithm, we used real driving logs. The actual data were

obtained from a long-range radar installed in the front of

the automated vehicle, along with an acceleration sensor.

Additionally, appropriate fault signals, such as step, hold,

and zero, were applied to the data for the performance

evaluation. All of the simulations were conducted using

Fig. 12 Histogram of fault indices for false-positive cases only

Table 1 Statistical analysis of fault indices (IA, I R,x1, IR,x2) under

normal driving conditions

IA IR,x1 IR,x2

Mean 0.44431 0.38411 0.45135

Standard deviation 0.23698 0.25811 0.26806

Fig. 13 Model schematics for performance evaluation based on 3D

full vehicle model

Table 2 Parameters used in performance evaluation

Symbol Meaning Value

N Prediction step of MPC 20

Dt Sampling time [s] 0.1

ax;mean Statistical mean of longitudinal acceleration 0.0728

ax;stdev Statistical standard deviation of longitudinal acceleration 0.6698

�R Input weighting matrix 5,000,000

aupper;l im Maximum limit of acceleration 3

alower;l im Minimum limit of acceleration - 3

W Weighting array by prediction time [0.2857, 0.2381, 0.1905, 0.1429, 0.0952, 0.0476]

Table 3 Simulation conditions of offset fault signal injection

Data no. x1, x2 ax Result plot

Data-1 (normal) – – Figure 14

Fault – Figure 15

– Fault Figure 16

Fault Fault Figure 17

Data-2 (normal) – – Figure 19

Fault – Figure 20

– Fault Figure 21

Fault Fault Figure 22

Data-3 (abrupt deceleration) – – Figure 24
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 14 Fault diagnosis results with fault injection: data 1, Normal (No fault)
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 15 Fault diagnosis results with fault injection: data 1, offset fault signals of relative values [x1, x2]
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 16 Fault diagnosis results with fault injection: data 1, offset fault signal of acceleration [ax]
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 17 Fault diagnosis results with fault injection: data 1, offset fault signal of both relative values [x1, x2] and acceleration [ax]
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actual driving data. The radar sensor used in this research

for foregoing vehicle perception is the Delphi ESR model.

It has a scanning rate of 20 Hz (50 ms), and the radar

signal is received via the CAN network (100 Hz sampling

rate) of the test vehicle system. The acceleration signal

used in this study is obtained from the in-vehicle sensor

through the CAN network. Figure 13 illustrates the model

schematics for the performance evaluation. The specific

values used in this proposed algorithm are listed in Table 2.

According to the description so far, it has been shown

that the sliding mode observer can successfully reconstruct

the relative longitudinal acceleration, even in spite of the

unexpected characteristics of signal faults for the acceler-

ation. In addition, the injected offset signal of the accel-

eration and relative values can be detected using the

proposed fault detection concept. In this simulation, the

injection offsets for the three signals [x1, x2, ax] were set as

follows: x1 offset magnitude, ? 4; x2 offset magnitude,

- 10; and ax offset magnitude, ? 4. The offset fault signal

was applied from 40s to 60s. Table 3 shows the classifi-

cation of the four combination cases of fault injection for

each of the two driving data. In particular, data with an

abrupt deceleration of maximum -2.5 m/s2 were used to

verify the robustness of this algorithm in the case of a rapid

deceleration situation of the preceding vehicle. The last

column in Table 3 shows the figure number of each eval-

uation result.

According to this classification table, Figs. 14, 15, 16,

17, 18, 19, 20 and 21 depict the performance evaluation

result based on actual driving data of normal condition.

Figure 18 describes the driving data characteristics and

signals obtained from MPC to adapt fault detection. The x1
and x2 indicate the state variables: the clearance and rela-

tive speed between the subject and the front target vehicle.

The characteristics of the injected offset fault signals and

the error calculation of state estimation are depicted in sub-

figures (a) and (b). In sub-figure (c), the predictive fault

detection results of the relative values of displacement and

speed are represented by a contour plot. The acceleration

diagnosis results are shown in sub-figure (d) and Fig. 25.

The fault indices of each designated state of the above steps

are described in sub-figure (e) as a fault index between 0

and 1. The final fault detection results are shown in sub-

figure (f) as a logical value (0 or 1) for each sensor, as

described in the previous section. Figure 23 describes the

data characteristics of an abrupt deceleration of the pre-

ceding vehicle in the forms of velocity and acceleration

profiles. Figure 24 shows the performance of the proposed

fault detection and diagnosis algorithm under a sudden

deceleration of the foregoing vehicle. The upper and lower

limits of acceleration for each case are depicted in Fig. 25.

Data-1: Figs. 14, 15, 16, 17 (Normal Driving)

Data-2: Figs. 18, 19, 20, 21, 22 (Normal Driving)

Data-3: Figs. 23, 24 (Abrupt Deceleration)

The driving data-based simulation results of the proposed

fault detection algorithm confirmed its enhanced

(a) Velocity Profiles

(b) MPC solution of longitudinal acceleration

(c) Prediction resulted from MPC

0 20 40 60 80

t [sec]

-2

0

2

[m
/s

]

Prediction of x2 (relative velocity)

Measured relative velocity

Fig. 18 Data characteristics (Data-2) and solutions obtained from

MPC
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 19 Fault diagnosis results with fault injection: data 1, Normal (no fault)
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 20 Fault diagnosis results with fault injection: data 1, offset fault signals of relative values [x1, x2]
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

Fig. 21 Fault diagnosis results with fault injection: data 1, offset fault signal of acceleration [ax]
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(e) Fault index [x1, x2, ax]

(f) Fault Decision [acceleration sensor, radar]

(d) Individual fault index for acceleration

Fig. 22 Fault diagnosis results with fault injection: data 2, offset fault signal of both relative values [x1, x2] and acceleration [ax]
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performance in various driving situations. Two cases of

manual driving data were applied to the simulation test.

The offset fault signals are injected to the acceleration and

relative values in terms of the front target during a few

seconds with the three combinations shown above in

Table 3.

The applied fault signals were detected using the pre-

dictive algorithm, then finally, the fault indices for each

value were calculated to diagnose fault. In most cases, the

logical decision of each sensor presented rational fault

diagnosis results, as shown in sub-figure (f), with regard to

fault indices (IA, IR,x1, IR,x2), respectively. In sub-figure (e)

in each of Figs. 15, 17, 20, and 22, for the fault detection

performance of state x2, the injected offset signal was not

clearly detected. Since x1 represents the integral of the state

x2, it was expressed that the state x1 was relatively better

detected than x2. However, compared to the results of a

previous study with regard to applying the linear prediction

of states, it can be seen that the detection performance of x2
is significantly improved. As the predicted relative states

from MPC reflect the results of the optimal solution for

longitudinal control, it is considered to be more reasonable

than using simple linear prediction. Despite the low

detection estimation performance of x2, the radar sensor

can be reasonably diagnosed, because the fault detection

performance of x1 is quite accurate. Moreover, the applied

acceleration faults were successfully detected based on the

multiple reconstructed upper and lower limits of the

acceleration by applying a multi sliding mode observer. In

Figs. 16, 17, 21, and 22, the acceleration fault is well

detected and isolated, despite the fact that it was simulta-

neously applied with other fault signals. In addition, the

acceleration can only be detected if the magnitude of the

applied fault is larger than the magnitude of 3r in sub-

figure (c) in each of Figs. 16, 17, 21, and 22. As shown in

Fig. 23, the data-3 produced an abrupt deceleration of the

preceding vehicle around 20s, and this data was used to

confirm the performance of the proposed algorithm in

terms of avoiding false positives. Although no fault was

injected, the fault indices were calculated due to the rapid

behavior of the preceding vehicle as shown in Fig. 23.

However, the introduction of confidence counting concept

avoided misdiagnosis. As shown in Fig. 24e and f, the fault

index error occurred because of a rapid deceleration at 20s,

but no misdiagnosis occurred as there was no excess con-

fidence threshold. This allows the proposed algorithm to

achieve reliable fault detection performance even if the

preceding vehicle is outside of the normal acceleration

distribution.

Thus, the injected fault signals are considered to be

detected properly using data accumulation of predicted

states from MPC as well as several acceleration limits from

the multiple sliding mode observer. The next section pre-

sents the conclusion summarized from this research,

including suggested future work.

6 Conclusion

A model predictive control-based fault detection and

reconstruction algorithm for the longitudinal control of

autonomous driving using a multi-sliding mode observer

has been presented in this paper. A reasonable failure

detection scheme for the acceleration signal of the host

vehicle and the relative values of the front object of the

radar was proposed. The multi-sliding mode observer and

prediction of the model predictive control (MPC) algorithm

were applied in this research. The sliding mode observer

was used to reconstruct the relative acceleration from the

clearance and relative velocity as measured by radar. The

upper and lower limits of longitudinal acceleration were

calculated according to the probabilistic distribution of the

vehicle acceleration data obtained from real-road driving

data. By defining a proper acceleration range based on

several reconstructed upper and lower limits by using a

multiple sliding mode observer with stored prediction data

of relative values, the proposed algorithm was able to

effectively detect the acceleration sensor fault. By applying

model predictive control, the relative values of the target

(a) Velocity Profiles

(b) Acceleration Profile of Preceding Vehicle

Fig. 23 Data characteristics of abrupt deceleration (data-3)
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(a) Applied fault signal [x1, x2, ax] (x1: clearance, x2: relative 
velocity)

(b) State [x1, x2] and output [y] estimation error

(c) Predictive diagnosis result [x1, x2]: prediction-actual time 
plane

(d) Individual fault index for acceleration

(e) Fault index [x1, x2, ax]

(f) Confidence of Fault index [x1, x2, ax]

(g) Fault Decision [acceleration sensor, radar]

Fig. 24 Fault diagnosis results with abrupt deceleration: data 3, normal (no fault)

260 Microsystem Technologies (2020) 26:239–264

123



(a) Acceleration Limits: Data 1 (Normal Driving): No fault

(b) Acceleration Limits: Data 1 (Normal Driving): offset fault signals of relative values [x1, x2]

(c) Acceleration Limits: Data 1 (Normal Driving): offset fault signal of acceleration [ax]

(d) Acceleration Limits: Data 1 (Normal Driving): offset fault signals of both relative values [x1, x2] and acceleration [ax]

Fig. 25 Reconstructed upper and lower limits of relative acceleration
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(e) Acceleration Limits: Data 2 (Normal Driving): No fault

(f) Acceleration Limits: Data 2 (Normal Driving): offset fault signals of relative values [x1, x2]

(g) Acceleration Limits: Data 2 (Normal Driving): offset fault signal of acceleration [ax]

(h) Acceleration Limits: Data 2 (Normal Driving): offset fault signals of both relative values [x1, x2] and acceleration [ax]

Fig. 25 continued
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could be predicted in consideration of the optimal control

input, and the results were more reasonable than those

using linear prediction. By comparing the stored predic-

tions of relative states with the accumulated data of current

states for a designated period, the signal faults of the lon-

gitudinal target information from the environment sensor—

in this study, the radar—could be detected. Using the

predictive diagnostic algorithm, the fault index that can

quantitatively represent the ratio of fault was proposed for

the evaluation of the system health diagnosis. It was dif-

ficult to cope with the extreme motion of the foregoing

vehicle because only a statistical distribution of normal

driving acceleration was used to determine the allowable

range of relative states. Nevertheless, the confidence

counting method enabled reasonable fault diagnosis with-

out misdiagnosis in the event of rapid deceleration or

acceleration of the front vehicle. In order to conduct a

reasonable performance evaluation, three sets of actual

driving data from a test vehicle and a 3D full vehicle model

constructed in the MATLAB/Simulink environment were

used. The simulation results revealed that the proposed

algorithm can be used to rationally detect and isolate the

applied fault. Moreover, the proposed algorithm was con-

firmed by simulation to prevent false-positives by using

driving data including abrupt deceleration of the preceding

vehicle. In this study, the scheme of confidence level

counting was introduced to address the limitations of the

data-based statistical approach for fault detection. If the

acceleration of the preceding vehicle is obtained through

V2V communication, it is expected to enhance reliability.

Based on the obtained acceleration of the preceding vehi-

cle, the acceleration of the subject vehicle can be reason-

ably reconstructed with communication noise and delay.

Moreover, a proper threshold value considering commu-

nication noise and delay is necessary to achieve a reliable

decision of fault confidence level. In addition, each envi-

ronment recognition sensor has a different scan rate and

time delay, so an appropriate approach considering those

sensor characteristics is planned as future work. The topic

of our future research is a fault detection algorithm for

various environment cognitive sensors. Furthermore, by

handling the fault detection results of each environment

sensor, the enhanced fault diagnose algorithm can be

designed to improve the reliability of the autonomous

driving system.
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