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Abstract
We investigate the effect of rotation on plane wave propagation in a half-space of a piezo-thermoelastic material within the

frame of dual-phase-lag model. Normal mode technique is used to obtain analytic expressions for the displacement

components, temperature and stress components. Numerical results for the quantities of practical interest are given in the

physical domain and illustrated graphically. Comparison is carried out between the results predicted by the dual-phase-lag

model and Lord–Shulman theory, in the presence or absence of rotation. It is believed that the present results may be useful

in the design and construction of different pyro/piezoelectric devices, such as gyroscopes and sensors.

List of symbols
ui The mechanical displacement

T Absolute temperature

rij Stress tensor

Ei Electric field

Cijkl Elastic stiffness tensor

2ij The dielectric moduli

sh Phase lag of temperature gradient

Kij Heat conduction tensor

CT Specific heat at constant strain

a1; a3 Coefficients of linear thermal expansion

vp ¼
ffiffiffiffiffiffiffiffiffiffi

1
qC11

q

, Longitudinal wave velocity

u Electric potential

eij Strain tensor

bij Thermoelastic tensor

Di Electric displacement

eijk Piezoelectric tensor

pi Pyroelectric moduli

sq Phase lag of the heat flux

T0 Reference temperature

q Mass density

1 Introduction

The design and construction of piezoelectric gyroscopes

and other rotating sensors have important applications in

technology. The study of the effects of rotation on the

propagation of waves in piezo-thermoelastic media has

been extensively studied in the past two decades.

The theory of thermo-piezo-electricity was first pro-

posed by Mindlin (1974). Ahmed et al. (2019) applied

dual-phase-lag model to study the effect of gravity on

piezo-thermoelastic half-space medium by using normal

mode analysis method. Othman and Ahmed (2015) inves-

tigated the effect of rotation of a piezo-thermoelastic

medium based on three theories (CT, L–S, G–L). Othman

and Ahmed (2016) used normal mode analysis method to

investigate the influence of the gravitational field on a

piezo-thermoelastic rotating medium with G–L Theory.

Schoenberg and Censor (1973) investigated an elastic

waves in rotating media. Alshaikh (2012) presented the

mathematical modelling for studying the influence of the

initial stresses and relaxation times on reflection and

refraction waves in piezothermoelastic half-space. The

effects of piezoelectricity and piezomagnetism on the

surface wave velocity of magneto-electroelastic solids has

been investigated by Li and Wei (2014). Othman (2004)

studied the effect of rotation on plane waves in generalized

thermoelasticity with two relaxation times. Othman et al.

(2013) studied the influence of gravity field and rotation on

a generalized thermoelastic medium using dual-phase-lag

model. Kumar et al. (2018) discussed the reflection of

plane waves at a free surface of orthotropic micropolar
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piezothermoelastic medium. Sharma and Kumar (2000)

studied the plane harmonic waves in piezo-thermoelastic

materials. Abbas and Zenkour (2014) used a finite element

method to study dual-phase-lag model on thermoelastic

interactions in a semi-infinite medium subjected to a ramp-

type heating. Abou-Dina et al. (2017) studied the model of

nonlinear thermo-electroelasticity in extended thermo-

electroelasticity in extended thermoelasticity. Mahmoud

(2016) presented an analytical solution for the effect of

initial stress, rotation, magnetic field and periodic loading

in a thermoviscoelastic medium with a spherical cavity.

Othman et al. (2017) studied the influence of magnetic

field on generalized piezo-thermoelastic rotating medium

with two relaxation times. Quintanilla and Racke (2006)

compared two different mathematical hyperbolic models in

dual-phase-lag, heat conduction proposed by Tzou, and

found the parameter regions where stability can be

expected. The theory of thermoelasticity with dual phase-

lag effects has been used by Roy Choudhuri (2007) to

study the problem of one-dimensional disturbance in an

elastic half-space with its plane boundary subjected to a

constant step input of temperature and zero stress, or a

constant step input of stress and zero temperature. Singh

et al. (2017) solved the governing equations of transversely

isotropic dual-phase-lag, two-temperature thermoelasticity

for the surface waves. Ciesielski (2017) discussed the

considerations concerning the analytical solution of DPL

equation in the one-dimensional bounded domain. Hou and

Leung (2009) studied three-dimensional Green’s functions

for two-phase transversely isotropic piezothermoelastic

media. The reflection and refraction of plane quasi-longi-

tudinal waves at an interface of two piezoelectric media

under initial stresses discussed by Abd-Alla and Alsheikh

(2009). Othman et al. (2014) studied the effect of rotation

on micro-polar generalized thermoelasticity with two-

temperatures using a dual-phase-lag model.

In the present paper, the dual-phase-lag model is applied

to study the effect of rotation on a half-space filled with a

piezo-thermoelastic medium. The normal mode analysis is

used to obtain an exact analytical solution for the dis-

placement components, the stress, the strain components,

the temperature, the electric potential and the electric dis-

placement. Comparison of the results is carried out with

those obtained from Lord and Shulman theory, to assess the

effect of rotation on wave propagation. The present results

may be of interest in the design and construction of dif-

ferent pyro/piezoelectric devices, such as sensors and

gyroscopes involving piezoelectric components.

2 Problem formulation

2.1 Basic equations

Consider a homogeneous, generalized piezo-thermoelastic

half-space ðx; y; z� 0Þ, rotating uniformly with an angular

velocity about a fixed axis in space with angular velocity

X ¼ Xn; where n is a unit vector Fig. 1. All considered

functions depend on the time variable t and the spatial

coordinates x and z. The equation of motion has two

additional terms representing Coriolis force and the cen-

tripetal acceleration (Schoenberg and Censor 1973). In

what follows, we consider a rotation about the y-axis, so

that X ¼ ð0;X; 0Þ.
The governing two-dimensional field equations for a

homogeneous, generalized anisotropic piezo-thermoelastic

solid belonging to a hexagonal crystallographic symmetry

class are expressed as (see Sharma and Kumar 2000):

1. Strain-displacement relations

ei;j ¼
1

2
ui;j þ uj;i
� �

: ð1Þ

2. Generalized Hooke’s law

rij ¼ Cijklekl � ekijEk � bijT ð2Þ

3. Equation of motion

qfu�� i þX� ðX� uÞ þ ð2X� u
� Þi ¼ rij;j ð3Þ

4. Equation of electrostatics

Di;i ¼ 0; ð4Þ

5. Electric constitutive equation

Di ¼ eijkejk þ �ijEj þ piT ð5Þ

with

Fig. 1 Geometry of the problem and direction of rotation
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Ei ¼ �u;i; ð6Þ

u being the electric potential.

6. Heat conduction equation in dual-phase-lag model for

a piezoelectric material may be expressed as (see Tzou

1995, Aouadi 2006):

1 þ sh
o

ot

� �

kijT;ij ¼ 1 þ sq
o

ot

� �

½qCT
_T þ T0ðbiju

�
i;j � Piu

�
;iÞ�:

ð7Þ

In the following, we denote C1111;C1133;C3333;C2323 by

C11;C13;C33;C44 respectively for simplicity.

For the hexagonal (6 mm) crystallographic class under

consideration, the constitutive relations are given in com-

ponents by (Sharma and Kumar 2000) as:

rxx ¼ C11exx þ C13ezz � e31Ez � b1T ; ð8Þ

rzz ¼ C13exx þ C33ezz � e33Ez � b3T; ð9Þ

rxz ¼ 2C44exz � e15Ex; ð10Þ

Dx ¼ e15ðu;z þ w;xÞ þ �11Ex; ð11Þ

Dz ¼ e31u;x þ e33w;z þ �33Ez þ P3T : ð12Þ

2.2 Boundary conditions

The governing equations will be solved in a half-space

ðx; y; z� 0Þ under the following boundary conditions:

1. Mechanical boundary conditions:

rzzðx; 0; tÞ ¼ f1ðx; tÞ ¼ �f �1 e
iaðx�ctÞ; rxzðx; 0; tÞ ¼ 0;

ð13Þ

2. Thermal boundary condition:

Tðx; 0; tÞ ¼ f2ðx; tÞ ¼ f �2 e
iaðx�ctÞ; ð14Þ

where f1ðx; tÞ and f2ðx; tÞ are arbitrary functions of

(x, t), f �1 ; f
�
2 are constants, a is the wave number in the

x-direction and x ¼ ac is the frequency.

3. Electrical boundary condition:

ou
oz

ðx; 0; tÞ ¼ 0: ð15Þ

We consider a homogeneous, anisotropic, piezo-thermoe-

lastic half-space of hexagonal type under the influence of

the rotation.

The basic system of field equations (3), (4) and (7) for

temperature change T(x, z, t), displacement vector

uðx; z; tÞ ¼ ðu; 0;wÞ; and electric potential uðx; z; tÞ; is

given by:

C11u;xx þ C44u;zz þ ðC13 þ C44Þw;xz

þ ðe31 þ e15Þu;xz � b1T;x

¼ qðu�� � X2uþ 2Xw
� Þ;

ð16Þ

ðC13 þ C44Þu;xz þ C44w;xx þ C33w;zz þ e15u;xx þ e33u;zz

� b3T;z ¼ qðw�� � X2w� 2Xu
� Þ;

ð17Þ

ðe15 þ e31Þu;xz þe15w;xx þ e33w;zz � �11u;xx

� �33u;zz þ P3T;z ¼ 0;
ð18Þ

1 þ sh
o

ot

� �

ðk1T;xx þ k3T;zzÞ ¼ 1 þ sq
o

ot

� �

½qCTT
�
þ T0ðb1u;x

� þ b3w;z
� � P3u;z

� Þ�
ð19Þ

The following non-dimensional quantities are introduced

for convenience:

x0 ¼ x�

vp
x; z0 ¼ x�

vp
z; u0 ¼ qx�vp

b1To
u; w0 ¼ qx�vp

b1To
w;

T 0 ¼ T

To
; r0ij ¼

rij
b1To

; u0 ¼ epu; ft0; s0h; s0qg ¼ x�ft; sh; sqg;

D0
i ¼

Di

e
; X0 ¼ X

x� ;

where

x� ¼ CTC11

K11

; ep ¼
x�e33

vp
b1T0;

b1 ¼ C11 þ C12ð Þa1 þ C13a3; b3 ¼ 2C13a1 þ C33a3:

Using the non-dimensional quantities, system (16)–(19)

recasts in the following form after suppressing the primes

d1u;xx þ d2u:zz þ d3w;xz

þ d4u;xz � T;x ¼ u
�� � X2uþ 2Xw

� ð20Þ

d3u;xz þ d2w:xx þ d5w;zz

þ d6u;xx þ u;zz þ d7T;z ¼ w
�� � X2w� 2Xu

� ð21Þ

d8u;xz þ d9w:xx þ d10w;zz þ d11u;xx

þ d12u;zz þ d13T;z ¼ 0
ð22Þ

1 þ sh
o

ot

� �

d14T;xx þ d15T;zz
� �

¼ 1 þ sq
o

ot

� �

T
�
þ d16u

�
;x þ d17w

�
;z � d18u

�
;z

� �

ð23Þ

3 Solution of the problem

The solution of the considered physical quantities can be

decomposed in terms of normal modes in the following

form
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½u;w;u; T�ðx; z; tÞ ¼ ½u�;w�;u�; T��ðzÞeiaðx�ctÞ; ð24Þ

where u�;w�;u� and T� are the amplitudes of the functions

u;w;u and T, respectively. Thus our solution represents

progressive waves propagating parallel to the boundary of

the half-space, with amplitude decaying in depth.

Substituting from Eq. (24) into Eqs. (20)–(23), and

denoting D ¼ d
dz
; we get

ðD2 þ A1Þu� þ ðA2Dþ A3Þw�

þ A4Du
� þ A5T

� ¼ 0;
ð25Þ

ðA6Dþ A7Þu� þ ðD2 þ A8Þw� þ ðA9D
2

þ A10Þu� þ A11DT
� ¼ 0;

ð26Þ

A12Du
� þ ðD2 þ A13Þw�

þ ðA14D
2 þ A15Þu� þ A16DT

� ¼ 0;
ð27Þ

A17u
� þ A18Dw

�

þ A19Du
� þ ðD2 þ A20ÞT� ¼ 0:

ð28Þ

where Aj; j ¼ 1; 2; . . .; 20 are given in Appendix A

Equations (25)–(28) have a non-trivial solution only if

the determinant of the coefficients of the above linear

system vanishes. Then

ðD8 � AD6 þ BD4 � CD2 þ EÞfu�ðzÞ;w�ðzÞ;
u�ðzÞ; T�ðzÞg ¼ 0;

ð29Þ

where A, B, C and E are given in Appendix A.

Equation (29) can be factored as:

ðD2 � k2
1ÞðD2 � k2

2ÞðD2 � k2
3ÞðD2 � k2

4Þfu�ðzÞ;
w�ðzÞ;u�ðzÞ; T�ðzÞg ¼ 0:

ð30Þ

The solutions of equations (29), which are bounded as z !
1 are given as:

u� ¼
X

4

n¼1

Mne
�knz; ð31Þ

w� ¼
X

4

n¼1

H1nMne
�knz; ð32Þ

u� ¼
X

4

n¼1

H2nMne
�knz; ð33Þ

T� ¼
X

4

n¼1

H3nMne
�knz; ð34Þ

where k2
n; ðn ¼ 1; 2; 3; 4Þ are the roots of the characteristic

equation of Eq. (29).

Inserting Eqs. (31)–(34) into Eqs. (8)–(12), after making

dimension analysis, in the frame of the normal mode

method, one obtains

r�xx ¼
X

4

n¼1

H4nMne
�knz; ð35Þ

r�zz ¼
X

4

n¼1

H5nMne
�knz; ð36Þ

T�
xz ¼

X

4

n¼1

H6nMne
�knz; ð37Þ

D�
x ¼

X

4

n¼1

H7nMne
�knz; ð38Þ

D�
z ¼

X

4

n¼1

H8nMne
�knz; ð39Þ

where Hjn; j ¼ 1; :::; 8; n ¼ 1; 2; 3; 4 are given in Appendix

B.

Applying the boundary conditions (13)–(15) to deter-

mine the coefficients Mnðn ¼ 1; 2; 3; 4Þ; we obtain

X

4

n¼1

H5nMn ¼ �f �1 ; ð40Þ

X

4

n¼1

H6nMn ¼ 0; ð41Þ

X

4

n¼1

H3nMn ¼ f �2 ; ð42Þ

X

4

n¼1

knH2nMn ¼ 0: ð43Þ

Solving Eqs. (40)–(43) for Mnðn ¼ 1; 2; 3; 4Þ by the inverse

matrix method as follows:

M1

M2

M3

M4

0

B

B

B

@

1

C

C

C

A

¼

H51 H52 H53 H54

H61 H62 H63 H64

H31 H32 H33 H34

k1H21 k2H22 k3H23 k4H24

0

B

B

B

@

1

C

C

C

A

�1 �f �1
0

f �2
0

0

B

B

B

@

1

C

C

C

A

ð44Þ

Thus, we obtain an exact analytical formula for the dis-

placement vector components, the stress and the strain

tensors components, the temperature, the electric potential

and the electric displacement.

4 Numerical results and discussion

To study the effect of rotation, we will carry out some

numerical experiments. The material chosen for the pur-

pose of the numerical calculations is taken as Cadmium

Selenide (CdSe) having hexagonal symmetry (6 mm class).
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The following particular values for the parameters are

chosen as:

C11 ¼ 7:41 � 1010 Nm�2; C12 ¼ 4:52 � 1010 Nm�2;

C13 ¼ 3:93 � 1010 Nm�2; C33 ¼ 8:36 � 1010 Nm�2;

C44 ¼ 1:32 � 1010 Nm�2; T0 ¼ 298 K;

q ¼ 5504 kg m�3; CT ¼ 260 J kg�1 K�1:

e13 ¼ �0:160 Cm�2; e33 ¼ 0:347 Cm�2;

e15 ¼ �0:138 Cm�2;

b1 ¼ 0:621 � 106 Nk�1 m�2;

b3 ¼ 0:551 � 106 Nk�1 m�2;

P3 ¼ �2:94 � 106 Ck�1 m�2;

K1 ¼ K3 ¼ 9 Wm�1 K�1;

�11 ¼ 8:26 � 10�11C2N�1 m�2;

�33 ¼ 9:03 � 10�11C2N�1 m�2:

sq ¼ 0:9342 � 10�12 s;

sh ¼ 0:37371 � 10�12 s:

For these values, the characteristic time

1

x� ’ 0:4671 � 10�12 s

is in the range of picoseconds, while the characteristic

length is

vp

x� ’ 0:1714 � 10�8 m:

In applying the numerical technique outlined above, we are

interested in the real parts of the displacement vector

components u, w, the temperature T , the stress tensor

components rxx; rzz; rxz; the electric potential u and the

electric displacement components Dx;Dz. Here all vari-

ables are taken in non-dimensional form. The results are

shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10. The graphs

exhibit the curves predicted by L–S theory and DPL model.

In these figures, the solid lines represent the solution in the

dual-phase-lag model and dashed lines represent the solu-

tion derived using the generalized Lord and Shulman

theory.

These figures show a comparison between the values

assumed by the different functions of practical interest in

the absence of rotation (X ¼ 0) and for X ¼ 0:4. Com-

parison is also carried out between the results of DPL and

those from L–S. The computations are carried out for the

non-dimensional instant of time t ¼ 1:5 at x ¼ 0:1with

f �1 ¼ 1and f �2 ¼ 6. It follows from the presented fig-

ures that all the physical quantities suffer appreciable

variations only in a narrow slab 0� z� 1, while all quan-

tities practically vanish outside the slab 0� z� 2.

Figure 2 depicts the distribution of the displacement

u parallel to the boundary against z. It shows that this

displacement component wealky depends on rotation,

which amounts to adding a small positive displacement,

and is for the most part opposite to the direction of prop-

agation of the wave. The absolute value of this displace-

ment component for L–S is monotonically decreasing, and

exceeds that obtained from DPL.

Figure 3 illustrates the distribution of the in-depth dis-

placement w against z. Here, the effect of rotation is

appreciable, and amounts to adding a negative displace-

ment. Moreover, the absolute values obtained for this dis-

placement component are larger with DPL.

Figure 4 exhibits the behavior of temperature T against

z. As expected, the effect of rotation here is negligible. The

temperature for L–S is monotonic decreasing to zero, and

Fig. 2 Distribution of the horizontal component u of the displacement

vector at x ¼ 0:1, t ¼ 1:5, in the absence or presence of rotation

Fig. 3 Distribution of the vertical component w of the displacement

vector at x ¼ 0:1, t ¼ 1:5, in the absence or presence of rotation
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is smaller than that obtained from DPL in the neighborhood

of the boundary.

Figures 5, 6 and 7 show the distributions of the stress

tensor components rxx; rzz; rxz with z. The effect of rotation

is appreciable only for the last two components, while the

fluctuations of the three stress components are more

appreciable for DPL than for L–S.

Figures 8, 9 and 10 exhibit the distributions with z of the

electrical potential u and the two electric displacement

components Dx and Dz. The effect of rotation is appre-

ciable only for u and Dx within DPL, while it is negligible

otherwise. Here again, the fluctuations within DPL are

more pronounced for the first two functions as compared to

the corresponding results of L–S.

Figures 11, 12, 13, 14, 15, 16, 17, 18 and 19 exhibit the

3D plots of the solution in the (x, z) plane at t ¼ 1:5 for

DPL, in the presence of rotation (X ¼ 0:4).

5 Conclusions

The main purpose of the present work is to assess the effect

of rotation on a piezo-thermoelastic medium within dual-

phase-lag model. Comparison is carried out with the results

obtained from L–S. Normal mode analysis is used for the

Fig. 4 Temperature distribution T at x ¼ 0:1, t ¼ 1:5, in the absence

or presence of rotation

Fig. 5 Distribution of the stress component rxx at x ¼ 0:1, t ¼ 1:5, in

the absence or presence of rotation

Fig. 6 Distribution of the stress component rzz at x ¼ 0:1, t ¼ 1:5, in

the absence or presence of rotation

Fig. 7 Distribution of the stress component rxz at x ¼ 0:1, t ¼ 1:5, in

the absence or presence of rotation

974 Microsystem Technologies (2020) 26:969–979

123



solution of the mathematical problem, and the boundary

conditions are particulary chosen to fit the requirements of

such technique.

An exact analytical solution is obtained under these

limitations. According to this solution, all the physical

quantities tend to zero away from the boundary and all

functions are continuous.

The performed calculations at particular locations of the

half-space have revealed that the effect of rotation may

differ from one physical quantity to the other, and that

fluctuations of the different functions in the zone near the

boundary are more pronounced within DPL, than those

obtained from the L–S theory.

The presented results, in connection with experimental

measurements, may be useful in calculating numerical

values of different material parameters, and in assessing the

efficiency of the two considered theories.

A numerical treatment of the general system of equa-

tions and conditions governing the phenomenon may be

useful in getting rid of the limitations of the method of

normal modes’ technique and this task is actually in

progress.

Fig. 8 Distribution of the electric potential u at x ¼ 0:1, t ¼ 1:5, in

the absence or presence of rotation

Fig. 9 Distribution of the electric displacement component Dx at

x ¼ 0:1, t ¼ 1:5, in the absence or presence of rotation

Fig. 10 Distribution of the electric displacement component Dz at

x ¼ 0:1, t ¼ 1:5, in the absence or presence of rotation

Fig. 11 The distribution of the horizontal component u of the

displacement vector at t ¼ 1:5in the (x, z) plane calculated in the

frame of the DPL model with X ¼ 0:4
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Fig. 12 Distribution of the vertical component w of the displacement

vector at t ¼ 1:5 in the (x, z) plane calculated in the frame of the DPL

model with X ¼ 0:4

Fig. 13 Distribution of the temperature T at t ¼ 1:5in the (x, z) plane

calculated in the frame of the DPL model with X ¼ 0:4

Fig. 14 Distribution of the stress component rxx at t ¼ 1:5 in the

(x, z)plane calculated in the frame of the DPL model with X ¼ 0:4

Fig. 15 Distribution of the stress component rzz at t ¼ 1:5 in the (x, z)

plane calculated in the frame of the DPL model with X ¼ 0:4

Fig. 16 Distribution of the stress component rxz at t ¼ 1:5 in the (x, z)

plane calculated in the frame of the DPL model with X ¼ 0:4

Fig. 17 Distribution of the electric potential u at t ¼ 1:5in the (x, z)

plane calculated in the frame of the DPL model with X ¼ 0:4
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Appendices

Appendix A

d1 ¼ C11

qv2
p

; d2 ¼ C44

qv2
p

;

d3 ¼ ðC13 þ C44Þ
qv2

p

; d4 ¼ ðe31 þ e15Þ
e33

; d5 ¼ C33

qv2
p

;

d6 ¼ e15

e33

; d7 ¼ � b3

b1

;

d8 ¼ ðe15 þ e31Þ
qv2

p

; d9 ¼ e15

qv2
p

;

d10 ¼ e33

qv2
p

;

d11 ¼ � �11

e33

; d12 ¼ � �33

e33

;

d13 ¼ P3

b1

; d14 ¼ K1x�

qCTv2
p

;

d15 ¼ K3x�

qCTv2
p

;

d16 ¼ b2
1T0

q2CTv2
p

; d17 ¼ b1b3T0

q2CTv2
p

;

d18 ¼ �P3b1T0

qCTe33

:

and

A1 ¼ a2c2 � a2d1 þ X2

d2

; A2 ¼ iad3

d2

; A3 ¼ 2iacX
d2

;

A4 ¼ iad4

d2

; A5 ¼ �ia

d2

; A6 ¼ iad3

d5

; A7 ¼ �2iacX
d5

;

A8 ¼ a2c2 � a2d2 þ X2

d5

; A9 ¼ 1

d5

; A10 ¼ � a2d6

d5

;

A11 ¼ d7

d5

; A12 ¼ iad8

d10

; A13 ¼ � a2d9

d10

; A14 ¼ d12

d10

;

A15 ¼ � a2d11

d10

; A16 ¼ d13

d10

; A17 ¼ � a2cd16ð1 � iacsqÞ
d15ð1 � iacshÞ

;

A18 ¼ iacd17ð1 � iacsqÞ
d15ð1 � iacshÞ

;

A19 ¼ iacd18ð1 � iacsqÞ
d15ð1 � iacshÞ

;

A20 ¼ �a2d14ð1 � iacshÞ þ iacð1 � iacsqÞ
d15ð1 � iacshÞ

;

A ¼ �1

A14 � A9

A14A20 þ A15 � A16A19 þ A8A14ð

�A9A20 � A9A13A9A16A18 � A10 þ A11A19

� A11A14A18 þ A1A14 � A1A19A2A6A14

þA2A9A12 þ A4A6 � A4A12Þ;

B ¼ 1

ðA14 � A9Þ
ðA5A20 þ A8A14A20 þ A8A15

� A8A16A19 � A9A13A20 � A10A13

þ A10A20 þ A10A16A18 þ A11A13A19 � A11A15A18

þ A1A14A20 þ A1A15 � A1A16A19

þ A1A8A14 � A1A9A13 � A1A9A20

þ A1A9A16A18 � A1A10 þ A1A11A19

� A1A11A14A18 � A2A6A14A20 � A2A6A15

þ A2A6A16A19 þ A2A9A12A20 � A2A9A16A17

þ A2A10A12 � A2A11A12A19 þ A2A11A14A17 � A3A7A14

þ A4A6A13 þ A4A6A20 � A4A6A16A18 � A4A12A20

þ A4A16A17 � A4A8A12 þ A4A11A12A18 � A4A11A17

þ A5A6A19 þ A5A6A14A18 þ A5A12A19

� A5A14A17 � A5A9A12A18 þ A5A9A17Þ;

Fig. 18 Distribution of the electric displacement component Dx at

t ¼ 1:5in the (x, z) plane calculated in the frame of the DPL model

with X ¼ 0:4

Fig. 19 Distribution of the electric displacement component Dz at

t ¼ 2:0in the (x, z) plane calculated in the frame of the DPL model at

t ¼ 1:5 with X ¼ 0:4
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C ¼ �1

ðA14 � A9Þ
ðA8A15A20 � A10A13A20 þ A1A15A20

þ A1A8A14A20 þ A1A8A15 � A1A8A16A19

� A1A9A13A20 � A1A10A13 � A1A10A20

þ A1A10A16A18 þ A1A11A13A19 � A1A11A15A18

� A2A6A15A20 þ A2A10A12A20 � A2A10A16A17

þ A2A11A15A17 � A3A7A14A20 � A3A7A15

þ A3A7A16A19 þ A4A6A13A20 � A4A8A12A20

þ A4A8A16A17 � A4A11A13A17 � A5A6A13A19

þ A5A6A15A18 � A5A15A17 þ A5A8A12A19

� A5A8A14A17 þ A5A9A13A17 � A5A10A12A18

þ A5A10A17Þ;

E ¼ 1

ðA14 � A9Þ
ðA1A8A15A20 � A1A10A13A20

� A3A7A15A20 � A5A8A15A17 þ A5A10A13A17Þ:

Appendix B

H1n ¼ � s1n

s2n

;

H2n ¼ � q1n þ q2nH1n

q3n

;

H3n ¼ �ðk2
n þ A1Þ þ ð�A2kn þ A3ÞH1n � A4knH2n

A5

;

H4n ¼ ½r1 � l1knH1n � l2knH2n � H3n�;
H5n ¼ ½r2 � d5knH1n � knH2n þ d7H3n�;
H6n ¼ ½�d2kn þ r3H1n þ r4H2n�;
H7n ¼ ½�l3kn þ r5H1n þ r6H2n�;
H8n ¼ ½r7 � l6knH1n � l7knH2n þ l8H3n�:

n ¼ 1; 2; 3; 4:

q1n ¼ A11k
3
n þ ðA1A11 � A5A6Þkn þ A5A7;

q2n ¼ ð�A2A11 þ A5Þk2
n þ A3A11kn þ A5A8;

q3n ¼ ð�A4A11 þ A5A9Þk2
n þ A5A10;

q4n ¼ A16k
3
n þ ðA1A16 � A5A12Þkn;

q5n ¼ ðA5 � A2A16Þk2
n þ A3A16kn þ A5A13;

q6n ¼ ðA5A14 � A4A16Þk2
n þ A5A15:

s1n ¼ q1nq6n � q3nq4n;

s2n ¼ q2nq6n � q3nq5n:

l1 ¼ C13

qv2
p

;

l2 ¼ e31

e33

;

l3 ¼ e15b1T0

eqv2
p

;

l4 ¼ � �11b1T0

ee33

;

l5 ¼ e31b1T0

eqv2
p

;

l6 ¼ e33b1T0

eqv2
p

;

l7 ¼ � �33b1T0

ee33

;

l8 ¼ �P3T0

e
:

fr1; r2; r3; r4; r5; r6; r7g ¼ iafd1; l1; d2; d6; l3; l4; l5g
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