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Abstract
Because cable-driven parallel robots (CDPRs) have lightweight moving parts, CDPRs have been used in various industrial

applications requiring high speeds and accelerations. Especially, CDPRs with polymer cables can achieve higher accel-

erations and speeds compared to those with steel cables. However, they also have some disadvantages, such as a nonlinear

creep, a hysteresis, and a short- and long-term recovery. Because these nonlinear characteristics, the accuracy of CDPRs

gets worse and worse. In this study, we proposed a hybrid recurrent neural network (H-RNN) to predict nonlinear

characteristics of the cable elongation and to solve the problems associated with CDPRs and apply the real-time control. In

the algorithm, the long short-term memory (LSTM) algorithm was used to learn the characteristics of the low-frequency

data, and the basic RNN learned the features of the high-frequency data. We also confirmed that the cut-off frequency was

determined based on the non-operating frequency related to rest time. Also, it yielded more accurate results because the

LSTM has a wider effective frequency range. Finally, the learning process was completed by combining these two

algorithms. These results made it possible to predict position errors of CDPRs with high accuracy, in which error varies

under both while operating and no operation conditions. The H-RNN had a lower root mean square error than both the

optimal RNN and the optimal LSTM, so it was effective for controlling systems that have errors across a range of

frequencies.

1 Introduction

Cable-driven parallel robots (CDPRs) have lightweight

moving parts, including very small end effectors and light

cables rather than rigid manipulators. Hence, CDPRs have

been used in various industrial applications that require

high speeds and accelerations. Due to flexible cables, it is

easy to expand the workspaces of CDPRs by widening only

their frames, so they have been used in applications that

require large workspaces. Indeed, they have been used for a

variety of applications, such as skycams, surgical robots,

and phage robots (Hannaford et al. 2013). These require a

high mass efficiency, large workspace, and high levels of

accuracy (Williams II et al. 2008; Merlet and Daney 2010;

Gobbi et al. 2011) for long periods of time.

Most CDPRs use steel or polymer cables to actuate the

end effector. Although CDPRs with wired steel cables can

support high loads, they are not suitable for application in

fast systems because their Young’s modulus can be chan-

ged significantly by applied tension, and they have high

weights and bending moments (Hyun Dong 2017). In

contrast, CDPRs with polymer cables can achieve high

accelerations and speeds. They have therefore been used

for applications that require fast responses, such as sky-

cams. Although polymer cable robots have many advan-

tages, such as being light in weight, having high flexibility,

etc. However, they have some disadvantages, such as

nonlinear creep, hysteresis, and inaccuracies due to short-

and long-term recovery (Chattopadhyay 1997). Creep

occurs when tension is applied to the cable for a short time,

and affects up to 15% of the cable length. Hysteresis is the

phenomenon that causes the cable length to vary differently

during loading than during unloading. This is caused by the
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differences between stretching and shrinking. Short-term

recovery is the rapid restoration of the cable length, within

a few seconds, upon completing an unloading operation.

These processes take between a few milliseconds and a

few seconds. As a result, this type of recovery occurs with

relatively high frequency. In contrast, long-term recovery

occurs over a few days, and thus has relatively low fre-

quency. Similarly, the accuracy of a CDPR system has

high-frequency and low-frequency components due to the

non-linearity of the properties of the cable.

Many studies have been carried out to overcome these

uncertain, nonlinear behaviors. Pott (2017) and Merlet

(2009) applied a modified version of Hooke’s law to solve

the dynamic creep. Miyasaka et al. (2016) developed a

longitudinally stretched cable model consisting of a

damping system and hysteresis that can be used to control a

cable driven machine. These researchers focused on indi-

vidual, simplified characteristics. In our previous research

(Choi and Park 2018), we proposed an integrated nonlinear

dynamic cable model to solve all of these problems easily.

This was the most accurate model with respect to all of the

nonlinear properties of CDPRs. However, the main prob-

lem with our integrated nonlinear dynamic model was its

complexity and high computational cost, which make it

difficult to apply the model to real CDPR control systems.

Recently, a breakthrough was made in the prediction of

nonlinear characteristics via the development of a model

that uses an artificial neural network (ANN) (Wang et al.

2014; Yan and Wang 2014). This approach can easily

overcome the complexities associated with existing non-

linear models. Levin and Narendra (1996) simplified the

complex nonlinearities using an ANN, and Anderson

(1989) used an ANN for action and evaluation functions,

thus improving the control of the devices. Jung et al. (2008)

proposed solving the nonlinear inverted-pendulum problem

by introducing an ANN to the signal processing stage and

performed real-time control with a proportional integral

derivative (PID) controller. Li et al. (2010) solved uncer-

tainties in the CDPR using an ANN. However, as men-

tioned above, the nonlinear characteristics of the cable

have both short-term and long-term variations, so it is

difficult to apply this approach to CDPR systems directly.

In this study, we investigated the application of a hybrid

recurrent neural network (H-RNN) to nonlinear modeling

and control to solve the problems associated with CDPRs

and real-time control applications. We used a hybrid fre-

quency-based learning method to clarify the complex

nonlinear characteristics of polymer cables. We investi-

gated the effectiveness of the hybrid frequency-based RNN

method by first constructing a CDPR system, and then

using a stereo webcam to measure the position errors. We

designed a 12-point trajectory that reflects the character-

istics of the system in all directions. The position errors

were measured at each point and the results were used as

the test dataset. We then developed a hybrid RNN learning

algorithm to estimate the measured error. The long short-

term memory (LSTM) algorithm was used to learn the

characteristics of the low-frequency data, and the basic

RNN learned the features of the high-frequency data.

Finally, the learning process was completed by combining

these two algorithms. The final error data were predicted

with the same process. We compared the result obtained

from the H-RNN with the results from the optimal LSTM

and RNN algorithms.

Fig. 1 Cable-driven pulley robot system used to construct the data set (Choi 2018)
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2 Construction of system setup and data
acquisition

2.1 Experimental setup of the CDPR with 8
cables

As shown in Fig. 1, CDPR with a 1 9 1 9 1 m3 work-

space was constructed and training data were obtained

through the constructed experimental setup. We used the

Dyneema SK78 model with polyethylene cable. The con-

struction of the CDPR was fully constrained, with 8 cables

and 6 degrees of freedom. Each cable was guided by a

series of 4 pulleys, and each cable was controlled by a

winch-servo system. The end effector had dimensions

65 9 65 9 65 mm3. Before operating the CDPR, we

constructed a pose initializer to fix the end effector to its

initial position. We measured the end effector pose esti-

mation error as the end effector moved using a 4 K web-

cam (380p/30fps) and a marker detection algorithm. Our

CDPR system was operated using an accurate position

control algorithm consisting of inverse kinematics, a

compensation function for the effect of friction on the

pulley, and the pulley kinematics (Pott 2012).

2.2 Construction of the training set and test set
based on the experimental results

The training and test sets, that are the position error data

were constructed by operating the CDPR along a cubic

trajectory of dimensions 90 9 90 9 90 mm in the x, y and

z planes, as shown in Fig. 2. Because one or two certain

cable can have relatively high or low tensions when moved

by more than 90 mm, the trajectory was made within

90 mm. The cubic trajectory consists of 12 points in total,

and the data were measured at each point every 60 s, which

is long enough for sufficient creep to occur along the cable.

The CDPR was operated with the same manner three or

four times to observe the hysteresis and short-term recov-

ery, which we measured every 15 s. After this operation,

the long-term recovery was measured by unloading the

CDPR which maintains a low tension for 1–2 h. For

Fig. 2 The trajectory used to construct the training and test sets

Fig. 3 Framework of

frequency-based hybrid

recurrent neural network

Fig. 4 Training set based on the end effector errors: a time domain-

based training set, b frequency domain-based training set
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unloading, position errors were measured every 2 min

because the conditions varied very slowly. As the end

effector moved along the determined trajectory, we mea-

sured the pose estimation errors for x, y, and z-axes at each

position. The root mean square error (RMSE) induced by

the controller was investigated as 0.23 mm. Hence, we

excluded the effect of the very small controller error from

our analysis. The inputs to the training set consisted of

tension sets, which included the factors that influence the

cable length, loading time, and unloading time (Choi and

Park 2018). Totally measured position error data was 729,

which was determined with the minimum learning error

based on our experiment. The learning engines used were

Tensorflow and Keras models. In the model, the hyper

parameters used the gradient descent method using Adam

optimizer with the best performance, learning rate, number

of layers and look back coefficient. Also, the learning rate

was used until the cost converged to a certain value and

was no longer affected by learning, and 0.001 was used in

this paper. The number of layers is experimentally used,

and the value is 30. The look back coefficient is now a

parameter that determines how much of the previous data

should be used to predict the next data, and a value of 3

was used. Among total data, 70% of the data were used as

training sets and 30% of the data were used as test sets. The

input used for the prediction was eight tension sets of

CDPRs and the label is position errors. The error of the

next state can be predicted by the tension and error of the

previous stage.

3 Frequency-based H-RNN for CDPRs

This section presents a frequency-based H-RNN that can

take into account all of the nonlinear phenomena that arise

during operation (loading condition) and when the CDPR is

not operating (unloading condition). In our previous

research (Choi and Park 2018), change of the applied

Fig. 5 The flow chart for

evaluating the optimal

frequency division
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Fig. 6 The measured data, divided with a cut-off frequency of 0.0005 Hz: a low-frequency region (* 0.0005 Hz), b high frequency region

(0.0005*)
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tension dominantly affects a long-term recovery, and cau-

ses elongation of the cable. Therefore, in the non-operating

period, the change in applied load caused position errors

with relatively low frequency due to the long-term recov-

ery. On the other hands, errors occurred when the applied

tension was changed by the position and dwell time and

time of short-term recovery were changed during opera-

tion. These errors occur with relatively high frequency

because they vary within seconds. High-frequency phe-

nomena, such as creep, hysteresis, and short-term recovery,

are more accurately represented by a basic RNN, whereas

low-frequency phenomena, such as long-term recovery, are

more accurately learned using LSTM because the LSTM

acts as a low pass filter (Le and Zuidema 2015; Bengio

et al. 2013). Figure 3 shows the framework for the H-RNN.

The errors (i.e., the cable length errors and end-effector

errors) generated by the CDPR system are first converted to

the frequency domain by the fast Fourier transform (FFT).

The modified error data are divided into operating fre-

quency (high frequency) and non-operating frequency (low

frequency) regions according to the cut-off frequency,

which we determined based on the operating conditions

and trajectory. The criteria used to determine the cut off are

explained in Sect. 4. The features of the divided training

set were individually then learned by the LSTM and RNN,

and then the results are added arithmetically. The LSTM

learned the features of the training set for the non-operation

domain, which was dominated by low-frequency of long-

term recovery. The RNN analyzed the training set repre-

senting the high-frequency (operating) components, which

are generated by the fast movement of the end-effector in

various directions. Finally, we obtained the errors by

combining the results obtained from the two algorithms.

4 Learning and discussion

4.1 Determination of the cut-off frequency
of the H-RNN

Figure 4a shows the pose estimation error of end effector

over time. The green, red, and blue lines indicate the pose

errors in the x, y, and z-axis, respectively. The CDPR was

operated in a cubic trajectory for three cycles. The CDPR

then rested in a non-operational state for 1–3 h after

unloaded. Figure 4b shows the results of the FFT for each

set of experimental results. There are two methods for

determining the cut-off frequency: one method is based on

the operating speed and the other is based on the rest time.
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Fig. 7 The measured data, divided with a cut-off frequency of 0.001 Hz: a low-frequency region (0–0.001 Hz), b high-frequency region

(0.001 Hz*)

Table 1 Optimal parameters for the x, y, and z-axes for the LSTM

with the softsign function and the RNN with the tanh function

x y z

Under 0.0005 Hz (LSTM: softsign)

Sequence length 11 11 11

Hidden dim 14 14 14

Over 0.0005 Hz (RNN: tanh)

Sequence length 13 13 13

Hidden dim 14 14 14

Under 0.001 Hz (LSTM: softsign)

Sequence length 13 13 13

Hidden dim 14 14 14

Over 0.001 Hz (RNN: tanh)

Sequence length 13 13 13

Hidden dim 14 14 14
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The sample datasets contained 12 points per a minute

cycle, and the main operating frequency was 0.00138 Hz.

The frequency of the long-term recovery and static creep,

which occurred in the static (non-operating) state, was

close to 0 Hz. We determined the cut-off frequency

between the operating and non-operating states so that we

could apply the frequency-based H-RNN algorithm.

Figure 5 presents a flow chart of the process used to

divide the frequency. We applied two methods and com-

pared the results, then determined the most effective fre-

quency division criterion for minimizing the loss of data.

One method is to divide the frequency based on the non-

operating state related to long-term recovery time, and the

other is based on the operating frequency. In the flow chart,

fr and fo are the frequencies with maximum rest amplitude

and operation interval, respectively. Each frequency is

classified and the amplitude is calculated using the FFT.

We determined the cut-off frequency as being the anti-

resonance frequency of the operating and non-operating

frequencies, the amplitude of which is approximately zero.

When using the non-operating frequency (rest condition)

for reference. the cut-off frequency increases until this

condition is satisfied. When using the operating frequency

for reference, the cut-off frequency is decreased until the

condition is satisfied. According to these methods, the cut-

off frequency was either 0.0005 or 0.001 Hz, as shown in

Figs. 6 and 7, respectively. Figure 7 has much more data in

the low-frequency region than Fig. 6. While Fig. 6 has a

few low-frequency fluctuations, all high-frequency terms

are present in Fig. 7.

4.2 Parameter optimization and activation
functions

The activation function used in each learning algorithm has

its own unique characteristics, and the optimized activation

function affects the learning performance. Therefore, the

optimal activation function should be selected. In our

previous study (Choi 2018), we carried out an experimental

investigation of the RMSE so that we could determine the

appropriate activation function for each algorithm and

Fig. 8 Learning results for the low-frequency components based on a cut-off frequency of 0.0005 Hz: a x-axis, b y-axis, c z-axis

Fig. 9 Learning results for the low-frequency components based on a cut-off frequency of 0.001 Hz: a x-axis, b y-axis, c z-axis

Table 2 Root mean squared error of the low frequency components

(mm)

RMSE (mm) Axis LSTM RNN RNN/LSTM (%)

0–0.0005 Hz X 0.033 0.046 139

Y 0.039 0.071 182

Z 0.059 0.158 267

0–0.001 Hz X 0.190 0.238 125

Y 0.121 0.189 156

Z 0.071 0.091 128
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ensure an optimal simulation. We used an LSTM to ana-

lyze the low-frequency (non-operating) data and an RNN

to analyze the high-frequency (operating) data. When the

softsign function as an activation function was used, the

RMSE of the low-frequency data at cut-off frequencies of

0.0005 Hz and 0.001 Hz was lowest at 0.1314 mm and

0.0910 mm. When the tanh function was used, the RMSE

of the high-frequency data at cut-off frequencies of

0.0005 Hz and 0.001 Hz was lowest at 0.1306 mm and

0.1380 mm, respectively. Therefore, the softsign function

was most effective for the LSTM algorithm, and tanh was

most effective in the case of the RNN algorithm. This

confirms the results from (Le and Zuidema 2015). For this

reason, we applied the H-RNN based on these activation

functions.

We evaluated the optimal sequence length and hidden

dimension parameters by investigating the optimal

parameters with respect to various frequencies. We tested

between 10 and 15 parameters, because previous research

has revealed that learning algorithms converge after a

certain number of parameters have been tested (Bengio

et al. 1994). As before, we used the LSTM and the softsign

function to analyze the low-frequency (non-operating)

domain, and the RNN and the tanh function for the high-

frequency (operating) domain. In each case, the sequence

length has a fixed value, and the hidden dimension

increases gradually, converging after 15. As the frequency

decrease, the non-operating frequency components are

required, as they contain much of this frequency informa-

tion. In the operating frequency range, the ratio of high-

frequency components to noise is relatively large compared

with the non-operating frequency domain. Thus, more

hidden dimensions are required in this case. However, if

the amount of unnecessary noise increases, over-fitting

Fig. 10 Learning results for the high frequency components based on a cut-off frequency of 0.0005 Hz: a x-axis, b y-axis, c z-axis
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may occur even if we increase the size of the hidden layer.

Therefore, the hidden dimensions tend to converge grad-

ually. We applied this method to determine the optimal

parameters for each axis, and each value is specified in

Table 1.

4.3 Learning process for low- and high-
frequency data using the RNN and LSTM

Figures 8 and 9 show the results of our simulations for the

low-frequency (non-operating condition) components with

different cut-offs. Figure 8 shows the results in case of the

cut-off of 0.0005 Hz, and Fig. 9 shows the case with a cut-

off of 0.001 Hz, for the (a) x-axis, (b) y-axis, (c) z-axis. The

black dotted line indicates the experimental data, and the

blue pointed line and green bold line are the results of the

simulations with the RNN and LSTM, respectively. The

LSTM had a smaller RMSE than the RNN when the cut-off

was 0.0005 Hz (see Table 2). The RNN can also be used in

this case, but is less accurate because it contains only short

sequence information. We observed a similar tendency

when the cut-off was set to 0.001 Hz. However, the RNN

Fig. 11 Learning results for the high frequency components based on a cut-off frequency of 0.001 Hz: a x-axis, b y-axis, c z-axis

Table 3 Root mean square error of the low frequency components

(mm)

RMSE(mm) Axis LSTM RNN RNN/LSTM (%)

0.0005 Hz* X 0.184 0.169 109

Y 0.329 0.241 137

Z 0.210 0.134 156

0.001 Hz* X 0.279 0.256 109

Y 0.299 0.286 105

Z 0.151 0.138 110
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had a lower RMSE than the LSTM along the y-axis. This is

because the data contains more high frequency points as

the cut-off frequency increases.

Figures 10 and 11 show the results of the simulated cut-

offs of high-frequency (operating) components. Figures 10

and 11 show the results when the cut-off was 0.0005 Hz

and 0.001 Hz, for the (a) x-axis, (b) y-axis, (c) z-axis,

respectively. Each of the upper graphs are the simulation

results from the entire training set, and the bottom graphs

are the enlarged test sets obtained while operating the

CDPR. The black dotted line represents the experimental

data, and the blue bold line and the green pointed line are

the results obtained from the RNN and LSTM, respec-

tively. The LSTM converged monotonically, and had a

higher RMSE than the RNN (Table 3). In particular, the

RNN performed better when the data were changing

rapidly, such as in the case of the red circled line. This was

because the RNN learns the features of a sudden event

easily. This tendency remained the same regardless of the

cut-off frequency. Hence, we confirmed experimentally

that the proposed learning algorithm is highly accurate.

4.4 Investigation of H-RNN performance

Figure 12 presents the results of the H-RNN simulation for

each dataset. The black line is the real experimental test

set, while the blue and purple lines show the results of the

simulations using the RNN and LSTM, respectively. The

green line shows the results from the H-RNN simulation.

The RMSE obtained using the H-RNN algorithm was

reduced by more than 15%, compared to the maximum

error. It can also predict small errors and changes in the

nonoperational state, as shown at the bottom of Fig. 12.

According to our experiments, the CDPR system has an

error of up to 4.7 mm when driven in a cubic trajectory.

Also, the hysteresis, creep, and recovery induced by the

interaction between loading and unloading actions cause

errors to occur while operating the CDPR system. The

proposed H-RNN exhibits high pose accuracy (Table 4).

5 Conclusions

We have proposed a novel neural network algorithm to

predict the pose estimation error of a CDPR. This error is

caused by the non-linear characteristics of the cable. We

Fig. 12 Learning results of the H-RNN and other algorithms for solving the integrated case: a x-axis, b y-axis, c z-axis

Table 4 Root mean squared

error of each algorithm for the

entire test set (mm)

Axis Optimal LSTM Optimal RNN H-RNN(0.0005) Hz Improvement (%)

x 0.242 0.244 0.207 16.9

y 0.060 0.077 0.055 9.0

z 0.164 0.172 0.155 5.8
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verified that the frequency-based H-RNN is feasible by

constructing a fully constrained CDPR system and oper-

ating it with a 3D trajectory so that we could observe the

nonlinear characteristics of the cable. We used 729 data, of

which 70% were used for the training process and 30%

were used for the test process. We used an RNN and an

LSTM to learn the features of the data sequences, such as

the operation of the end effector over time. CDPRs have

high-frequency errors while operating and low-frequency

errors when they are not being operated. Therefore, in this

study, we constructed an H-RNN algorithm that learns the

operating frequency and the non-driving frequency com-

ponents separately. We separated these frequencies by

determining an appropriate cut-off frequency. We obtained

this value by identifying the anti-resonance frequency with

respect to both the driving frequency and the non-driving

frequency. We then confirmed that the H-RNN was more

accurate than the RNN or LSTM alone. We also confirmed

that determining the cut-off frequency based on the non-

operating frequency yields more accurate results because

the LSTM has a wider effective frequency range. These

results made it possible to predict position errors of CDPRs

with high accuracy, in which error varies under both while

operating and no operation conditions. The H-RNN algo-

rithm enables us to control the position of the CDPR more

accurately. The H-RNN has a lower RMSE than both the

optimal RNN and the optimal LSTM, so it is effective for

controlling systems that have errors across a range of

frequencies.
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