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Abstract
In this study, heat generation (or absorption) in flow of stagnant Sutterby fluid past over a linearly shrinking sheet is

analyzed. Heat transfer features are explored by implementing thermal stratification phenomenon. Cattaneo–Chrostov

theory is also implemented to analyze the heat flow behavior instead of conventional law of Fourier. The constitutive flow

laws are transmuted into non-linear dimensionless ordinary differential equations by the suitable variables. Homotopic

procedure is adopted to solve the flow equations for the convergent iterative solutions. The behavior of fluid temperature

and velocity profile are analyzed and discussed graphically for the eminent parameters involved in the governing laws. In

this attempt the major found is that decreasing trend is observed in temperture distribution for thermal stratification

parameter, heat generation (or absorption) paramere and thermal relaxation parameter. Morover, graphical results illustrate

that behavior of velocity and temperature distributions are more dominant for n ¼ 2 as compared to n ¼ 1.

1 Introduction

Heat transport phenomenon plays a major role in many

geographical processes, engineering and industrial domain.

Particular types of such processes incorporate space cool-

ing, cooling of electronic devices, heat conduction in tis-

sues, cooling of nuclear reactor etc. Heat is transferred due

to temperature difference within a body or between two

bodies. In the last two centuries, heat transfer is studied via

Fourier’s heat conduction law. In fact, conventional law of

Fourier is a parabolic type equation which illustrates that

heat is transferred with infinite speed. The law is also

known as conduction paradox. To correct this issue Cat-

taneo (1948) presented the non-Fourier theory. He added

time relaxation factor in classical law of Fourier so that the

heat transfers in a normal way with limited speed. Later on,

Christov (2009) refined Cattaneo’s idea for material-in-

variant formulation using Oldroyd’s upper-convected

derivatives. This model is utilized by many researchers

Transportation of heat in squeezed Jeffrey fluid via non-

Fourier approach is demonstrated by Hayat et al. (2016a).

Reddy et al. (2016) elaborated the characteristics of cross

diffusion on magnetohydrodynamic flow through a plate

and cone wedge utilizing non-Fourier approach. Salient

features of non-Darcian flow of the Oldroyd-B material via

modified version of Fourier law with variable fluid features

is described by Shehzad et al. (2016). The dynamics of the

viscous fluid through linearly stretched sheet embedded in

a Darcian medium using non-Fourier theory is exposed by

Nadeem and Muhammad (2016). Hayat et al. (2016b)

exposed the impact of non-Fourier theory and influence of

auto-catalyst and reactant in the stagnation flow over a non-

linear thicked stretchable plate.

Newton’s law of viscosity is not obeyed by certain

materials. Such material are known as non-Newtonian.

Dyes, ketchup, shampoo, paints, lubricants, blood at low

shear rate, mud, and personal care products are few

examples of such materials. These fluids play impactful

role in many engineering processes and industrial domain.

The non-Newtonian fluid cannot be demonstrated through a

constitutive expression between shear stress and rate due to

the diverse nature of the fluid. Thus, the rheological

properties of these materials are analyzed by modelling
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governing laws for such fluids. Sutterby flow model is one

of these models which show very dilute polymeric aqueous

solutions. Scientists have paid a little attention so far in

exploration of Sutterby fluid flows. Hayat et al. (2016c)

investigated the magnetic effects on peristalsis of Sutterby

fluid flow in a vertical channel. In another investigation,

Hayat et al. (2017d) analyzed slip effects on peristaltic

Sutterby fluid through a curved channel. Tetsu et al. (1974)

elaborated the convective flow of a Sutterby fluid along a

vertical sheet.

The heat source (or sink) in flowof fluid have gained

more importance amongs investigators now a days. Internal

heat generation and natural convection has attracted the

attention of investigators because of extensive range of

engineering and industrial applications include disposal of

radioactive waste material, heat removed from the nuclear

fuel debris, food stuff storage and exothermic reactions in

reactors. Many researchers are investigating the charac-

teristics of heat source (or sink) in the fluid flows. Hussain

et al. (2018) exposed the convective CNTs nanomaterial

flow along with heat source/sink. Hayat et al. (2017a)

disclosed the impact of heat generation (or absorption) on

radiative magneto Maxwell nanomaterial towards shrink-

ing sheet. Gaffar et al. (2017) elaborated the nonlinear

boundary layer flow, mass and heat transport of Jeffrey

fluid through vertical surface. Qayyum et al. (2018) con-

centrated on transportation of radiative and heat generative

phenomenon in the stagnant region via Newtonian condi-

tions with magnetic buoyancy effects caused by stretchable

surface. Eid and Mahny (2017) addressed the magnetic and

generative heat phenomena on convective mass and heat

transport of a nanoliquid towards stretchable sheet. Khan

et al. (2017) considered the auto-catalyst reactant features

on Maxwell fluid flow with heat absorption/generation.

Ganga et al. (2016) mathematically analyzed the behavior

of heat source /sink on radiative nanoliquid through verti-

cal surface with magnetic field effects.

Recently, exploration of flow through stagnant region

has attaracted the engineers and researchers. The flow

phenomenon past the edges of submarines, rockets, air-

crafts and oil ships, are the examples of this type of flow.

Morover, there exist two different categories of stagnation

point, termed as oblique and orthogonal. The flow in the

region of stagnation point may occur as inviscid (or vis-

cous), steady (or unsteady) and in many other forms. In this

regard, Hiemenz (1911) initiated the analysis on stagnation

point flow and developed its exact solution. Mahapatra and

Gupta (2002) explored the flows about stagnation point

through stretchable plate under the analysis of heat transfer.

Haq et al. (2015) disclosed the stagnation point radiative

slip flow in MHD nanomaterial through stretchable sheet.

Hayat et al. (2017b) depicted the Dufour-Soret impacts in

hyperbolic-tangent fluid flow neat stagnation point. Hayat

et al. (2018) explained the viscoelastic nanoliquid flow

over the stretched sheet saturated in stagnation point. Tian

et al. (2018) studied the magneto non-Newtonian nano-

material flow deformed by stretching phenomenon in the

region of stagnation point. Shafiq et al. (2018) illustrated

the stagnation-point radiative flow of Walters’ B liquid

caused by stretchable Riga plate. Ismail et al. (2019) dis-

cussed the dissipative effects in stagnation-point magneto

flow caused by shrinking plate. Khan et al. (2019) explored

the chemically reactive CNTs flow in the region of stag-

nation-point. Raza (2019) discussed the radiative slip flow

of hydro-magneto Casson fluid caused by stretching sheet

around the stagnation point.

In thermally stratified flow, different layers of the fluid

are formed with diverse densities due to temperature dif-

ferences. In nature, stratification process controls the oxy-

gen and hydrogen ratio which controls species growth rate

in lakes and ponds. Thermal and solutal stratification have

vital role in various chemical process, agriculture,

oceanography and geophysical flows. In literature most of

studies were carried out to discuss the stratification phe-

nomena considering different physical aspects. Daniel

et al. (2018) exposed the radiative magneto nanofluid flow

through shrinking sheet embedded in stratified medium.

Muhammad et al. (2017) discussed thermally stratified

ferromagnetic liquid through stretchable surface. Rehman

et al. (2017a) elaborated the radiative effects on stratified

hyperbolic tangent liquid flow via flat and cylindrical

channels both. Kandasamy et al. (2018) described stratifi-

cation effects on MHD nanomaterial flow over a porous

surface. Hayat et al. (2017c) disclosed convective flow of a

dual stratified Oldroyd-B nanofluid.

Literature survey reveals that no investigation has ever

been made to explore the heat generation/absorption effects

on stagnation flow of Sutterby fluid due to linearly stretchable

sheet using non-Fourier approach. Generally, when fluid

flows, heat is produced continuously due to activemetabolism

process. Therefore it is accounted. Heat transport involve

thermal stratification and heat generation/absorption. Thus,

this study is conducted to fill the gap. Homotopic procedure

(Liao 2012; Cui et al. 2015; Abbasi et al. 2016; Farooq et al.

2016; Asad et al. 2016; Rehman et al. 2017b is utilized to

evaluate the resulting non-linear differential system and to

figure out the non-linear analysis. Influence of important

embedded parameters are sketched and elaborated graphi-

cally. Graphical exposure for drag force (skin friction coeffi-

cient) are also demonstrated very carefully. The paper is

organized as follows. The Sect. 1 belongs to introductry part.

The Sect. 2 is describing the mathematical formulation of the

flow problem. The Sect. 3 elaborates the Homotopic method

utilized for the flow analysis. The acquired results are ana-

lyzed and discussed inSect. 4. TheSect. 5 gives the outcomes

of the considered study.
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2 Mathematical modelling

Consider incompressible and steady flow of Sutterby fluid

in the region of stagnation-point over a linearly stretched

plate. Cartesian coordinate system (x,y) is utilized in such a

way that x-axes is along the stretched plate where as y is

normal to it. The fluid occupies the region y � 0 (See

Fig. 1). Heat generation (or absorption) and stratification

effects are taken into consideration,in order to analyze heat

transfer phenomena. Cattaneo–Christove theory is also

accounted in present flow analysis. The temperature out-

side the boundary layer T1 is assumed to be less than that

of sheet. (i.e. T1\TÞ:
Boundary layer approximation reduces the fundamental

laws as Hayat et al. (2016a, c):
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with boundary conditions

u ¼ Uw xð Þ ¼ ax; T ¼ T0 þ Bx; at y ¼ 0; ð4Þ

u ¼ Ue ¼ bx ; T ¼ T1 ¼ T0 þ B1x, as y ! 1; ð5Þ

where u and t represent horizontal ad vertical components

of velocity, Ue represent the free stream velocity; m rep-

resents the kinematic viscosity, a, b, B, B1 represent the

positive dimensional constants, Q0 represents heat gener-

ation/absorption coefficient; Uw represent the stretching

velocity, T represents the temperature of fluid; s0 denotes

the relaxation time of heat flux, T1 represents the ambient

temperature; k ¼ j=qcp represents the thermal diffusivity;

j represents the thermal conductivity, T0 represents the

reference temperature, q represents the fluid density; s
represents Cauchy stress tensor; cp represents the specific

heat capacity and Q0 represents the heat generation/ab-

sorption coefficient.

Employing the similarity transformation of the form

w ¼
ffiffiffiffiffi
am

p
f ðnÞ; n ¼

ffiffiffi
a

m

r
y ð6Þ

u ¼ axf 0ðnÞ; t ¼ �
ffiffiffiffiffi
am

p
f ðnÞ ð7Þ

h nð Þ ¼ T � T1
Tw � T0

: ð8Þ

The incompressibility condition (1) identically satisfied

and the flow Eqs. (2–5) are reduced below
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The associated boundary conditions are expressed below:

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; f 0ð1Þ ¼ A ð10Þ

hð0Þ ¼ 1� s1; hð1Þ ¼ 0: ð11Þ

The prime represents differentiation w.r.t ‘n’ . Pr stands for
Prandtl number, A denotes the ratio parameter, s1 repre-

sents the thermal stratification parameter, Q denotes the

heat generation (or absorption) parameter. c represents the

thermal relaxation parameter.

The nondimentional quantities can be written in the

form:

a ¼ b2x

ffiffiffiffiffi
a3

m

r
; c ¼ s0a ;

Pr ¼ lcp
k

; A ¼ b

a
; s1 ¼ B1

B
;Q ¼ Q0

qcpa
;

ð12Þ

Skin friction coefficient is

Fig. 1 Flow diagram
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Cf ¼
sw
qU2

w

; ð13Þ

here the shear stress sw is given by

sw ¼ l 1� b2

c

ou

oy

� �
jy¼0

� �n
ou

oy

� �
jy¼0: ð14Þ

In dimensionless variables

Cf

ffiffiffiffiffiffiffiffi
Rex

p
¼ 1� a

6
f 00ð0Þ

h in
f 00ð0Þ; ð15Þ

where Rex ¼ ax2=m represents the local Reynolds number.

3 Solution procedure

Here homotopic technique is utilized which was initiated

by Liao (2012) in 1992. This method facilitates to adopt

and construct the convergent series solution for given flow

equations. This mathematical method comprises in finding

the approximate solutions of the problem. Zeroth order

problem is defined for the nonlinear governing equations,

which consists of deformed function, embedding parame-

ter, auxiliary parameter and nonlinear operator. One time

differentiation of zeroth order problem corresponding to

embedding parameter is known as first order of approxi-

mation. Similarly, two times differentiation corredponding

to embedding parameter is known as second order of

approximation and so on. Further, this method is highly

depends upon the embedding parameter q which belongs to

the specified interval [0, 1]. Using q 2 ½0; 1�, from homo-

topy theory, family of equations is constructed which is

called the zeroth-order deformation equation, whose solu-

tion varies continuously with respect to the embedding

parameter q 2 ½0; 1�. It means that as q enhances from 0 to

1, the solution of the zeroth-order deformation equation

varies from the selected initial guess to the solution of the

considered equation. Thus, zeroth-order approximation is

the term, which is used by researchers for a first basic

ideology towards the solution of the problem throughout

this technique. In that way, the approximations of the

problem is expected to carry in order to increase the

accuracy in the series solution. Therefore, from the zeroth-

order deformation equation, one can directly extract the

constitutive equation of mth order called mth-order defor-

mation problem. In this way, the earliest equation is

transferred into an infinite number of linear ones, but

without the assumption of any small/large physical

parameters. For this purpose, it is crucial to have initial

guesses and linear operators satisfying the following

definitions.

f0 nð Þ ¼ Anþ 1� Aþ ðA� 1Þ exp½�n� ð16Þ

h0 nð Þ ¼ exp½�n� � s1 exp½�n� ð17Þ

Lf fð Þ ¼ d3f

dn3
� df

dn
; Lh hð Þ ¼ d2h

dn2
� h: ð18Þ

The operators have the properties given below:

Lf A1 þ A2 expðnÞ þ A3 expð�nÞ½ � ¼ 0 ð19Þ

Lh A4 expðnÞ þ A5 expð�nÞ½ � ¼ 0; ð20Þ

where Ai i ¼ 1� 5ð Þ are the arbitrary constants. The zeroth

and mth order deformation problems are:

3.1 Zeroth-order problems
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For n ¼ 2
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where q 2 ½0; 1� is embedding parameter and �hf , �hh the

non-zero auxiliary parameters.

3.2 mth-order problems

Lf fm nð Þ � vmfm�1 nð Þ½ � ¼ �hfRf
m nð Þ ð29Þ

Lh hm nð Þ � vmhm�1 nð Þ½ � ¼ �hhRh
m nð Þ ð30Þ

fm 0ð Þ ¼ 0; f 0m 0ð Þ ¼ 0; f 0m 1ð Þ ¼ 0 ð31Þ

hm 0ð Þ ¼ 0; hm 1ð Þ ¼ 0; ð32Þ

for n ¼ 1

Rf
m gð Þ ¼ f 000m�1 �

a
3

Xm�1

k¼0

f 0
00

m�1�kf
000

k

�
Xm�1

k¼0

f 0m�1�kf
0
k

	 

þ
Xm�1

k¼0

fm�1�kf
00
k

	 

þ A2

ð33Þ

Rh
m gð Þ ¼ h00m�1

� Pr s1f 0m�1 �
Xm�1

k¼0

f 0m�1�khk
	 


�
Xm�1

k¼0

fm�1�kh
0
k

	 

� Qhm�1

 !

� Prc

s1
Pm�1

k¼0 f 0m�1�kf
0
k

	 

þ
Pm�1

k¼0 f 0m�1�k

Pk
l¼0 f 0k�lhl
	 


�
Pm�1

k¼0 fm�1�k

Pk
l¼0 f 0k�lh

0
l

	 

� s1

Pm�1
k¼0 fm�1�kf

00
k

	 

�
Pm�1

k¼0 fm�1�k

Pk
l¼0 f 00k�lhl
	 


þ
Pm�1

k¼0 fm�1�k

Pk
l¼0 fk�lh

00
l

	 

þQ �

Pm�1
k¼0 f 0m�1�khk
	 


þ
Pm�1

k¼0 fm�1�kh
0
k

	 
� �

0
BBBBB@

1
CCCCCA
:

ð34Þ

For n ¼ 2
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Obviously for q ¼ 0 and q ¼ 1, one may write

bf n; 0ð Þ ¼ f0 nð Þ; bf n; 1ð Þ ¼ f nð Þ ð38Þ

bh n; 0ð Þ ¼ h0 nð Þ; bh n; 1ð Þ ¼ h nð Þ; ð39Þ

and with variation of q from 0 to 1, bf n; qð Þ and bh n; qð Þ vary
from the initial solutions f0 nð Þ and h0ðnÞ to the final solu-

tions f nð Þ and hðnÞ respectively. Using Taylor series for

q ¼ 1

f nð Þ ¼ f0 nð Þ þ
X1
m¼1

fm nð Þ ð40Þ

h nð Þ ¼ h0 nð Þ þ
X1
m¼1

hm nð Þ: ð41Þ

The general solutions fm; hmð Þ of Eqs. (34)–(35) in terms

of special solutions f �m and h�m
	 


are

fm nð Þ ¼ fHm nð Þ þ A1 þ A2e
n þ A3e

�n ð42Þ

hm nð Þ ¼ hHm nð Þ þ A4e
n þ A5e

�n; ð43Þ

where the constants Ai ði ¼ 1� 5Þ are computed through

the boundary conditions (39)–(40) which is given below:

A2 ¼ A4 ¼ 0; A1 ¼ �fHm 0ð Þ � fH
0

m 0ð Þ ð44Þ

A3 ¼ �fH
0

m 0ð Þ, A5 ¼ �hHm 0ð Þ: ð45Þ
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3.3 Convergence analysis

HAM provides an easy approach to control and adjust the

region of convergence for the iterative solutions. Now the

solution of Eqs. (37)–(38) with the boundary conditions in

Eqs. (39)–(40) are calculated using HAM. HAM ensures

the convergence in the region which is sketched parallel to

�h� axis (See Fig. 2a, b). The Fig. 2 exhibits the allowable

ranges of the convergence control parameters �hf and �hh are

�0:7� �hf � � 0:1 and �0:6� �hh � � 0:2:The h-curves

for the square residual errors have been ploted in Fig. 3

(See Fig. 3a, b). The square residual errors is defined as

follows:

M
f
m ¼

Z 1

0

Rf
m g; h�f
	 
� 
2

dg

M
h
m ¼

Z 1

0

Rh
m g; h�hð Þ

� 
2
dg:

It is found from Fig. 3a that the lowest possible error for f

is obtained for h�f 2 �0:7;�0:4½ �. Figure 3b gives the

confirmation that the lowest possible error for h is achieved

for h�h 2 �0:6;�0:3½ �. Figure 3a, b provide a verification of

the convergence analysis in the Fig. 2.

4 Discussion

In this segment, the analytical technique known as

Homotopy analysis method is used to solve nonlinear

system of ordinary differential equations given in Eqs. (2–

3) with boundary conditions given in Eqs. (4–5) and results

depicting the impact of eminent parameters on flow and

heat transfer features are discussed through graphs. A well-

known commuting package ‘‘Mathematica software’’ has

been utilized in order to develop the parametric study of

considered flow problem. Moreover, the numerical accu-

racy 64 bit of the system is used. The detail of this

(a) (b)

Fig. 2 a h-curve for velocity, b h-curve for temperature

(a) (b)

Fig. 3 a Residual error for h�f . b Residual error for h�h
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scheme can be found from the book written by Liao (2012).

The graphical interpretations are developed for two dif-

ferent values of power law index i.e. n ¼ 1 and n ¼ 2: The

horizontal velocity distribution at n ¼ 1 and n ¼ 2 for

diverse values of velocity ratio parameter A is sketched in

Fig. 4. This figure highlights an increment in horizontal

velocity by dominating A. However, the fluid velocity

dominates in case of n ¼ 2. The associated thickness of

boundary layer exhibits decreasing trend for larger A. Fur-

ther A ¼ 1 corresponds to no boundary layer thickness. It

means that the fluid and sheet both have the same velocity.

The cases A\1 and A[ 1 correspond to higher velocity at

surface and away from the wall. Figure 5 depicts the Sut-

terby fluid parameter a effects on the velocity field for two

fixed values of n. It is noticed that velocity for both values

of n increases with increasing fluid parameter. However,

for n ¼ 2, it shows a dominating trend with increasing

Sutterby fluid parameter. Physically increasing fluid

parameter a reduces the kinematics viscosity which helps

in more fluid deformation and resultantly, horizontal

velocity increases. It is also observable here that for small

Sutterby fluid parameter, the Newtonian curve is founded.

The variation of temperature field at two fixed values of

n i.e. n ¼ 1 and n ¼ 2 for various values of Prandtl number

Pr is illustrated in Fig. 6. Here the temperature follows

diminishing trend by growing Pr for both cases i.e. n ¼ 1

and n ¼ 2. In fact greater Prandtl number is corresponding

to low thermal diffusivity which causes the reduction in

temperature field. Moreover, a decrease in thickness of

associated boundary layer is noted for larger Pr. Compar-

ing both solutions reveal that temperature for n ¼ 2 is

greater than the fluid temperature for n ¼ 1. Figure 7 dis-

closes the impacts of heat generation / absorption param-

eter Q on the fluid temperature when n ¼ 1 and n ¼ 2. The

case Q[ 0 corresponds to the heat generation whereas the

case Q\0 describes the heat absorption phenomenon.

Generally it is noticed that fluid temperature increases with

dominating heat generation parameter (Q[ 0). In fact

positive values of Q result maximum in temperature due to

more heat is generated which consequently strengthens the

temperature field. The boundary layer correspond to tem-

perature field is thicker when heat generation parameter

rises. However opposite trend is evident in the magnitude

of the fluid temperature and associated thickness of thermal

boundary layer with heat absorption parameter (Q\0).

Fig. 8 shows the impact of stratification parameter s1 on

Fig. 4 Effect of A on f 0

Fig. 5 Effect of a on f 0

Fig. 6 Effect of Pr on h

Fig. 7 Effect of Q on h;
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temperature field for both the cases n ¼ 1 and n ¼ 2.

Higher intensity of stratification parameter causes in

decrement of temperature field for both solutions. Also for

both solutions i.e. for n ¼ 1 and n ¼ 2, thermal boundary

layer in stretching case is thinner. Physically dominating

values of stratification parameter minimizes the difference

in temperature between surface fluid and ambient, so

temperature profile diminishes. On comparison, the fluid

temperature secure greater magnitude in case of n ¼ 2.

Fig. 9 illustrates temperature field for some values of

thermal relaxation parameter c1 for both n ¼ 1 and n ¼ 2.

It reveals that variation of reduces both the temperature and

associated boundary layer thickness for both the solutions.

Physically liquid particles need more time in transporting

heat to the nearby particles when c1 rises. Moreover, it is

interesting to notice that the fluid temperature is lower in

case of n ¼ 2. Figure 10 represents the effects of Sutterby

fluid parameter a and velocity ratio parameter A on surface

drag. It is examined that surface drag grows as enhance a
and A for both the cases n ¼ 1 and n ¼ 2 (see Table 1).

The above table reflects that all the results are matched

in excellent order.

5 Closing remarks

Heat generation/absorption in thermally stratified flow of

stagnant Sutterby fluid through linearly stretched plate is

analyzed in this atricle. The key points listed below:

• Temperature shows decreasing trend for dominant

Prandtl number, thermal stratification parameter, ther-

mal relaxation parameter and heat generation

parameter.

• Sutterby fluid parameter a enhances the velocity field.

• Skin friction coefficient grows for enlarge ratio param-

eter A and Sutterby fluid parameter a.
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