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Abstract
The electro-kinetic transport of blood flow mixed with magnetic particles in the circular channel was investigated. The flow

was subjected to an external electric and uniform magnetic field. The fluid was driven by pressure gradient and perpen-

dicular magnetic field to the flow direction. Due to the usefulness and suitability of Caputo–Fabrizio fractional order

derivative without singular kernel in fluid flow modeling and mass transfer phenomena, the governing equations were

modeled as Caputo–Fabrizio time fractional partial differential equations and solved for a 2 0; 1ð �. The analytical solutions
for the velocities of blood flow and magnetic particles were obtained by using Laplace, finite Hankel transforms and

Robotnov and Hartley’s functions, respectively. Mathematica software was used to simulate the influences of fractional

parameter a, Hartmann number and Reynolds number on the velocities of blood and magnetic particles. The findings are

important for controlling bio-liquids in the devices used for analysis and diagnosis in biological and medical applications.

1 Introduction

One of the alternate ways of delivering blood flow is

electro-magneto flow driven by externally applied electric

and magnetic fields. It involves both magnetic and electro-

static collisions between the magnetically charged particles

in the ionized solution. Considerable amount of work have

been done to identify various blood flow patterns and

characteristics in the presence of magnetic field and electric

current. Electro-magneto blood flow has been implemented

in surgical treatments and cancer (tumor) operations.

The artificial blood velocity was measured experimen-

tally at different magnetic fields strength and it was noticed

that the velocities of blood and magnetic particles velocity

fell tremendously in the presence of magnetic field

(Sharma et al. 2015). Although the behaviors of magnetic

particles and blood are quiet similar, the magnetic particles

velocity is lower than blood velocity due to the drag force

and other resistive forces (Shah et al. 2016a). In micro

channels the heat conversion capacity and fluid flow can be

regulated in the non-local system (Roslan et al. 2016) as it

flow faster. Moreover the channel temperature can be

adjusted via manipulating the Joule’s parameter. The

temperature profile reported was different as compared to

those reported by using other model. There was greater

heat transfer rate for the oscillatory movement of the tri-

angular wave form of the temperature profile.

Rubbab et al. (2017) obtained the microscopic results

such as the typical material length scale, which is important

for one to perceive the fluid characteristics. Moreover, all

the classical fluid results can be recovered by setting the

typical length scale to zero in the couple-stress fluid.

Kumar et al. (2012) found that the blood velocity would

was increase upon applying the body acceleration and

combining the body acceleration with magnetic field. Their

study is helpful for treating cardiovascular, blood borne

and hypertension diseases. The study conducted by Singh

and Rathee (2011) was limited to certain magnetic field
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range. They studied the blood flow in hypertensive patients

and in arteries having blockages. Also, there are some

references which performed in this field (Alsagri et al.

2019; Gul et al. 2019; Ahmad 2019; Souayeh et al.

2016, 2017a, b, 2019; Raju et al. 2019; Ahmad and Khan

2019; Krishna et al. 2019; Ahmed et al. 2018; Hussanan

et al. 2019; Bezi et al. 2018; Alarifi et al. 2018, 2019).

Obstructions in water and sewage system pipelines are

major concerns nowadays. Patel et al. (2012) modeled the

constriction by using sinusoidal model. The axial velocity

was then solved using the simple pipeline network model.

Santapuri (2016) indicates the practicality and usefulness

of his framework through multi-ferrous material of the

symmetric hexagonal crystal in which the limitations on

the material constants were also specified. Buchukuri et al.

(2016) investigated the oscillating singularities by using

the potential method and the pseudo-differential equations

on 35 manifolds with boundary. The uniqueness and

existence of the solutions were then established. Bhatti

et al. (2017) have performed both numerical and experi-

mental works on MHD and heat transfer of non-Newtonian

flows. By using the nano fluid model, Sher et al. (2017)

focused on different types of nano-particles which were

platelet, cylinder and brick shape in the study of unsteady,

non-uniform and peristaltic flow. The thermal conductivity,

temperature and axial velocity profiles of these nano-par-

ticles were sequenced as bricks\ cylinder\ platelets. The

size of trapped bolus was the largest for bricks as compared

to platelets in the nano-fluid model. Usman et al. (2018)

found that the heat transfer and fluid flow results for two-

phase, unsteady magnetized flow with nano-particles

obtained using the fourth order Runge–Kutta and

scheme the differential transform method were quiet

similar.

Tripathi et al. (2018) noticed that the axial velocity in

the core region was increased the electric field whereas the

opposite behavior was observed at micro-channel walls. On

the other hand, there was a reduction in the number of

trapped boluses. In the model proposed by El-Borhamy

(2017), flow parameters affecting the convergence of the

numerical solution in the regularization process were

reported. At large ratio 2
ss
, bifurcated solutions and sec-

ondary vortices were more apparent. Falade et al. (2017)

found that by raising the injection/suction parameter

affected by thin thermal radiation optics in the Oscillatory

MHD flow through permeable medium, parameter such as

the flow velocity, fluid temperature and skin friction were

elevated thus reducing the heat transfer rate on the heated

plate. Heat transfer of MHD couple stress fluid flow had

major contributions in maximizing heat transfer and

reducing skin frictions (Shah et al. 2016b). Moreover by

enhancing parameter such as Hartmann number, porosity,

heat source and couple stress parameter of the flow, the

heat transfer rate could be enhanced significantly mean-

while, if high heat sink parameter and Prandtl number were

employed the heat transfer rate would decrease.

Sharma and Sharma (2014) investigated the effect of

relaxation time on both spatial and temporal temperature

profiles. The effects of several parameters on the temper-

ature fluctuations were graphically analyzed. Tanveer

(2016) solved the velocity distribution model in coronary

arteries subjected to external magnetic field and fatty par-

ticles. The performed study was 65 is helpful in the treat-

ment of various cardiovascular and arterial diseases.

Caputo and Fabrizio (NFDt) (2015) modified the old

Caputo fractional order derivative (UFDt) so that is free

from singular kernel. In NFDt, fractional order works on

both temporal and spatial variable. Temporal variable is

more suitable for Laplace transform. While, the spatial

variables is more suitable for Fourier transform. Time

fractional order derivative model gives a non-local system

which is free from the singular kernel, which is able to

explain the multifariousness of the medium and the oscil-

lation at different levels, which are not well defined in the

classical local system or in the fractional order system with

singular kernel. For NFDt at a ¼ 1, the classical local

system is recovered. Recently, Morales-Delgado et al.

(2019) studied the dynamics of the oxygen diffusion

through capillary to tissues using Caputo–Fabrizio and

Liouville–Caputo fractional derivatives by using Laplace

homotopy method.

The purpose of this paper is to deal with application of

Caputo–Fabrizio fractional derivative to solve unsteady

viscous flow of blood filled with magnetic particles subject

to an oscillating pressure gradient through a cylindrical

tube. The flow acted upon by external electric field and

magnetic field normal to the flow direction.

2 Mathematical model

Consider three-dimensional unsteady viscous flow of blood

mixed with magnetic particles (iron rich particles) under

the action of an oscillating pressure gradient inside the

circular cylinder of radius R0. The transport of the blood

and magnetic particles in the channel is exposed to the

external electric field E~ and magnetic field B~ as shown in

Fig. 1. The effect of electromagnetic on the velocity pro-

files of blood flow and magnetic particles flow has been

focused in depth.

Governing continuity and momentum equations for the

electro-magnetic transport of blood mixed with magnetic
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particles in the cylindrical coordinates ðr; h; zÞ is given by

(Shah et al. 2016a):
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For the governing continuity and Navier–Stokes equa-

tions of the blood flow model in the cylindrical coordi-

nates, we are assuming the following realistic assumptions.

1. Only one velocity component is non-zero i.e.; uz ¼ u at

z-direction. Thus ur ¼ 0 ¼ uh
2. Axial component of the velocity is independent of the

angular location, hence uh
oh ¼ 0.

The above governing equations from Eqs. (1)–(4) are

then reduce to

ouz

oz
¼ 0 ð5Þ

q
ouz

oz

� �
¼ � op

oz
þ g

o

or

1

r

oðruzÞ
or

� �
þ Fem þ Fuv: ð6Þ

2.1 Electro-magnetic field and relative forces

The electro-magnetic field force Fem and the force Fuv due

to the motion between blood and magnetic particles can be

represented as

Fem ¼ J � B ¼ rðE þ V � BÞ � B

¼ � r2B2uðr; tÞj~� qeE

¼ � r2B2uðr; tÞj~� qeEzk

ð7Þ

Fuv ¼ Km N vðr; tÞ � uðr; tÞf g ð8Þ

where B0 and Ez are the magnetic and electric field in axial

direction. J is the density of current, j~ is the unit vector in

z-direction, uz ¼ uðr; tÞ j~ is the blood flow velocity

Fig. 1 Electro-magneto blood flow transport model
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component and v(r, t) is the magnetic particles velocity

component in z-direction. qe ¼ �e j2 wðrÞ is the net charge
density. In j2 ¼ 2z0

2 e2
0
n0

e kB Ta
, e is the dielectric constant, j is the

Debye–Hukel parameter, j�1 is the thickness of electrical

double layer, n0 is the ionic concentration in the bulk

phase, e0 is the electronic charge, kB is the Boltzmann

constant, Ta is the absolute temperature. Km is the stokes

constant, N is the number of magnetic particles per unit

volume.

2.2 Bio-fluid velocity model

The governing momentum in Eq. (6) is representing the

unsteady, axisymmetric transport of the blood flow model

in the presence of external pressure gradient and electro-

magnetic field:

ouðr; tÞ
ot

¼ 1

q
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q
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where A0 and A1 are the pulsatile components of the

pressure gradient giving rise to the systolic and diastolic

pressure. Newton’s second law of motion governs the

movement of magnetic particles in the blood flow

m
ovðr; tÞ

ot
¼ Km uðr; tÞ � vðr; tÞf g ð10Þ

where u(r, t) and v(r, t) are the blood flow and magnetic

particles velocity in the axial direction respectively and m

is the magnetic particles average mass, q is the fluid den-

sity and m is the kinetic viscosity.

Caputo–Fabrizio time fractional order model of Eqs. (9)

and (10) is obtained by taking t and multiplying both sides

of the equations by o
ot
¼ D

ðaÞ
t , which has the dimension of t
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and

kaDðaÞ
t vðr; tÞ ¼ Km k

m
uðr; tÞ � vðr; tÞf g: ð12Þ

The initial and boundary conditions of the blood flow

inside circular cylinder of radius R0 are

uðr; 0Þ ¼ 0; vðr; 0Þ ¼ 0; r 2 ½0;R0�
uðR0; tÞ ¼ 0; vðR0; tÞ ¼ 0; t[ 0:

ð13Þ

To study the non-dimensional model introducing the

non-dimensional variables

r0 ¼ r
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k
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0 ¼
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ð14Þ

where u0 is the characteristic velocity. Equations (11)–(13)

becomes (after dropping dashes)

D
ðaÞ
t uðr; tÞ ¼ A0 þ A1 cosðxtÞ þ

1

Re

o2uðr; tÞ
or2

þ 1

r

ouðr; tÞ
or

� �

þ R vðr; tÞ � uðr; tÞf g � Ha2uðr; tÞ
þ K2wðrÞ;A0 [ 0

ð15Þ

G � DðaÞ
t vðr; tÞ ¼ uðr; tÞ � vðr; tÞ ð16Þ

uðr; 0Þ ¼ 0; vðr; 0Þ ¼ 0; r 2 ½0; 1�
uð1; tÞ ¼ 0; vð1; tÞ ¼ 0; t[ 0

ð17Þ

where K2 ¼ e j2 Ez k
q is the electro-kinetic width, Ha2 ¼ r2 B2

0
k

q

is the Hartmann number, Re ¼ R2
0

k q is the Reynolds number,

R ¼ Km N k
q is the particles concentration parameter and G ¼

m
Km k is the mass parameter of magnetic particles.

2.3 A new definition of fractional derivative
without singular kernel NFDt

In 1967 Caputo define fractional time derivative with sin-

gular kernel usually denoted as UFDt,

D
ðaÞ
t f ðtÞ ¼ 1

Cð1� aÞ

Z t

a

_f ðsÞ
ðt � sÞads; ð18Þ

with a 2 ½0; 1� and a 2 �1; t½ Þ; f 2 H1ða; bÞ; b[ a

where H1 is the class of all integrable functions on [a, b]. In

Eq. (18) kernel has a singular value at t ¼ s. This was

further modified by Caputo and Fabrizio (2015) and called

as NFDt, by removing the singularity from the definition:

D
ðaÞ
t f ðtÞ ¼ MðaÞ

ð1� aÞ

Z t

a

_f ðsÞ exp � aðt � sÞ
1� a

� �
ds; ð19Þ
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where M(0) = M(1) = 1 (condition of the function nor-

malization). In addition to the absence of singularity in the

new definition of fractional derivative NFDt, it has another

property that it coincides with the old definition UFDt at

zero for a constant f(t). Moreover f ðtÞ 62 H1ða; bÞ can also

be operated by NFDt. The equivalent form of the definition

in Eq. (19) assumes the form

~D
ðrÞ
t f ðtÞ ¼ NðrÞ

r

Z t

a

_f ðsÞ exp �ðt � sÞ
r

� �
ds: ð20Þ

One of the property of NFDt is related to the compu-

tation of Laplace transform (LT) with variable s, by taking

a = 0 in the definition in Eq. (20)

LT ½DðaÞ
t �f ðtÞ ¼ s LT ½f ðtÞ� � f ð0Þ

sþ að1� sÞ : ð21Þ

2.4 Solution to the problem

Laplace transform is most suitable in case of temporal

variable t in the blood flow model discussed in Eqs. (15)

and (16) and boundary condition in (17). After transfor-

mation we have
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Substituting �vðr; sÞ from Eq. (23) into Eq. (23) and then

taking finite Hankel transform with respect to the radial

coordinate r along with the boundary condition in Eq. (24),
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where �uHð1n; sÞ ¼
R1
0

r uðr; sÞ J0ð1n; sÞdr is representing the

finite Hankel transform of the velocity function �uðr; sÞ ¼
LT ½uðr; tÞ� and 1n, n = 1, 2, … are the positive roots of the

equation J0(x)= 0, here J0 is the Bessel function of order

zero and belong to the first kind. By simplifying the

coefficient of �uHð1n; sÞ in Eq. (25), we have
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where the parameters introduced in Eqs. (26) and (27) for

simplifying the coefficient of �uHð1n; sÞ in Eq. (25) are as

follows

m1n ¼ Ha2 þ Rþ 1n
Re

;

m2n ¼ 1þ G� a� R� Ra2 þ 2Raþ m1n

þ a2m1n � 2am1n þ Gm1n � Gam1n;

m3n ¼ aþ 2Ra2 � 2Ra� 2m1na
2 þ 2am1n þ Gam1n;

m4n ¼ a2m1n � Ra2;

m5n ¼ 1þ a2 � 2aþ G� Ga; m6n ¼ �2 a2 þ 2aþ Ga;

m7n ¼
�m3n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Laplace transform of the image function �uHð1n; sÞ dis-

cussed in Eq. (27) is obtained by using the Robotnov and

Hartley’s functions
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2.4.1 Fluid velocity

Bio-fluid flow is obtained by taking the inverse Hankel

transform of Eq. (32)

uðr; tÞ ¼ 2
X1
n¼1

J0ðr 1nÞ
1n J

2
1ð1nÞ

� uHð1n; tÞ ð32Þ
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m7nð12n þ K2Þ þ
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m7n
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þ m9nA1 e
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þ ðem 8n t � 1Þ 12n K
2m10n

m 8nð12n þ K2Þ þ
A0 m10n

m 8n

� �	
;

for 0\a� 1:

ð33Þ

2.4.2 Magnetic particles velocity

The velocity of the magnetic particles mixed with blood is

obtained from Eq. (23)

�vðr; sÞ ¼ sþ a� a s
sþ G sþ a� a s

�uðr; sÞ ð34Þ

vðr; tÞ ¼ m12nð1� m11nÞ uðr; tÞ � e�m12n tf g;
for 0\a� 1:

ð35Þ

Fig. 2 Comparison between NFDt and UFDt at a ¼ 1

Fig. 3 Velocity profile for K = 0 and at different fractional param-

eters against r

Fig. 4 Velocity profile for K = 0.6 and at different fractional

parameters against r
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In Eqs. (33) and (35) f � g represents convolution pro-

duct of f and g. The parameters introduced in Eq. (12) are

as follows

m11n ¼
1� a

G� aþ 1
; m12n ¼

a
G� aþ 1

: ð36Þ

Convolution product between f and g can be calculated

as

f � gð ÞðtÞ ¼
Z t

0

f ðsÞðt � sÞds: ð37Þ

3 Numerical results and discussion

Our goal was to obtain the blood flow stream parameters

from the new definition of Caputo–Fabrizio fractional

derivative without singular kernel solved by using both

Laplace and finite Hankel transforms. A few numerical

modifications were performed using the Mathematica

programming. The obtained mathematical forms of u(r,

t) and v(r, t) as shown in Eqs. (33) and (35), respectively,

were graphically plotted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and

11.Fig. 5 Velocity profile for K = 1.2 and at different fractional

parameters against r

Fig. 6 Velocity profile for Ha = 0 and at different fractional param-

eters against r

Fig. 7 Velocity profile for Ha = 1 and at different fractional param-

eters against r
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It was intriguing to isolate the impact of fractional

parameter on the velocities of blood and magnetic parti-

cles. The effects of electric field, magnetic field and Rey-

nolds number were also presented. The positive root of the

Bessel function ‘‘J0’’ was used. For all the graphical plots,

the ordinary fluid model was compared with the fractional

fluid model by taking a 2 f0:4; 0:6; 0:8; 1g. Other

numerical values were A0 ¼ 0:5; A1 ¼ 0:6; G ¼ 0:5; R ¼
0:5; x ¼ p=4 and t ¼ 0:2:

Figure 2 compares the velocity profiles for the blood

flow and magnetic particles predicted using UFDt and

NFDt. The velocity predicted using the local model i.e.;

a ¼ 1 agreed well with those reported by Shah et al.

(2016a) using theoretical and experimental methods.

The effects of electric field on the velocities of blood

flow and magnetic particles at the core region predicted

using the ordinary and fractional model were reported in

Figs. 3, 4 and 5. At zero electric field, the blood flow

velocity was higher than that of magnetic particles due to

the drag force. Increasing external electric field would

cause a more rapid development in the velocity of mag-

netic particles due to the collisions between charged par-

ticles. However, the fractional fluid velocity was lower

than the ordinary fluid velocity.

Figures 6, 7 and 8 show the effect of external magnetic

field on the velocity. Apparently, external magnetic field

exhibited a significant impact on the velocity profiles pre-

dicted using fractional and local models. At high values

Ha, the resistive force acting on the blood flow was more

intense whereby the velocity of magnetic particles dropped

significantly.

The effects of Reynolds number were shown in Figs. 9,

10 and 11. Here, the velocity amplitude in the core region

increased at higher Re (Re[ 1) and the velocity of mag-

netic particles was higher than the blood flow velocity. At

low Re (Re\ 1), the flow behavior of blood and magnetic

particles were comparable.

4 Conclusion

The flow of blood mixed with iron-rich particles (magnetic

particles) was subjected to the external electro-kinetic

energy and magnetic field. The flow was modeled by using

the new definition of Caputo–Fabrizio fractional order

derivative without singular kernel in the time fractional

model. The cylindrical flow domain was considered. The

governing nonlinear time fractional order differential

equations were solved analytically. The velocities of blood

flow and magnetic particles were obtained by taking the

Laplace transform with respect to t and finite Hankel

Fig. 8 Velocity profile for Ha = 2 and at different fractional param-

eters against r
Fig. 9 Velocity profile for Re = 0.5 and at different fractional

parameters against r
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transform with respect to r. Graphical plots were generated

using the Mathematica software. At high Reynolds number

and electro kinetic energy the velocity of magnetic parti-

cles was higher than the blood flow velocity. On the other

hand, at low Reynolds number and high magnetic field

strength, the velocity of magnetic particles dropped

tremendously.
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