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Abstract
An advanced nonlinear continuum model is presented to analyse the super and subcritical nonlinear behaviour of nan-

otubes. The nanoscale system is used to convey fluid flow at nanoscale levels. Due to the restrictions of one-parameter size-

dependent models, a more comprehensive nonlinear coupled model containing two different size parameters is introduced

using the nonlocal strain gradient theory (NSGT). Both axial and transverse inertial terms are taken into consideration,

leading to more accurate results for nanotubes conveying fluid. In addition, since the mean free path of molecules is not

negligible compared to the diameter of the tube at nanoscales, the Beskok–Karniadakis approach is implemented. The

NSGT, Galerkin’s technique and continuation method are finally employed to derive, discretise and solve the coupled

nonlinear equations, respectively. The frequency–amplitude response, modal interactions and the possibility of energy

transfer between modes are examined in both supercritical and subcritical flow regimes.

1 Introduction

In recent years, various nanotubes have been synthesised

and used in nanoscale electromechanical systems. The

widespread application of nanotubes is due to their excel-

lent mechanical, thermal and electrical properties. For

instance, carbon nanotubes have an exceptional strength

and a high thermal conductivity, leading to the extensive

applications of them in different nanosystems such as

nanoresonators, nanogenerators, thermal conductors and

scaffolds for bone growth (De Volder et al. 2013). Strong

nonlinear dynamics has been found in the fundamental

structures of many microelectromechanical and nanoelec-

tromechanical systems (MEMS and NEMS) (Farokhi and

Ghayesh 2016, 2018; Ghayesh and Farokhi 2018; Sassi and

Najar 2018), making the investigation of this phenomenon

extremely important in analysing MEMS and NEMS

devices.

The vibration response of macroscale structures has

widely been explored via the classical elasticity (Ghayesh

et al. 2013a; Ghayesh and Moradian 2011; Malekzadeh

2007; Malekzadeh and Vosoughi 2009). However, since

classical continuum-based models lead to size-independent

results for small-scale structures, they are modified to

include size effects (Babaei and Yang 2019; Ebrahimi and

Barati 2019; Farajpour et al. 2018b; Farajpour et al. 2018c;

Ghayesh and Farajpour 2018b; Lin et al. 2018; Sahmani

and Aghdam 2018), and accurately estimate the mechani-

cal behaviour at small-scales (Farokhi et al. 2018a, 2018b;

Ghayesh 2018a, 2019; Kamali et al. 2018; Pradiptya and

Ouakad 2018; Yayli 2018). Various modified continuum-

based models involving the nonlocal (Farajpour et al. 2017;

Reddy 2010), couple stress (Ghayesh et al. 2016a; Nejad

et al. 2017) and a theory incorporating the gradient of strain

(Akgöz and Civalek 2011; Ghayesh et al. 2013b) have been

developed and utilised for small-scale structures (Farokhi

and Ghayesh 2015; Ghayesh et al. 2016b; Farajpour et al.

2018d; Gholipour et al. 2015; Farajpour et al. 2019b).

Recently, an advanced version of the nonlocal theory,

which includes strain gradient effects, has attracted much

attention in the continuum modelling of nanostructures

(Lim et al. 2015; Zhu and Li 2017). This size-dependent

theory is technically termed as ‘‘nonlocal strain gradient’’.
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In this work, using this theory, size effects on the

mechanical response are captured.

Modified continuum-based models have widely been

presented for the vibration, bending and instability analyses

of nanotubes. In one pioneering study, Zhang et al. (2005)

presented a nonlocal model to analyse the free vibration of

a system of two nanotubes. In another work, Reddy and

Pang (2008) presented different scale-dependent beam

models for the mechanical behaviours of nanotubes

involving the static deformation, oscillation and stability

responses; they utilised the nonlocal constitutive relation

for developing the scale-dependent formulation. Mal-

ekzadeh and Shojaee (2013b) developed a nonlinear beam

model with incorporation of both nonlocal and surface

influences for analysing the large-amplitude oscillations of

nanobeams; they presented numerical results based on both

Euler–Bernoulli and Timoshenko theories of beams.

Moreover, Malekzadeh and Shojaee (2013a) analysed the

static stability of quadrilateral laminated sheets made of

several layers reinforced with carbon nanotubes; they used

a first-order theory of shear deformations to model the

quadrilateral laminated sheet. Khaniki et al. (2018) also

developed a two-phase scale-dependent model for

dynamics of nanoscale beams; the nanosystem was

embedded in a varying elastic medium. Aydogdu and Filiz

( 2011) proposed a scale-dependent model for mass

nanosensors using nanotubes; the axial vibration of carbon

nanotubes was exploited for mass detection at nanoscales.

In addition, Aydogdu (2014) employed the nonlocal elas-

ticity for analysing axial wave propagations in multi-wal-

led nanotubes; the effects of van der Waals forces between

various walls on the wave propagation were captured via

an analytical model. In another study, Malekzadeh et al.

(2014) investigated the free vibration of a skew small-scale

plate with large displacements capturing size effects; sur-

face effects were also taken into consideration in the

model. Setoodeh and Afrahim (2014) utilised the strain

gradient theory to explore the large-amplitude dynamics of

microscale pipes conveying fluid; in the formulation, it was

assumed that the pipe was made of functionally graded

materials. More recently, Li et al. (2016) analysed the wave

dispersion in nanotubes with viscoelastic properties via a

nonlocal strain gradient theory (NSGT).

In addition to pure nanotube systems, the mechanics of

fluid-conveying nanotubes has attracted noticeable atten-

tion in the literature (Dai et al. 2015; Wang et al. 2010).

Understanding the mechanical behaviour of these systems

is important in applications such as drug delivery systems

and microfluidics-based devices. Although some valuable

research works have been performed on the fluid-con-

veying nanotubes (Ansari et al. 2016; Maraghi et al.

2013; Soltani et al. 2010; Zeighampour and Beni 2014),

further investigation is required to understand the large-

amplitude dynamics of nanotubes conveying nanofluid

since the majority of previously published works are

restricted to small deformations. In addition, for the sake

of simplification, only transverse motion has been anal-

ysed. Furthermore, to the best of our knowledge, modal

interactions and energy transfer between different modes

of fluid-conveying nanotubes have not been examined yet.

In the present paper, an advanced scale-dependent model

is presented for the frequency response of a nanotube with

large amplitudes of vibrations. The elastic nanotube is

used to convey fluid flow. The Beskok–Karniadakis

approach is implemented to consider slip boundary con-

ditions on the nonlinear behaviour. The NSGT, Galerkin’s

approach and continuation scheme are, respectively, uti-

lised to derive, discretise and solve the motion equations.

The frequency–amplitude plots are constructed for

studying the possibility of energy transfer between modes

together with modal interaction in both supercritical and

subcritical regimes.

2 A NSGT-based model

To develop a continuum model, a single nanotube of a

high length-to-thickness ratio is taken into account as

shown in Fig. 1. The nanotube is used to convey fluid

flow at nanoscales. It is assumed that the tube is perfectly

straight. In addition, there is no internal friction in both

the fluid and solid parts. The length, mass per length and

diameter of the nanotube are, respectively, indicated by L,

m and do. Furthermore, M is utilised to indicate the mass

per length of the nanofluid. For the displacement com-

ponents of the tube, we assume that (u, w) = (axial dis-

placement, transverse displacement). It is assumed that

the effects of shear deformation are negligible. In addi-

tion, the tube cross-section is constant in this analysis.

Only geometrical nonlinearity caused by the stretching

influence of the tube centreline is captured. Using Euler–

Bernoulli theory and incorporating the geometrical non-

linearity, the strain is

Fig. 1 A NSGT nanotube conveying fluid subject to a distributed load
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In reality, taking into account the effects of nonlinearity

is important to develop precise modelling (Ghayesh and

Farokhi 2015a; Gholipour et al. 2018a, b; Farajpour et al.

2018e; Ghayesh et al. 2019).

The force and couple resultants related to the total stress

ðrðtotÞxx Þ are as

Nxx ¼
Z
A

rðtotÞxx dA; Mxx ¼
Z
A

zrðtotÞxx dA: ð2Þ

Using the NSGT, one can express the total stress in

terms of the strain as.
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in which r2, lsg, E, e0 and a are the Laplacian operator,

strain gradient parameter, elasticity constant, calibration

coefficient and internal characteristic size, respectively

(Farajpour et al. 2018a; Ghayesh and Farajpour

2018a, 2019). In view of the above constitutive equation

(i.e. Eq. (3)), the following relations are obtained from

Eq. (2)
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þ e0að Þ2r2Mxx; ð5Þ

where I denotes the second moment area. Let us indicate

the classical and higher-order stresses by rxx and rð1Þxx ,

respectively (Farajpour et al. 2019a; Lim et al. 2015). For

the strain energy (Ps), one can write

dPs ¼
ZL

0

Z
A
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o
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� �
dAdx

¼
Z
A

rð1Þxx dexxdA

2
4

3
5
L

0

þ
ZL

0

Z
A

rðtotÞxx dexxdAdx;

ð6Þ

where

rðtotÞxx ¼ rxx �
orð1Þxx

ox
; ð7Þ

Assuming U is the fluid velocity, the kinetic energy of

the nanosystem (Tk) is (Ghayesh et al. 2018; Paidoussis

1998)
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Here a correction factor for the fluid velocity (jv) is

utilised for capturing slip conditions at the wall. Using the

Beskok–Karniadakis approach (Beskok and Karniadakis

1999), one obtains

jv ¼ kKnþ 1ð Þ 4Kn

Knþ 1

� �
2� rv
rv

� �
þ 1

� �
; ð9Þ

where

k ¼ 2k0
p

tan�1 a0 Knð Þa1½ �; ð10Þ

in which Kn is the Knudsen number. For nanotubes, it is

commonly assumed that rv ¼ 0:7, a0 ¼ 4, a1 ¼ 0:4 and

k0 ¼ 64=15p. Assuming the amplitude F(x) and frequency

x for the applied load, the external work is given by

dWq ¼
Z L

0

qdw dx: ð11Þ

where

q ¼ F xð Þ cos x tð Þ: ð12Þ

For deriving the motion equations, Hamilton’s principle

is employed as followsZ t2

t1

dWq þ dTk � dPs

� 	
dt ¼ 0: ð13Þ

Substituting Eqs. (6), (8) and (11) into the above prin-

ciple, one can obtain

oNxx

ox
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Using the above equations (i.e. Eqs. (14) and (15))

together with Eqs. (4) and (5), the motion equations are

derived as
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Now without losing the generality, a set of dimension-

less parameters is utilised as follows
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Here �r2 denotes the dimensionless Laplacian operator.

Employing Eq. (18) together with Eqs. (16) and (17), the

dimensionless motion equations are derived as
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Fig. 2 Change of maximum transverse and axial displacements versus

the frequency ratio in the subcritical flow regime for F1 = 2.0 and

U = 3.25; a wmax at x = 0.5; b umax at x = 0.657; x1 = 15.5031
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in which ‘‘*’’ is dropped in Eqs. (19) and (20) for the

sake of convenience.
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Fig. 3 Change of a q1, b q2, c q3 and d q4 versus the ratio of the excitation frequency to the natural one in the subcritical flow regime
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3 Galerkin-based discretisation and solution
technique

A Galerkin-based discretisation is performed in this section

using the following expressions for the displacement

components

u
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� 
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( )
; ð21Þ

where rk and qk are generalised coordinates whereas fk and
gk are trial functions (Ghayesh 2018b, c; Farokhi et al.

2017; Farajpour et al. 2018f; Ghayesh and Farokhi 2015b).

Assuming clamped–clamped boundary conditions and

using Eq. (21), one can obtain
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Fig. 4 Detailed motion characteristics of the system of Fig. 2 at x/x1 = 1.0522 (i.e. when the modal interactions are strongest). a, b w versus tn
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Equations (22) and (23) indicate a set of time-dependent

ordinary differential equations, which can be solved via a

continuation approach. It is worth mentioning that for

developing a numerical solution, ten trial functions are

assumed.

(a)

(b)

ω

w m
ax

16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Nonlocal strain gradient theory
Classical theory

ω

u m
ax

16 17 18 19 20

0

0.002

0.004

0.006

Nonlocal strain gradient theory
Classical theory
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4 Results and discussion

For constructing the frequency-response curves of the

fluid-conveying nanosystem incorporating both stress

nonlocality and strain gradients, the tube material and

geometrical parameters are assumed as q = 1024 kg/m3,

v = 0.3, E = 610 MPa, h = 66.0 nm and Ro = 290.5 nm

where h, q and Ro are respectively the nanotube thickness,

density and outer radius. In the numerical solution, a

dimensionless damping coefficient of 0.25 is added for

both u and w motions. The focus of this paper is not on the

influence of viscoelastic medium. The system dimension-

less parameters are jv = 1.0788, �M = 0.5915, vsg ¼ 0:04,

vnl ¼ 0:09, N = 4006.9411 and s = 20.0, unless otherwise

specifically mentioned.

The change of maximum transverse and axial dis-

placements versus the frequency ratio (the ratio of excita-

tion frequency to fundamental natural one) is plotted in

Fig. 2 for F1 = 2.0 and U = 3.25. The flow regime is

subcritical since the flow speed is less than the critical one

associated with buckling (Ucr = 5.1862). Both unstable and

stable branches are indicated in the figure. Two bifurcation

points at x/x1 = 1.1608 and 1.0378 are seen for the fluid-

conveying nanosystem. Moreover, it is found that the

nonlinearity of the nanosystem is of hardening type. In

addition, modal interactions are found in the nonlinear

response.

In order to study the modal interaction in the nonlinear

dynamics of the fluid-conveying nanosystem, the change of

first four generalised coordinates of the transverse motion

versus the frequency ratio is plotted in Fig. 3. Strong modal

interactions as well as energy transfer between modes are

observed in the nonlinear response of the nanosystem,

especially for higher generalised coordinates.

The detailed motion characteristics of the nanotube of

Fig. 2 are shown in Figs. 4 and 5 for x/x1 = 1.0522 and x/
x1 = 1.1608, respectively; the former case is the one when

the modal interactions are strongest. Time histories and

phase-plane plots for both types of motions are plotted. It

should be noticed that tn denotes normalised time with

respect to the period of oscillation. It can be concluded that

in the presence of strong modal interactions, the motion

characteristics of the nanotube are different, especially for

the axial motion.

The change of maximum transverse and axial dis-

placements versus the excitation frequency is plotted in

Fig. 6 for various fluid speeds in the subcritical regime.

The forcing amplitude, speed correction factor, nonlocal

coefficient and strain gradient coefficient are set to

F1 = 1.5, js = 1.0788, vnl = 0.09, and vsg = 0.04, respec-

tively. It is found that higher fluid speeds yield higher peak

amplitudes but lower resonance frequencies for both

motion types of the fluid-conveying nanosystem.

Figure 7 is plotted for comparing the nanosystem fre-

quency response for slip conditions with that calculated

using no-slip boundary conditions. The forcing amplitude,

speed correction factor, fluid speed, nonlocal coefficient

and strain gradient coefficient are set to F1 = 2, js-
= 1.0788, U = 3.5, vnl = 0.09, and vsg = 0.04, respec-

tively. The no-slip condition yields overestimated results

for both resonance frequency and peak amplitude of the

nanotube. Figure 8 also compares the slip and no-slip

boundary conditions for a higher fluid speed (U = 4.5) in

the subcritical regime. The amplitude of the external dis-

tributed loading is F1 = 1.2. Comparing Figs. 7 and 8

indicates that the effect of slip conditions on the subcritical

frequency response increases as the flow speed increases.
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The change of maximum transverse and axial dis-

placements versus the excitation frequency is plotted in

Fig. 9 for both the classical theory of beams and the

NSGT-based model. For the classical theory of beams, both

scale coefficients are zero (i.e. vnl = vsg = 0) whereas the

scale coefficients are as vnl = 0.09, vsg = 0.04 for the

NSGT-based model. The speed correction factor and

forcing amplitude are js = 1.0788 and F1 = 2.5, respec-

tively. The NSGT yields a relatively high peak amplitude

but a low resonance frequency, compared to the classical

theory. This is due to the high value of nonlocal coefficient

compared to the strain gradient coefficient. In fact, since

nonlocal effects are dominant for this case, the total

structural stiffness of NSGT nanotubes is less than that

calculated via the classical theory. This results in a lower

resonance frequency as well as a higher peak amplitude for

the nanosystem.

Figure 10 illustrates the change of maximum transverse

and axial displacements versus the frequency ratio for

F1 = 1.0, U = 6.15, js = 1.0788, vnl = 0.09, and vsg-
= 0.04; the fundamental frequency is x1 = 12.9072. It

should be noticed that this time, the fluid speed is higher

than the critical one (i.e. supercritical regime). The fre-

quency response is of softening type containing two

bifurcation points at x/x1 = 0.9706 and 0.6705. This is in

contrast to the subcritical frequency response in which a

hardening nonlinearity is observed. Moreover, modal

interactions are found in the nonlinear response for both

motion types. Figure 11 gives the frequency response of

the tube for the first four generalised coordinates. Strong

modal interactions as well as energy transfer between

modes are observed in the nonlinear response, especially

for higher generalised coordinates. Furthermore, the

detailed motion characteristics of the nanosystem of

Fig. 10 at x/x1 = 0.6705 (i.e. at peak oscillation ampli-

tude) are indicated in Fig. 12; phase-plane plots and time

histories for both motion types are shown.
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Figure 13 depicts the change of maximum transverse

and axial displacements versus the frequency ratio for

F1 = 1.0, js = 1.0788, vnl = 0.09, and vsg = 0.04. In

contrast to the subcritical regime in which increasing

U decreases natural frequency, in supercritical regime

increasing U increases natural frequency (shifts fre-

quency response to the right). Figure 14 compares the

frequency responses using no-slip and slip conditions in

the supercritical regimes for vnl = 0.09, vsg = 0.04, and

F1 = 0.8. The no-slip condition underestimates both peak

amplitude and resonance frequency in the supercritical

regime. This is in contrast to the subcritical frequency

response in which the no-slip condition yields overesti-

mated results for both the resonance frequency and peak

amplitude.

5 Conclusions

The large-amplitude forced oscillations of nanotubes con-

veying fluid were analysed via a size-dependent coupled

nonlinear model of beams. The proposed model contained

two different size parameters, leading to a better simulation

of size effects on the nonlinear oscillations. Both axial and

transverse inertial terms were taken into consideration. To

incorporate the mean free path of molecules at the tube/

fluid interface, the Beskok–Karniadakis approach was

implemented. The coupled nonlinear equations were finally

obtained, discretised and solved via application of the

NSGT, Galerkin’s technique and continuation method,

respectively.

In the supercritical flow regime, the frequency response

is of softening type containing two saddle-node bifurca-

tions while the subcritical frequency response is of a
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hardening nonlinearity. When nonlocal influences are

dominant, the total stiffness of NSGT nanotubes is less,

and this leads to a lower resonance frequency and a

higher peak amplitude for the nanosystem conveying

fluid. Strong modal interactions as well as energy transfer

between modes are observed in both flow regimes. In

contrast to the subcritical regime in which higher fluid

speeds yield a decrease in the natural frequency, in

supercritical regime, the natural frequency increases with

increasing fluid speed. Furthermore, no-slip boundary

conditions lead to underestimated supercritical peak

amplitudes and resonance frequencies for the NSGT

nanotube whereas no-slip boundary conditions yield

overestimated subcritical resonance frequencies and peak

amplitudes.
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