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Abstract
In this paper, electroencephalography data are used to establish a functional network connecting correlated human brain

regions. Through analysis, it is found that the resulting network shows statistical characteristics of a complex network: its

clustering coefficient is orders of magnitude larger than that of the equivalent random network, which is typical of a small-

world network, and the distribution of degree is close to that of a scale-free network. All these characteristics reflect

important functional information about brain states. For alcohol addicts, the characteristic indices of their brains are

obviously different from those of the control group. The information entropy and standard information entropy of the brain

neural network are also defined to measure the characteristics of the complex network. This gives a new criterion for

clinical diagnosis and treatment of encephalopathy. Calculation results indicate that the brain neural network information

entropy of alcohol addicts is quite distinct from that of the control group.

1 Introduction

The human brain is made up of huge numbers of neurons

and sparse connections between them, which operate at

multiple organizational levels. In addition, each level has

its own temporal and spatial scales (Power et al. 2011).

Therefore, neurons can be analyzed from multiple levels.

Neuronal clusters include local circuits, special brain areas,

large-scale tissues of the cortex and the entire brain. The

early neuroscientific research focused on the function

positioning of the brain regions, while the modern view-

point tends to analyze the structural and dynamic beha-

viours of neural networks at different levels by using

complex networks (Ingber and Nunez 1990; Ingber

2012, 2016). At present, the research of complex brain

network based on neuroimaging has become a hot topic.

The brain neural network is a complex network that can

extract and integrate all kinds of information perfectly from

external and internal stimuli in real time. The brain is

essentially a dynamic system, in which the connections

between any two regions are closely related to the complex

functional networks based on the dynamics theory. In fact,

functional networks derive deviations from statistical

independence between neural clusters with a certain dis-

tance in space (Shamshiri et al. 2017), including the mea-

surement of their correlation, covariance, coherent

spectrum, and phase synchronization of the brain network.

It is time dependent and the measurement results are

independent of each other. Actually, different methods of

measuring brain activities usually result in different sta-

tistical values of functional network connections (Horwitz

2003).

Since Friston (2005) proposed brain functional networks

based on positron emission tomography and functional

magnetic resonance imaging, the complexity analysis of

brain neural networks based on brain functional imaging

data has become an important research direction. Subse-

quently, Friston et al. put forward the principal component

analysis and independent component analysis of brain

functional networks (Friston et al. 1999; Penny et al. 2004),

and further studied their functional integration. MoIntosh

(Mcintosh et al. 1996) used standard variable analysis and

partial least squares to analyze brain functional networks.

Dodel and Herrmann (2002) combined the FMRI signal

time process and the graph theory to reveal the complex

characteristics of brain functional networks. Further,

Eguiluz et al. (2003) used FMRI to extract a large-scale
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human brain functional network, showing that its degree

distribution and connection are scale-free, and have small-

world network characteristics such as small path length and

large clustering coefficient, which reflect important func-

tional information about the brain state and provide a new

beginning for the study on the dynamic behaviours of the

brain.

At present, most of the researches on brain functional

networks are based on FMRI imaging data. In comparison,

although the electroencephalography (EEG) measurement

does not have accurate positioning and the number of

network nodes is relatively small, it has special advantages,

such as high time resolution, real-time monitoring, low cost

and easy access. In addition, due to special reasons,

patients with some diseases (such as Alzheimer) cannot be

examined or are not suitable for examination. Now EEG

data have been widely used in research (Diykh and Li

2016; Balenzuela et al. 2014). Therefore, this paper

attempts to use EEG time series to establish a brain func-

tional network for analysis.

An important purpose of studying the brain is to help

people give better diagnose, warning and treatment of

encephalopathy, so it is necessary to link the research of the

complex brain network with the clinical research. Alcohol

addiction is a kind of alcoholism which causes mental or

physical dependence on alcohol. It is one of the common

diseases that afflict the mankind. In spite of the adverse

consequences of alcohol consumption, alcohol addicts con-

tinue to drink in order to seek mental effects after drinking or

to avoid withdrawal syndrome caused by abstinence. Pro-

longed excessive drinking can lead to obvious mental and

physical impairments. The symptoms usually include vary-

ing degrees of memory loss and decline of computational

power and judgement. In addition, there may be hallucina-

tions, delusions, eyeball and limb tremors, ataxia, limb

muscle atrophy and other symptoms. A survey shows that the

average lifetime prevalence of alcohol addiction in the

general population is 13.6% in the United States, and that the

alcohol consumption and the prevalence of alcohol addiction

have increased substantially in the last decade in China.

Therefore, it is of great significance to study the brain

functional networks of alcohol addicts based on the EEG

data and compare their brain functional networks with those

of the normal people.

2 Construction of the functional brain
network

2.1 Data sources

The raw EEG data used in the study are from the neuro-

dynamics laboratory at the New York State University

Health Centre. These data were derived from a large-scale

study on the EEG of alcohol addicts, measured at a fre-

quency of 256 Hz and with 64 leads. The subjects were

divided into two groups—the alcohol addict group and the

normal people group. There were 122 subjects, including

78 patients and 44 normal persons, each undergoing 120

measurements under different stimuli. Meanwhile, the

placement of electrodes complied with the standard points

specified in the standardized EEG electrode position des-

ignation formulated in 1990. Stimuli were generally divi-

ded into three categories: single stimulus (S1), two

matched stimuli (S2-M) and two mismatched stimuli (S2-

N). The stimuli came from the standard picture groups that

Sondgrass and Vanderwart proposed in 1980, which were

drawn with black and white lines based on a set of specific

rules, similar to a standard visual chart. The standard is

based on four variables that are most related to the cog-

nitive process: name consistency, image consistency,

familiarity and visual complexity.

2.2 Construction of the functional brain network
based on EEG data

The functional brain network is an abstract network. The

measurement area of every lead defined by EEG is a node

of the network, and its electrical activities are a number of

time series. Through calculation of the correlation between

the time series, a correlation matrix can be obtained, which

is a symmetric matrix, where Cij represents the correlation

between the brain regions i and j. According to the defi-

nition of the correlation threshold rc, when a relative value

is greater than the threshold value, it is considered that two

brain regions have a correlation and that the element of the

functional brain network matrix is 1; conversely, the two

brain regions have no correlation and the element of the

functional brain network matrix is 0. Note that the defini-

tion of ‘‘correlation’’ or ‘‘no correlation’’ does not consider

whether there is an anatomical connection between the two

brain regions. Thus, a complete complex functional brain

network based on EEG data is established.

The next step is to select the threshold rc. In the FMRI-

based functional network research conducted by Eguiluz

et al. (2003), rc was set at 0.5, 0.6 and 0.7, but the reasons

for such selection were not clearly stated. The selection of

threshold should adhere to the following rules: the present

study has proved that the brain is a sparse network, which

consists of about 1011 highly interconnected neurons, each

of which has about 104 connections; however, the overall

connectivity factor, which represents the ratio of the real

number of connections to the equivalent global coupling

network, is only about 10–6. Numerical simulation shows

that the functional network is sparse when the value of rc is

0.95. Only when the correlation between time series is
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more than 0.95, it is considered that there is a functional

connection between the two brain regions. Figure 1 briefly

illustrates the process of establishing the functional brain

network.

3 Analysis of the functional brain network

3.1 Degree distribution

Degree is a very important concept in the complex network

theory (Sun and Bin 2018). Its calculation formula is very

simple, which means if there are k(i) nodes connected to

the node i, its degree is k(i) (Shamshiri et al. 2017). For the

entire network, the degree distribution is

k ¼

Pn

i¼1

kðiÞ

n
: ð1Þ

The degree distribution of nodes in the network can be

described by the function p(k), which indicates the proba-

bility that a randomly selected node is k. In general, the

degree distribution of a random network follows the

Poisson distribution and the probability distribution is bell

shaped, while the actual network has the scale-free char-

acteristics and follows the power-law distribution:

pðkÞ� k�c: ð2Þ

As a result, when the number of nodes in the network is

large, the power-law distribution is more obvious. Under

the S1 condition, the calculation results the brain networks

of the patients and the normal people and corresponding

random network degrees are shown in Table 1, 2, 3, and 4,

where k indicates the degree, n(k) represents the node

number of the corresponding degree, and n represents the

total number of nodes in the network.

Figures 2, 3, 4 and 5 give the degree distribution of the

brain network.

Because the number of nodes of the network is limited

(64 channels of EEG, so there are only 64 nodes), the

conclusion of the network scale-free and the power-law

distribution of the corresponding network node degree

cannot be obtained. However, from Tables 1 and 3, Figs. 2

and 4, it can be seen that a large number of nodes in the

network have a small number of connections, and the

proportion of nodes with more connections (9 or 10 con-

nections) is very small. As shown in the figure, the pro-

portion is about 2% for the normal people, while it is about

3% for the patients. By comparison, from Tables 2 and 4,

Figs. 3 and 5, it is clear to see that the degree distribution

of nodes among the corresponding random networks is

much more uniform.

Essentially, an important feature of the scale-free net-

work is that a few nodes in the network have a large

number of connections, which are called ‘‘distributed

nodes’’, and that a large number of nodes only have a small

number of connections. The obtained results seem to be

consistent with the theory, but it is also necessary to cal-

culate much more nodes of brain networks to verify whe-

ther it has a scale-free feature. Besides, the results suggest

that normal people and patients appear to be different in the

distribution of brain networks, which indicates that the

distribution of brain networks of normal people seems

more likely to be scale-free, which is to be further studied.

3.2 Clustering coefficient

Thec clustering coefficient is an important statistical

characteristic of a complex network. Assuming that node i

is connected to other k(i) nodes, and there is a maximum of

k(i)(k(i) - 1)/2 edges between the k(i) nodes, but actually,

there exists E(i) edges. So the clustering coefficient of the

node i is expressed as

Fig. 1 Constructing a functional network method from EEG data

Table 1 Degree distribution of

EEG network for patients
K N(k) n kð Þ

n =%

1 9.00 33.82

2 3.33 12.87

3 2.00 8.96

4 3.33 12.91

5 2.67 11.86

6 1.33 5.86

7 0.67 3.00

8 0.33 1.28

9 0.67 9.44
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CðiÞ ¼ 2EðiÞ
kðiÞðkðiÞ � 1Þ : ð3Þ

The clustering coefficient of the network is

C ¼

Pn

i¼1

CðiÞ

n
: ð4Þ

Obviously, for a fully connected regular network, the

value of C is 1, while for a completely isolated ‘‘network’’

(without any side connection), the value is 0. It is found

that the clustering coefficient of a completely random

network with i nodes follows C�O 1
n

� �
, while the real

world network has a small world characteristic, where

O 1
n

� �
\C\1.

Table 2 Corresponding random

network degree distribution of

EEG network for patients

K N(k) n kð Þ
n =%

1 22.67 53.95

2 14.33 34.13

C 3 5.00 11.92

Table 3 Degree distribution of

EEG network for normal

persons

K N(k) n kð Þ
n =%

1 6.33 20.66

2 7.67 19.02

3 7.67 19.02

4 6.33 14.06

5 5.67 10.74

6 4.33 5.78

7 3.00 3.30

8 2.33 5.78

9 0.67 0.82

10 0.33 0.82

Table 4 Corresponding random

network degree distribution of

EEG network for normal

persons

K N(k) n kð Þ
n =%

1 17.67 30.62

2 16.00 29.50

C 3 22.00 39.88

Fig. 2 Brain network degree distribution curve for patients

Fig. 3 Corresponding random network node distribution ratio of the

brain networks of patients

Fig. 4 Brain network degree distribution curve for normal persons

Fig. 5 Corresponding random network node distribution ratio of the

brain networks of normal persons
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The calculated results of the EEG functional networks of

alcohol addicts and normal people and the clustering

coefficients of their corresponding random networks are

shown in Tables 5, 6, Figs. 6 and 7. CS1, CS2-M and CS2-N

represent the clustering coefficients under three different

conditions, and Ch represents the clustering coefficient of

the brain EEG network (including normal people and

patients). More specifically, Chn indicates the clustering

coefficient of EEG network of the normal people, Chu

indicates the clustering coefficient of the EEG network of

the patients, and Chrand indicates the corresponding random

network clustering coefficient.

It can be seen from Tables 5, 6, to Figs. 6 and 7 that, for

EEG networks of patients and normal people, CS1\CS2-M

\CS2-N, and Ch � Chrand. According to the rule of random

network clustering coefficient C�O 1
n

� �
, for a random

network with 64 nodes, C�O 1
64

� �
, which means that

C�O 0:01ð Þ. In fact, although there are some differences

in the clustering coefficients of random networks under

various conditions, they all conform to the rule

C�O 0:01ð Þ. Accordingly, the clustering coefficients of the
functional networks of the patients and the normal people

both follow C�O 0:1ð Þ, which is consistent with the con-

clusion that O 1
n

� �
\C\1 in the real world network, and

also conforms to the criteria of the clustering coefficient of

a small world network.

In the previous studies on various biological neural

networks, such as the nematode’s neural network, the ape’s

visual cortex network, and the cat’s visual cortex network,

a conclusion has been obtained that the clustering coeffi-

cient is far greater than that of the corresponding random

network (Table 7). The conclusion is drawn from the EEG

functional network of human brain. Even if the number of

nodes is limited (only 64 nodes), the clustering coefficient

of human brain EEG network is higher than that of the

corresponding random network by an order of magnitude.

If there is a large number of network nodes, the result will

be even better, which verifies the ‘‘small-world’’ charac-

teristics shared by the human brain network and other

biological neural networks.

Besides, the results also suggest that the clustering

coefficient may be a parameter indicating the degree of

attention concentration in neurophysiology. When faced

with two mismatched visual targets, people need to con-

centrate more energy. Of course, the concentration of

attention to the two targets is significantly greater than that

to one target, and thus there will be more neurons in the

human brain for clustering. At the same time, the normal

people’s brain networks are more concentrated than the

patients’, and the small world feature is more obvious,

which seems to show that normal people can better focus

on dealing with things than the patients. The results suggest

that alcohol addiction has an effect on the function of the

brain network, and the clustering coefficient can be used as

an indicator of the brain damage.

3.3 Information entropy of the brain neural
network

Entropy is an important statistical parameter in the ther-

modynamic system. Since the milestone was established by

Clausius and Boltzmann, entropy has been widely used in

many fields, such as physics, chemistry, life science,

information science and so on. In 1943, Schrödinger put

forward the idea that life feeds on ‘‘negative entropy’’, and

for the first time, entropy was introduced into the field of

life science. After that, in 1948, when Shannon was

studying the uncertainty of the information transmission

process, he proposed the concept of information entropy,

which was defined as a reduction in uncertainty, and such

uncertainty could be measured by entropy. It is assumed

that the uncertainty of a probability information system

before the information is obtained is H0. After information

is obtained, a part of the uncertainty is eliminated and its

uncertainty is reduced to H1. Therefore, from the

Table 5 Clustering coefficient

of brain network and

corresponding random network

for patients

Clustering coefficient Brain network Corresponding random network

CS1 0.2043 0.0216

CS2-M 0.3068 0.0308

CS2-N 0.3126 0.0328

Table 6 Clustering coefficient

of brain network and

corresponding random network

for normal persons

Clustering coefficient Brain network Corresponding random network

CS1 0.2052 0.0339

CS2-M 0.3657 0.0682

CS2-N 0.3829 0.0576
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uncertainty eliminated (H0 - H1), the amount of infor-

mation I obtained by the system can be calculated, for

which the mathematical expression is

I ¼ H0 � H1 ¼ �ðH1 � H0Þ: ð5Þ

The amount of information derived by the system from

the outside world is equal to the negative value of the

system’s entropy increment, which is referred to as nega-

tive entropy. It embodies the meaning of ‘‘information is

negative entropy’’ and its process quantity characteristics.

In this way, it is also consistent with the meaning of ‘‘life

feeds on negative entropy’’.

Shannon further gave the formula for calculating the

amount of information I:

I ¼ kB lnX ¼ �
XN

j¼1

kBPðjÞ lnPðjÞ; ð6Þ

where X is the information to be selected, and the larger the

X, the greater the amount of information will be, and

P(j) = 1/X, kB is the Boltzmann constant.

In fact, the main function of the brain neural network is

to divide and integrate information. Therefore, we derive

and define a computational rule for the information entropy

of the brain neural network by calculating the information

entropy. The calculation and comparison of the different

entropy values between neural networks of the patients and

the normal persons provides a new criterion for the diag-

nosis of the disease and the effectiveness of the medication

or operation.

When it comes to the information entropy of the brain

neural network, PC actually refers to the probability, and

for a specific node, the importance of node is defined as the

node degree divided by the total node degree of the net-

work. Therefore, the node importance can be considered as

the probability of the transmission of the node (for the

specific functional area). Based on mathematical knowl-

edge, it can be known that when the degree increases, the

node importance increases and the information transfer

ability of the functional area also increases. When the

degree is zero, the node importance is also zero, and in this

case the function area cannot carry out the information

transfer.

P(i) is defined as the importance of node i

PðiÞ ¼ ki
Pn

i¼1

ki

: ð7Þ

bFig. 6 Comparison of clustering coefficients between EEG network

and corresponding random network for patients
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where n is the number of nodes in the network, and ki is the

connection degree of the node i. When k = 0, the node is

meaningless, so let k[ 0, and then P(i)[ 0.

E is the information entropy of the brain neural network,

which refers to the amount of information obtained by the

brain neural network, and is also called the increment of

network negative entropy.

E ¼ �
Xn

i¼1

kBPðiÞ lnPðiÞ: ð8Þ

In order to simplify the calculation, the Boltzmann

constant kB can be omitted, that is

E ¼ �
Xn

i¼1

PðiÞ lnPðiÞ: ð9Þ

Obviously, when the network is a fully connected rule

network, it can be represented as

Emax ¼ ln n: ð10Þ

When the network is a star network with only one

central node, it can be represented as

Emin ¼
ln 4ðn� 1Þ

2
: ð11Þ

In order to eliminate the influence of the node number n

on E, and carry out normalization calculation of them, the

standard entropy of brain neural network can be defined as

follows:

Ea ¼
E � Emin

Emax � Emin

: ð12Þ

Through the calculation of the brain functional network,

the results are shown in Table 8 and Fig. 8.

In order to make the analysis more accurate, the neural

network standard entropy Ea is used to calculate the value

in Fig. 8.

It can be easily known from the above calculation that

the information entropy of the brain neural network and the

standard information entropy of the brain neural network

under the condition of S2 are obviously larger than those of

S1, but there is no significant difference between the values

of S2-M and S2-N. When faced with two visual objects, the

amount of information obtained by the functional brain
Fig. 7 Comparison of clustering coefficients between EEG network

and corresponding random network for normal persons

Table 7 Comparison of clustering coefficients between various bio-

logical neural networks and corresponding random network

Type of biological neural network N C Crand

Nematode’s neural network 282 0.29 0.026

Ape’s visual cortex network 32 0.56 0.321

Cat’s visual cortex network 66 0.55 0.276

Nematode’s neural network 282 0.29 0.026
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network is increased, which means that the negative

entropy increment is greater at this time. However, there is

no significant difference in the amount of information

obtained by the network when there is no significant dif-

ference in visual objects. Under the same condition, the

information entropy of the brain network and the standard

information entropy of the brain neural networks of the

patients are significantly smaller than those of the normal

people, which means that the negative entropy increment

of the brain networks of patients is significantly smaller

than that of the normal people, and thus it can be concluded

that encephalopathy (alcohol addiction) obviously affects

the brain’s reception of information.

4 Conclusion

Through the calculation of the functional brain network

based on EEG data and the analysis of its complex network

characteristics, it is found that its clustering coefficient is

far larger than that of the corresponding random network,

and that it has the characteristics of a small world network,

which further confirms the small world characteristics of

the human brain. The degree distribution of the network is

also close to that of a scale-free network. Of course, it is

necessary to carry out further calculation of large-scale

networks to verify the pattern. Actually, the degree distri-

bution and clustering coefficient of the functional brain

network for alcohol addicts are different from those for

normal people, which suggest that we can find a new cri-

terion for the diagnosis of the disease and the effectiveness

of the treatment.

The calculation based on the information entropy of the

brain neural network suggests that the brain neural network

has a series of characteristic tendencies, such as the for-

mation of small world, the scale-free degree, and so on. It

is very likely that this kind of structure helps absorb

‘‘negative entropy’’, so as to maintain the survival of the

network as an organism. The information entropy of the

brain neural networks of patients is obviously different

from that of normal people, that is to say, the amount of

information obtained by the patients is obviously smaller

than that by the normal persons. As they cannot receive

some information, the brain network is too orderly, making

the brain inclined to die as a system, which is consistent

with the theory of ‘‘life feeds on negative entropy’’.

Therefore, further research and application of information

entropy of brain neural network will provide a good means

for diagnosis and treatment of encephalopathy. In short, the

above calculations and research are only the beginning, and

our next research will work on the functional brain net-

works based on brain functional imaging. The theory is

expected to be applied in clinical practice to predict the

condition and verify the effectiveness of drugs and surgery.
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