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Abstract
The utilization of nanometre-sized solid particles in working fluids has been seriously recommended due to their enhanced

thermal characteristics. This suspension of solid particles in base fluids can significantly enhance the physical properties,

such as, viscosity and thermal conductivity. They are widely used in several engineering processes, like, heat exchangers,

cooling of electronic equipment, etc. In this exploration, we attempt to deliver a numerical study to simulate the nanofluids

flow past a circular cylinder with convective heat transfer in the framework of Buongiorno’s model. A non-Newtonian

Williamson rheological model is used to describe the behavior of nanofluid with variable properties (i.e., temperature

dependent thermal conductivity). The leading flow equations for nanofluid transport are mathematical modelled with the

assistance of Boussinesq approximation. Numerical simulation for the system of leading non-linear differential equations

has been performed by employing versatile, extensively validated, Runge–Kutta Fehlberg scheme with Cash–Karp

coefficients. Impacts of active physical parameters on fluid velocity, temperature and nanoparticle concentration is studied

and displayed graphically. It is worth to mention that the temperature of non-Newtonian nanofluids is significantly

enhanced by higher variable thermal conductivity parameter. One major outcome of this study is that the nanoparticle

concentration is raised considerably by an increasing values of thermophoresis parameter.

List of symbols
a, b Positive constants

t Time

q Density of the fluid

B0 Strength of magnetic field

l! Viscosity at infinite shear rate

l0 Viscosity at zero shear rate

b* Viscosities ratio

x, r Cylindrical polar coordinates

u, v Velocity components

Uw Stretching cylinder velocity

C Relaxation time

m Kinematic viscosity

r Electrical conductivity

Tf Temperature of hot fluid

hf Heat transfer coefficient

T Temperature of the fluid

C Concentration of nanoparticles

T! Free stream temperature

C! Free stream nanoparticles concentration

DB Brownian diffusion coefficient

DT Thermophoretic diffusion coefficient

cp Specific thermal capacity

k(T) Variable thermal conductivity

s Ratio of effective heat capacities

w Stream function

f Dimensionless velocity

h Dimensionless temperature

u Dimensionless concentration

g Dimensionless variable

c Curvature parameter

We Weissenberg number

A Unsteadiness parameter

Pr Prandtl number

Sc Schmidt number

Nt Thermophoretic parameter

Nb Brownian motion parameter

Re Local Reynolds number
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(qc)f Heat capacity of the fluid

(qc)p Heat capacity of nanoparticles

sw Surface shear stress

Cf Skin friction coefficient

Nu Nusselt number

Sh Sherwood number

qw Surface heat flux

qm Surface mass flux

c1 Thermal Biot number

c2 Concentration Biot number

1 Introduction

It has been experimentally verified that the suspension of

nanoparticles in working fluids exhibit several improved

thermo-physical features. Such characteristics include

higher heat transfer coefficients and thermal conductivity.

In addition, viscosity and thermal diffusivity of nanofluids

are also of paramount significance for practical applica-

tions. Thus, nanofluids offer valuable potential to many

fields of science and technology. Beside other industrial

and technological applications, the nanofluids are fre-

quently utilized in heat transfer process, solar energy sys-

tems, military equipment, industrial cooling circuits,

biomedicine, engine cooling systems, electronics, sensing

and imaging, Nano-fluid detergents, transportation, nuclear

reactor cooling systems, space and defence, cooling of

chips, and so forth. The need for an advance technological

handling of devices especially those operated on battery is

greatly fulfilled by nanofluids. Moreover, application of

these suspended nanoparticles in the sensors used in dril-

ling technology and rock penetration methods using

lubricants and coolants is likely to lower the production

costs. Furthermore, automatic transmission fluids and

engine oils have also benefited from the high thermal

conductivity presented by these fluids. Another interesting

fact that nanofluids display increased performance and

stability when exposed to electric fields, widens their

usage. Besides, nanofluids in colloidal forms are increas-

ingly being used in biosciences and biomedical engineering

these days. The drug delivery microchip, DNA sequencer

based on these chips, and hollow micro-needles for trans-

dermal drug delivery are yet other promising applications

of nanofluids. Additionally, these have also improved the

controlling and monitoring of the cell responses and

understanding its activities.

Choi (1995) was the pioneer who introduced the term

nanofluid and found the enhanced thermal conductivity of

the base liquid imbedded with nanometer sized particles.

After that Boungiorno (2006) studied the reasons of

enhancement of heat transport of nanofluids and presumed

that the impact of thermophoresis and Brownian diffusion

are basically responsible for heat transfer improvement.

Based on this theory, Nield and Kuznetsove (2009) and

Kuznetsove and Nield (2013) have examined the double

diffusion free convective boundary layer flow of nanofluids

induced by a flat surface. Zaimi et al. (2014) presented the

flow of time-dependent viscous nanofluid flow past a

contracting cylinder. They analyzed that the skin friction

coefficient, rates of heat and mass transfer reduces with a

rise in unsteadiness parameter. Sheikholeslami and Ellahi

(2015) investigated the nanofluids flow and natural con-

vection heat transfer in a cubic cavity by employing Lattice

Boltzmann technique. Imtiaz et al. (2016) have studied the

mixed convection flow of Casson nanofluid generated by a

stretched cylinder in the presence of applied magnetic field

and convective boundary conditions. They acquired the

analytical solution by employing homotopy analysis

method (HAM) and revealed that the fluid flow depreciates

for higher values of Hartman number and Casson fluid

parameter. Later, Sheikholeslami (2017) explored the nat-

ural convection flow of nanofluids in a porous enclosure.

He utilized the Darcy and KKL models for porous media

and nanofluid under the influence of magnetic field. Usman

et al. (2018) presented a numerical study to discuss the heat

transfer of water-based metallic nanofluid flow along a

converging/diverging channel. MHD flow of water based

SWCNTs with in C-shape cavity has been studied by Haq

et al. (2018a). To interpret the physical properties of

nanofluids, various experimental and theoretical predic-

tions were proposed by Dogonchi and Ganji (2018), Haq

et al. (2018b), Usman et al. (2018a, b, c).

Recently, the researchers have shown great enthusiasms

in the MHD flows in context of their vital applications in

the fields of medicine, such as tumour treatment, magnetic

resonance imaging and a couple of other symptomatic tests.

Different experimental and theoretical investigations have

been presented in recent past to study the flow of electri-

cally conducting fluids with magnetic field. Ishak et al.

(2008) reported a numerical study for MHD flow and heat

transport past a stretching cylinder. They utilized the Keller

box method to acquire the numerical solutions of govern-

ing problem. Mukhopadhyay (2013) investigated the MHD

flow caused by a stretched cylinder. Vajravelu et al. (2012)

have analysed the axisymmetric MHD flow and heat

transfer features of a viscous fluid generated by a non-

isothermal stretched cylinder with heat source/sink. Reddy

and Das (2016) explored the numerical solution of MHD

flow over a porous stretching cylinder with chemical

reacting effects by utilizing artificial neural network tech-

nique. They examined that ANN approach is reliable and

pertinent for simulating heat and mass transfer flow along a
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stretching cylinder. Acharya et al. (2017) addressed the

flow features over a stretched cylinder considering non-

uniform heat source. They described that the rate of heat

transfer declines for both flat and cylindrical surface with

the effects of magnetic field.

The investigation of flow and convective heat transfer

phenomenon due to circular cylinder has incredible sig-

nificance in extrusion forms. Wang (1988) obtained the

exact similarity solutions for viscous fluid and heat transfer

mechanism induced by a stretching cylinder. Later, Fang

et al. (2012) numerically investigated the unsteady flow of

viscous fluid on the outside a contracting or expanding

cylinder. They study the stability of numerical solutions

and observed that unstable solution exists in case of

expanding cylinder. In addition, Si et al. (2014) numeri-

cally analysed the unsteady flow and heat transport in a

viscous fluid caused by through permeable stretching/

shrinking cylinder. Hayat et al. (2014) examined the effects

of variable thermal conductivity on the flow by an inclined

stretched cylinder. They concluded that the fluid tempera-

ture rises with higher thermal radiation. Akl (2014) have

studied the analytical solution of unsteady flow past a

continuously stretching cylinder. In this study, he observed

that the curvature parameter enhances the velocity to a

certain value then have an opposite trend before decaying

to zero. Khan and Malik (2016) obtained analytical solu-

tion to explore the heat transfer features in Sisko fluid flow

along a permeable cylinder. They found that the thermal

relaxation time depreciates the temperature of the liquid. In

another paper, Hayat et al. (2016) investigated the con-

vective heat and mass transport during the flow caused by a

stretching cylinder. Recently, Hashim et al. (2017)

inspected the effects of melting heat transfer during flow of

Carreau fluid induced by a stretching cylinder. They

explored the numerical solutions for the governing

problem.

To the best of author’s knowledge, no attempt has been

made yet to investigate the flow and thermal features of a

non-Newtonian Williamson nanofluid along a stretching

cylinder under the combined effects of variable thermal

conductivity and uniform magnetic field. The motivation of

the present study is to bring out the effect of convective

heat transfer phenomena in presence of Brownian motion

and thermophoresis diffusion. Utilizing suitable non-di-

mensional variables, a third order ordinary differential

equation for momentum conservation and a second order

ordinary differential equation for energy and concentration

conservation equations are modelled. We employing the

Runge–Kutta method for the numerical computations. The

results obtained are then compared with existing works and

found an excellent agreement. Estimation of drag force,

heat and mass transfer coefficients are computed and

plotted graphically.

2 Physical model and mathematical
formulation

2.1 Problem statement

In this article, a comprehensive study for time dependent,

laminar and two-dimensional flow along with heat transfer

features of a non-Newtonian Williamson nanofluid past an

infinitely long circular cylinder is presented. The schematic

of current physical model is depicted in Fig. 1. Let ðx; rÞ be
the cylindrical polar coordinates such that they represent

the direction of axis along horizontal and normal to the

cylinder. The flow is induced by stretching of the cylinder

is the axial direction and it is electrically conducting such

that a uniform magnetic field B0 is acting along the radial

direction. The stretching surface has the velocity

Uwðx; tÞ ¼ ax
1�bt; where a and b are constants. The far field

(free stream) temperature and nanoparticles volume frac-

tion are T! and C!, respectively. In addition, the surface

temperature is controlled by convective process which is

characterized by the heat transfer coefficient hf and tem-

perature of the hot fluid Tf below the surface.

2.2 Governing equations

In view of considered assumptions, the resulting equations

for the fluid flow are modelled by employing Oberbeck–

Boussineq approximation and can be written in dimen-

sional form as:

Continuity equation:

o ruð Þ
ox

þ o rvð Þ
or

¼ 0; ð1Þ

Momentum equation:

Fig. 1 A Schematic representation for the flow of nanofluid around a

circular cylinder
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Energy equation:
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ox
þ v
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or
r
oC

or

� �
þ DT

T1

1

r

o

or
r
oT

or

� �
;

ð4Þ

where q is density, cp is specific thermal capacity m is

kinematic viscosity, b� ¼ l1
l0

is ratio of viscosities, C is

material constant, r is electrical conductivity, T is tem-

perature, DB and DT are Brownian and thermophoresis

coefficients, C is nanoparticles volume fraction.

For present study, the temperature dependent thermal

conductivity k(T) is of the form:

kðTÞ ¼ k1 1þ e
T � T1
DT

� �� �
: ð5Þ

The conditions applied at different boundaries are as

follows:

u ¼ Uw x; tð Þ; v ¼ 0;�kðTÞ oT
or

¼ hf Tf � T
� �

;�Dm

oC

or
¼ km Cf � C

� �
at r ¼ R;

ð6Þ
u ! 0; T ! T1 C ! C1 r ! 1: ð7Þ

The flow equations can be non-dimensionalized by

employing the following variables:

g ¼ r2 � R2

2R

Uw

mx

� �1=2

;

w ¼ Uwmxð Þ1=2Rf gð Þ; h gð Þ ¼ T � T1
Tf � T1

;

/ gð Þ ¼ C � C1
Cf � C1

:

ð8Þ

The Stokes stream function w is given by the relations

u ¼ 1
r
ow
or
and v ¼ �1

r
ow
ox
.

Making use of Eq. (8) into Eqs. (2)–(4), we have a

system of ordinary differential equations

1þ 2cgð Þ b� þ 1� b�ð Þð1�Wef 00Þ�2
h i

f 000

þff 00 � A f 0 þ g
2
f 00

� 	
�M2f 0

þ2cf 00 b� þ 1� b�ð Þ 1�Wef 00

2

� �
ð1�Wef 00Þ�2

� �
¼ 0;

ð9Þ

ð1þ 2cgÞ½h00 þ eðhh00 þ h02Þ� þ 2cðh0 þ ehh0Þ þ Pr fh0

þ Prð1þ 2cgÞðNbh
0/0 þ Nth

02Þ � Pr A hþ g
2
h0

� 	
¼ 0;

ð10Þ

1þ 2cgð Þ/00 þ 2c/0 þ Scf/0 þ Nt

Nb

1þ 2cgð Þh00 þ 2ch0½ �

� ScA /þ g
2
/0

� 	
¼ 0;

ð11Þ

subject to the boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; h0ð0Þ ¼ �c
1

1� hð0Þ
1þ ehð0Þ ;

/0 0ð Þ ¼ �c
2
ð1� /ð0ÞÞ;

ð12Þ

f 0ð1Þ ! 0; hð1Þ ! 0; /ð1Þ ! 0; ð13Þ

where primes indicate differentiation with respect to g and

We ¼ a3x2r2C2

ð1�btÞ3R2m

� 	1=2

local Weissenberg number, c ¼
mð1�btÞ
aR2ð Þ1=2 curvature parameter, c

1
¼ h

k

ffiffi
m
a

p� �1=2
thermal Biot

number, c
2
¼ km

Dm

ffiffi
m
a

p� �1=2
concentration Biot number, M ¼

rB2
0

qa

� 	1=2

magnetic parameter, Nt ¼ sDBðTf�T1Þ
mT1

� �
ther-

mophoresis parameter, Nb ¼ sDBðCf�C1Þ
mð Þ Brownian motion

parameter, Pr ¼ lcp
k

ð Þ Prandtl number, Sc ¼ m
DB

� �
Schmidt

number and A ¼ c
a
ð Þ reaction rate parameter.

The three physical parameters are the skin friction

coefficients Cf, the local Nusselt number Nu and Sherwood

number Sh, which are expressed as

Cf ¼
srxjr¼R

qU2
w

; Nu ¼ xqwjr¼R

k Tf � T1
� � ; Sh ¼ xqmjr¼R

D Cf � C1
� � ;

ð14Þ

where srx, qw and qm are given by
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srx ¼ l0
ou

or
b� þ ð1� b�Þ 1� C

ou

or

� ��1
" #

;

qw ¼ �k
oT

or

� �
; qm ¼ �D

oC

or

� �
:

ð15Þ

Applying the non-dimensional variables presented in

Eq. (8), Eqs. (14) and (15) are reduced to

Re1=2Cf ¼ f 00ð0Þ b� þ ð1� b�Þ 1�Wef 00ð0Þð Þ�1
h i

;

Re�1=2Nu ¼ �h0ð0Þ; Re�1=2Sh ¼ �/0ð0Þ;
ð16Þ

where Re = xUw/m defines the local Reynolds number.

3 Numerical simulation

3.1 Computational procedure

To solve the modelled problem numerically, the govern-

ing Eqs. (9)–(11) are altered into a set of first order dif-

ferential equation with the associated boundary conditions

(12) and (13). Now, Runge–Kutta Fehlberg method and

Newton’s techniques are employed to develop a numerical

code to solve the first order system. For this purpose, the

above-mentioned system of non-linear differential equa-

tions is transformed to a set of first order ODEs, by using

the following newly defined variables: f = u1, f0 = u2,

f00 = u3, h = u4, h0 = u5, / = u6, /0 = u7.

In view of above defined variables, the governing

Eqs. (9)–(11)are regenerated as:

along with the boundary conditions

u1 0ð Þ ¼ 0; u2 0ð Þ ¼ 1; u5 0ð Þ ¼ �c
1

1� u4 0ð Þð Þ
1þ eu4 0ð Þ ;

u7 0ð Þ ¼ �c
2
1� u6 0ð Þð Þ

ð20Þ
u2 1ð Þ ¼ 0; u4 1ð Þ ¼ 0; u6 1ð Þ ¼ 0: ð21Þ

We need values for u3(0), u5(0) and u7(0), but no such

values are given at the initial condition. The accuracy of

the initial guesses for u3(0), u5(0) and u7(0) are verified by

comparing the estimated values of u2(0), u4(0) and u6(0) at

g = gmax using Newton Raphson method. Finally, the

maximum value of g displaying the ambient conditions is

taken to be g! = 10, 15 and 20 depending upon the

physical parameters. The step size is used to be h = 0.001

and the above proceeding is repeated until the converged

results equivalent to the coveted level of precision 10-6.

3.2 Verification of numerical scheme

To figure out the physical problem more clearly, the

numerical technique is implemented to solve governing

differential equations, because it provides freedom to

choose suitable values of involving flow parameters. The

accuracy of the present computations is shown in Table 1

by comparing values of Re1/2Cf with previously published

data for different values of M and neglecting the influences

of all other parameters. It can be revealed from table that

the result of present investigations is same with previous

result calculated by Fathizadeh et al. (2013) and Fang et al.

(2009).

4 Results and discussion

This section manifests the effects of some interesting

physical parameters appearing in the problem namely the

unsteadiness parameter A, local Weissenberg number We,

thermal conductivity parameter e, curvature parameter c,
thermal Biot number c

1
; concentration Biot number c

2
;

Prandtl number Pr, Brownian motion parameter Nb, ther-

mophoresis parameter Nt and Schmidt number Sc

on Re1/2Cf, Re
-1/2Nu, Re-1/2Sh, f0(g), h(g) and /(g) dis-

tributions are presented graphically through Figs. 2, 3, 4, 5,

u01 ¼ u2; u
0
2 ¼ u3;

u03 ¼
�u1u3 � 2cu3 b� þ ð1� b�Þ 1� We

2
u3ð Þ 1�Weu3ð Þ�2

h i
þ Aðu2 þ g

2
u3Þ þM

2

u2

1þ 2cgð Þ b� þ ð1� b�Þ 1�Weu3ð Þ�2
h i ;

ð17Þ

u04 ¼ u5;

u05 ¼
�eu25 1þ 2cgð Þ � 2cðu5 þ eu4u5Þ � Pr u1u5 � Pr 1þ 2cgð Þ Nbu5u7 þ Ntu

2
5

� �
þ PrAðu4 þ g

2
u5Þ

1þ 2cgð Þ 1þ eu4½ � ;
ð18Þ

u06 ¼ u7; u
0
7 ¼

�2cu7 � Nt
Nb

1þ 2cgð Þu05 þ 2cu3
� �

þ ScA u6 þ g
2
u7ð Þ

1þ 2cgð Þ ð19Þ
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6, 7, 8, 9 and 10. All the results obtained are presented for

two different cases of flat plate and a cylinder. In addition,

we pictured the effect of curvature parameter on f0(g) and
h(g) by introducing a comparative study considering the

presence and absence of magnetic field. The entire exhi-

bition has been accomplished by taking the default esti-

mations of the governing parameters as We = 1.0, M = 1.0,

b* = 0.1, c = 0.2, A = 0.1, Pr = 3.0, Sc = 2.0, Nt = 0.1,

Nb = 0.1, c
1
¼ 0:2; c

2
¼ 0:3; and e = 3.0 unless otherwise

indicated.

In Fig. 2a–c the variation of the velocity f0(g), temper-

ature h(g) and concentration profiles /(g) inside the

boundary layer for different values of unsteadiness

parameter A is presented for both the flow over a flat plate

and cylinder. It is revealed through these figures that f0(g)
and h(g) are the decreasing functions of the unsteadiness

for both cases of flat plate (c = 0) and cylinder (c = 0) but

opposite behaviour is seen for concentration profile /(g).
Further, the thicknesses of momentum and thermal

boundary layer are diminishing function while solutal

boundary layer thickness is the increasing function of the

A for both cases. Physically, when unsteadiness enhances

the sheet loses more heat because of which temperature of

the fluid decreases.

Variation of magnetic parameter M on f0(g), h(g) and /
(g) are depicted in Fig. 3a–c for both cases of flat plate and

cylinder. It is evident from these figures that an increment

in the strength of magnetic field produces a drag force

which slow down the flow and reduce the velocity fields,

hence heat generate and enhances the thermal and con-

centration boundary layers. Hence, the corresponding

boundary layer thickness reduces. On the other hand,

nanoparticle concentration profiles with in the boundary

layer depicts accelerating behaviour for higher magnetic

parameter.

Figure 4a, b are plotted for velocity f0(g) and tempera-

ture h(g) distributions for different values of Weissenberg

number We. These figures portrayed that the velocity

profile reduces by growing the values of We but inverse

pattern can be noticed in temperature profiles. According to

the definition of Weissenberg number, it is the ratio of

relaxation time and a specific process time of the fluid. It

develops the thickness of liquid and that is the reason

velocity of the liquid declines.

Table 1 A comparison of the

skin friction Re1/2Cf for M when

We ¼ 0 ¼ A ¼ c and b�
M2 Fathizadeh et al. (2013) Fang et al. (2009) Present study

HPM MHPM Exact solution

0 1 1 1 1 - 1.0001

0.5 – – – - 1.1180 - 1.1181

1.0 - 1.4142 - 1.4142 - 1.4142 - 1.4142 - 1.4143

η

f/
(η
)

0 2 4 6 8
0

0.2
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1

Plate
Cylinder

(a)

A = 0.0, 1.0, 2.0
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Fig. 2 Variation in f0(g), h(g) and /(g) against A
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Figure 5a, b illustrate the non-dimensional velocity and

temperature profiles inside the boundary layer region for

distinct values of curvature parameter. These figures are

sketched for two different cases of magnetic parameter i.e.,

in the presence and absence of magnetic field. From these

plots, we observed that the curvature parameter signifi-

cantly affects the nanofluid velocity and temperature in

both the cases. Figure 5a depicts that an increment in the

values of c, has an affinity to the fluid motion along the

stretching surface which filled with nanofluids. Moreover,

the corresponding boundary layer thickness increases with

higher curvature parameter. We can see that there exist an

inverse relation between the radius of cylinder and curva-

ture parameter. Therefore, a rise in curvature parameter

tends to shrink the radius of cylinder. In such case, the

surface area of cylinder becomes smaller and by increasing

curvature parameter, the velocity gradient at the surface

enhances and consequently boost up the shear stress per

unit area. This figure further manifest that both the velocity

and boundary layer thickness are higher in the absence of

magnetic field. In Fig. 5b, we depict the variation of

dimensionless temperature profiles on curvature parameter

c. A dual behaviour is noted for temperature profiles in

both the cases. We find that the fluid temperature decreases

near the solid boundary as curvature parameter increases,

however, an opposite is true for far away the solid

η

f/
(η
)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Plate
Cylinder

M = 0.5, 1.0, 1.5
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η
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0 1 2 3 4
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η
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0 2 4 6 8
0
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0.2

0.3
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M = 0.5, 1.0, 1.5

(c)

Fig. 3 Variation in f0(g), h(g) and /(g) against M

η
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0
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0.12
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We = 1.0, 1.5, 2.0

(b)

Fig. 4 Variation in f0(g) and h(g) against We
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boundary. For higher curvature parameter, the radius of the

cylinder reduces and the surface area which is close to the

solid boundary also decreases. It is noteworthy to mention

that heat is exchanged into the fluid modes: conduction at

the surface and convection for the domain g[ 0. Now, as

the surface area of the cylinder decreases, a slight reduction

in the temperature profile develops close to the surface of

the cylinder, since a thin quantity of heat energy is trans-

ferred from the surface to the fluid by means of conduction

process. At the same time, thickness of thermal boundary

layer increase, because of heat transfer inside the fluid

improved convection process all around the cylinder.

The effects of Pr and e have been sketched in Fig. 6a, b.

From Fig. 6a, we see that temperature as well as the

thickness of thermal boundary layer reduces for increasing

Prandtl number Pr. It is clear from the plot fluids with

larger Prandtl number speed up the cooling process and

fluids with low Pr slow down the cooling process. From

this behaviour it is concluded that Prandtl number is used

to control the cooling process. Figure 6b depicts the effects

of e on temperature profile. It can be observed that tem-

perature of the liquid increases with the growth of thermal

conductivity. It is also noticed that temperature profile

increases remarkable with the case of flat plate (c = 0) as

comparison with cylinder case (c = 0).

The thermophoresis parameter Nt is an important

parameter for examining the temperature and nanoparticle

concentration in nanofluid flow. The effect of ther-

mophoresis parameter Nt on temperature h(g) and con-

centration /(g) is portrayed in Figs. 7a, b for both cases

c = 0 and c = 0. These figures indicate that an increment

in Nt yields a decrease in temperature of the fluid while an

opposite behaviour is seen for concentration profile. In

physical point of view thermophoresis force enhances with

the increase in Nt which tends to move nanoparticles from

hotter to cool region and hence decreases the fluid tem-

perature and increases the concentration distribution. Fur-

ther, these results are more significant for (c = 0).

Figure 8a, b are designed to discuss the impact of

thermal Biot number c1 on temperature and concentration
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profile for both cases flat plate (c = 0) and cylinder

(c = 0). From these plots, it is manifested that higher

thermal Biot number correspond to increase in the tem-

perature and concentration profile. Also, thermal and

solutal boundary layer thicknesses are the developing

functions of the c1. We know that thermal Biot number is

defined as the ratio between internal thermal resistance of a

solid and thermal resistance of the boundary layer. The

surface of the cylinder is totally isolated when the value of

thermal Biot number is zero. This means that thermal

resistance of the surface of cylinder is very strong and there

is no convective heat transport form cylinder surface to

colder region which is for from the cylinder.

Effect of Brownian motion Nb and concentration Biot

number c2 on concentration profile is illustrated in Fig. 9a,

b. From Fig. 9a, it is seen that nanoparticle concentration

of the fluid decreases by enhances the values of Nb.

Physically, when Nb increases then the random movement

of nanoparticles rises. Since interaction of particles enlar-

ges and kinetic energy is transformed into heat energy

which lessens the nanoparticle concentration of fluid.

Figure 9b indicate the concentration profile for larger

concentration Biot number c2. It is manifested that con-

centration profile is a reducing function of c2.
The variation of wall skin friction coefficient Re1/2Cf

and local Nusselt number Re-1/2Nu are depicted in

Fig. 10a, b for both cases flat plate (c = 0) and cylinder

(c = 0). The results presented in Fig. 10a show that, as the

magnetic parameter increases the skin friction decreases. It

is to be noticed that Re1/2Cf is stronger in case of flow past

a stretching cylinder (c = 0). Further, it is observed that

higher values of Weissenberg number is to upgrade the

wall shear stress. The variation in dimensionless Nusselt

number Re-1/2Nu against the thermal Biot number c1 for

both cases flat plate (c = 0) and stretching cylinder (c = 0)

for various values of thermophoresis parameter Nt are

displayed in Fig. 10b. In this plot, we observed that with

the growth of Nt and thermal Biot number c1 the rate of

heat transfer enhances at the wall. The thermophoresis

particles represent the nanoparticle migration due to

imposed temperature gradient across the fluid.
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5 Conclusion

In this study, we have examined the unsteady heat and

mass transfer mechanisms for Williamson nanofluid flow

past a stretching cylinder with variable thermal conduc-

tivity and convective boundary conditions. The emerging

sets of governing partial differential equations were trans-

formed into ordinary differential equations by using local

non-dimensional variables. The dimensionless leading

equations of the problem were solved numerically by

Runge–Kutta Fehlberg method. Variations of the velocity,

temperature and nanoparticle concentration profiles were

portrayed graphically for several parameters. The main

features of this exploration are listed as:

• The velocity and temperature of the fluid were the

decreasing function of the unsteadiness parameter.

• A growth in thermal conductivity parameter leads to

enhance the fluid temperature.

• The temperature and concentration were the rising

function of the thermophoresis parameter.

• The concentration profile and associated boundary layer

thickness was significantly reduced by rising values of

Schmidt number.
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