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Abstract
In this paper, nonlinear free vibration analysis of pre-actuated clamped-free isotropic piezoelectric Euler-Bernoulli

nanobeams is discussed. The governing equations of motion are derived on the basis of size-dependent piezoelectricity

theory. A more accurate model is developed for the large amplitude vibration analysis of piezoelectric cantliver nanobeams

by the consideration of a higher order curvature-displacement relation. In this case, a nonlinear equation of motion is

derived. Accordingly, the hardening or softening treatment dependency on the flexoelectric constant and the length scale

parameter is examined for the considered nanocantilever. The assumed nano-beam is actuated by a constant voltage. The

nonlinear free vibration analysis of pre-actuated nano-beam about the pre-static deformation is examined by Lindstedt-

Poincare technique which is applied on the discretized equations of motion. A closed form relation is extracted for the

nonlinear natural frequency and the corresponding effective nonlinearity. Some numerical analysis has been performed to

peruse the effects of applied voltage, the length scale parameter and flexoelectric coefficient on the static deflection, the

nonlinear natural frequencies and the associated effective nonlinearities. The outcomes demonstrate occurrence of very

interesting phenomena in the combination of the various magnitudes of the length scale parameter and the flexoelectric

coefficient.

1 Introduction

Micro and nano electromechanical systems (MEMS and

NEMS) have great potential applications in the field of

mechanical, civil, aerospace and other engineering areas

(Ebrahimi and Barati 2018). On the other hand, piezo-

electric beams and plates have been widely used in MEMS

and NEMS such as those in sensors (Asif et al. 2017) and

actuators (Ebrahimi and Barati 2018). Piezoelectric can-

tilever beams as a kind of piezoelectric actuators are used

in MEMS and NEMS because of their simplicity and

reliability (Yang et al. 2015). Piezoelectric cantilever

nanobeams are often implemented in the form of laminated

nanobeams and nanoplates, such as unimorph, bimorph,

multimorph, etc (Lim et al. 2006; Lazarus et al. 2012). The

intrinsic electromechanical coupling, known as direct and

inverse piezoelectric effects, makes piezoelectric materials

useful for a variety of electromechanical systems.

Therefore, nanodevices with piezoelectric elements are

handy for a variety of electromechanical systems which are

implemented for sensing vibration and for noise control

(Sumali et al. 2001; Casadei et al. 2010), energy harvesting

(Haq 2019) and sensor networks (Hao and Liao 2010).

Because of their novel properties, nanomaterials have a

great chance to be employed in various types of nanode-

vices, such as nanoresonators (Tanner et al. 2007), field

effect transistors (Fei et al. 2009) and light emitting diodes

(He et al. 2007). Hence, study on the piezoelectric nano-

beams has great advantages. In recent decades, researchers

have implemented higher-order continuum theories to

derive the governing equations of nanostructures.

Thanks to the recent developments in nanomechanics,

size-dependent electromechanical theories with coupled

mechanical and electrical effects are also developed such

as size-dependent piezoelectricity (Barati 2017). The

macro scale piezoelectricity theory states the relation

between the electric polarization and uniform strain in non-

centrosymmetric materials (Cady 1964). However, some

researchers have illustrated the size-effect in piezoelectric

properties and linear electromechanical coupling in iso-

tropic dielectrics (Ebnali Samani and Tadi Beni 2018;
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Baskaran 2011). Wang et al. (2014) developed a size-de-

pendent piezoelectricity theory based on the couple stress

theory. In the proposed theory, the dielectric polarization

depends not only on the strain tensor but also on the cur-

vature tensor (Zeng et al. 2017). Hence, it can be deduced

that the flexoelectric effect is universally present in all

dielectrics (Hadjesfandiari 2013). In this respect, other

theories were also developed, although they exhibit limi-

tations due to the consideration of the inconsistent second

order deformation gradients or dropping off the couple

stress effect. Hadjesfandiari and Dargush (2011) recently

proposed the size-dependent piezoelectricity theory. They

expressed the behavior of continuous materials in the small

scales on the basis of the electromechanical formulation. In

this theory, the size-dependent piezoelectricity or flexo-

electric effect is derived depending on the mean curvature

tensor. A number of researchers have examined the

piezoelectric nanobeams by employing the size-dependent

theories. They have studied on the mechanical and elec-

trical equations of the nanobeams (Maranganti 2006). Tadi

Beni (2017) derived the piezoelectric nanobeam formula-

tion in general case by using the size-dependent piezo-

electricity theory.

The piezoelectric nanobeams with an AC or DC applied

voltage is often implemented in NEMS. The DC applied

voltage enforces the nanobeam to a new equilibrium

position (static deflection) (Younis and Nayfeh 2003). The

static deflection and the vibration of microbeams with DC

electrostatic actuation or combined AC-DC electrostatic

actuation have been studied in Rasekh and Khadem (2011),

Kim et al. (2012). On the other hand, piezoelectric nano-

beams can utilize as sensors, due to their unique properties,

to detect with great accuracy physical quantities such as,

viruses, bacteria, and cells (Park et al. 2010; Yang et al.

2011). Wu et al. (2001) implemented the static deflection

to mass detection of chemical and biological elements. An

alternate and more attractive approach to examine the

sensitivity to mass detection is forcing a piezoelectric

cantilever nanobeam to oscillate around one of its natural

frequencies. The sensitivity analysis of the NEMS was

examined in Lavrik and Datskos (2003), Raiteri et al.

(2001) while an NEMS device operate in the dynamic

mode about one of its natural frequencies.

Cantilever beams are used widely as elements in reso-

nant sensors. Number of studies have evaluated the fre-

quency shifts in cantilever beams. Dohn et al. (2005)

evaluated the sensitivity of a cantilever beam as a mass

detective sensor to the location of the added mass along the

beam span. They concluded that maximum sensitivity

happens at the beam tip point. They also deduced that the

sensitivity has a mutual relation with the mode number.

According to the literature review, most of the previous

researcher have focused on the vibration, buckling and the

static deflection of piezoelectric nanobeams. On the other

hand, the frequency analysis has been investigated only

during the electrostatic actuation. There are some advan-

tages in employing piezoelectric nanobeams instead of

electrostatically actuated nanobeams. The electrostatically

actuated systems have at least two separated parts: beam

and electrode. These systems may also undergo a

destructive pull-in phenomenon. So, it is useful to replace

the electrostatic actuators with a piezoelectric nanobeam.

Therefore it seems necessary to study on the nonlinear

frequency analysis of piezoelectric nanobeams. The nov-

elty of this paper is the investigation on the nonlinear

frequency of piezoelectric nanobeams with higher order

curvature displacement relation under applied DC voltage.

As it was mentioned earlier, one of the important tech-

nique for the investigation on the sensitivity of the sensors

to mass detection is enforcing a piezoelectric cantilever

nanobeam to vibrate around one of its natural frequencies.

So, the exact computation of the natural frequencies is very

important. On the other hand, the nano cantilevers experi-

ence large deformations. In this case, being familiar with

the nonlinear treatment of the nano cantilever which it will

show a hardening or softening behavior in the large

amplitude vibration with the variation in the structure

parameters will be really essential and constructive. It is

worth to mention that in the available formulations by the

consideration of the von-Karman strain displacement rela-

tion, a linear governing equation of motion is accessible for

a cantilever nanobeam. Thereafter, accordingly, the non-

linear treatment cannot be examined. Hence, in this paper a

higher order nonlinear size-dependent formulation for a

cantilever piezoelectric Euler-Bernoulli nanobeam which is

subjected to an applied voltage is developed by the imple-

mentation of the Hamilton’s principle based on the non-

classical continuum mechanics. The contributions of this

paper are as follows; For achieving a higher order formu-

lation, a third-order relation is considered for describing the

curvature in terms of the axial and transverse deformations.

The linear and nonlinear vibration of a piezoelectric nano-

beam is extracted about the pre-static deflection. The

Galerkin projection technique is implemented to discretize

the governing PDEs to ODEs. The nonlinear pre-static

deflection problem is carried out employing the Galerkin

discretization approach. The achieved nonlinear ODE is

solved employing the Lindstedt-Poincare approach. After

verification of the outcomes, some numerical analysis is

conducted in details to investigate the effects of applied

voltage, length scale and flexoelectric coefficient on the

static deflection, linear natural frequencies, the effective

nonlinearity coefficient and the nonlinear natural frequen-

cies. The outcomes illustrate a very interesting phenomena

by simultaneous changes in the flexoelectric constant and

the material length scale parameter.
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2 Governing equations

A cantilever nanobeam made of isotropic piezoelectric

material which is subjected to a DC voltage, V0, is depicted

in Fig. 1. The nano-beam width, length, and thickness are,

respectively, b, L and h.

The strain energy of a linear isotropic elastic piezo-

electric nano-structure, which occupies volume V,
employing the size-dependent piezoelectricity theory read

as Hadjesfandiari (2013):

U ¼ 1

2

Z
V
rjieij þ ljijij � DiEi

� �
dV ð1Þ

where rji; eij; lji and jij, respectively, represent the classi-

cal stress tensor, strain tensor, couple-stress tensor, and

curvature tensor. Di and Ei, respectively, stand for the

electric displacement vector and the electric field vector.

For an elastic isotropic piezoelectric nano-structure, the

size-dependent constitutive relations are expressed as

Hadjesfandiari (2013):

rji ¼ kekkdij þ 2leij þ 2ll2r2xji;

lji ¼ �ijklk;

jij ¼
1

2
ðxi;j � xj;iÞ;

Di ¼ eEi þ 4fji

ð2Þ

in which li;xi and ji are defined, respectively, as Had-

jesfandiari (2013):

li ¼ �8ll2ji þ 2fEi;

xi ¼
1

2
�ijkuk;j;

ji ¼
1

2
�ijkjij

where k and l are Lame’s constants, and l, f, and e are the
size effect parameter, the so-called flexoelectric coefficient,

and the dielectric constant (electric permittivity),

respectively.

The electric field vector is the negative gradient of the

total potential function (Asif et al. 2017):

Ei ¼ �U;i ð3Þ

The von-Karman strain-displacement relation for elonga-

tion and the third-order relation for curvature in terms of

axial and transverse deformations are employed as Lacar-

bonara (2013):

� ¼ u;x þ
1

2
w2
;x

ð4Þ

qð3Þ ¼ w;xx � ðu;xw;xÞ;x � w2
;xw;xx ð5Þ

in which ðÞ;x �
oðÞ
ox
, w(x, t) is the transverse displacement

and u(x, t) is the longitudinal displacement, respectively,

along the z and x axes.

The strain field along the thickness is expressed by

Lacarbonara (2013):

e ¼ �� zqð3Þ ð6Þ

According to Eq. 4, the inextensibility condition yields in:

u;x ¼ � 1

2
w2
;x

ð7Þ

Substitution of Eq. 7 into Eq. 5 results in:

qð3Þ ¼ w;xx þ
1

2
w2
;xw;xx ð8Þ

By substituting Eq. 8 into Eq. 6, the only non-zero com-

ponent of the nonlinear strain field read as:

e11 ¼ �zw;xx �
1

2
zw2

;xw;xx ð9Þ

By assuming the displacement field for the Euler-Bernoulli

beam model as u1ðx; z; tÞ ¼ uðx; tÞ � zw;xðx; tÞ, u2ðx; z; tÞ ¼
0 and u3ðx; z; tÞ ¼ wðx; tÞ, the kinetic energy of the nano-

beam can be expressed by:

T ¼ 1

2

Z
V
q u21;t þ u22;t þ u23;t

� �
dV ð10Þ

in which q is the mass density of the piezoelectric material.

The Hamilton’s principle is employed to extract the

governing equations of motion and the corresponding

boundary conditions as:Z t1

t0

ðdT � dUÞdt ¼ 0 ð11Þ

in which
R t1
t0
ðdTÞdt is simplified to:

Fig. 1 Schema of an isotropic piezoelectric nano-beam
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Z t1

t0

ðdTÞdt ¼
Z t1

t0

�
Z L

0

ðF11w;tt � H11w;ttxxÞdwdx
� �

dt

�
Z t1

t0

H11w;ttxdwjL0

ð12Þ

where ðF11;H11Þ ¼
R b=2
�b=2

R h=2
�h=2 qð1; z2Þdydz and

R t1
t0
ðdUÞdt

is expressed in Appendix 1.

Hence, the following mechanical and electrical gov-

erning equations are obtained:

dw : ðkþ 2lÞI w;xxxx þ ½w;xðw;xw;xxÞ;x�;x
� �

þ A11w;xxxx

� 2ðE11Þ;xx þ F11w;tt � H11w;ttxx ¼ 0

ð13Þ

dU : �ðU;xx þ U;zzÞ þ 2f;zw;xx ¼ qe ð14Þ

By neglecting the rotary inertia effect, i.e. H11, and

assuming no dielectric charge density in the volume, i.e.

qe ¼ 0, equations of motion, i.e. Eqs. 13 and 14, and the

associated mechanical and electrical boundary conditions

for a cantilever piezoelectric nanobeam, respectively,

reshuffle to:

ððkþ 2lÞI þ A11Þw;xxxx þ ðkþ 2lÞI½w;xðw;xw;xxÞ;x�;x
� 2ðE11Þ;xx þ F11w;tt ¼ 0

ð15Þ

�ðU;xx þ U;zzÞ þ 2f;zw;xx ¼ 0 ð16Þ

and

ððkþ 2lÞI þ A11Þw;xxx þ ðkþ 2lÞIw;xðw;xw;xxÞ;x
h

�2ðE11Þ;x
i���L

0
¼ 0

or dwjL0 ¼ 0

ð17Þ
"
ðððkþ 2lÞI þ A11Þw;xx þ ðkþ 2lÞIw2

;xw;xx�2ðE11Þ
#�����

L

0

¼ 0

or dðw;xÞjL0 ¼ 0

ð18Þ

Z
A

ðU;xÞdA ¼ 0 or dU

����
L

0

¼ 0

Z
A

½U;z þ 2f ðw;xxÞ�dA ¼ 0 or dU

����
h
2

�h
2

¼ 0

ð19Þ

In this paper, by considering the reverse effect for the

piezoelectric nano-beam, the electric potential filed, i.e. U,
is assumed as Komijani et al. (2014):

Uðx; z; tÞ ¼ cosðbzÞUðx; tÞ þ V0ðtÞ
h

z ð20Þ

where b ¼ p
h
and V0 denotes the external electric voltage

applied to the electrodes of the nano-beam.

By substitution of Eq. 20, into Eq. 3 the electric field

vector components read as:

U;xðx; z; tÞ ¼ cosðbzÞU;xðx; tÞ

U;zðx; z; tÞ ¼ �b sinðbzÞUðx; tÞ þ V0ðtÞ
h

ð21Þ

According to Appendix 1 by assuming f to be a constant,

E11 ¼ bfV0 and hence ðE11Þ;xx ¼ 0. Thereupon the

mechanical equations of motion and the associated

boundary conditions reshuffle to:

ððkþ 2lÞI þ A11Þw;xxxx þ ðkþ 2lÞI½w;xðw;xw;xxÞ;x�;x
þ F11w;tt ¼ 0

ð22Þ

and

dwj0¼ 0 and

ððkþ 2lÞI þ A11Þw;xxx þ ðkþ 2lÞIðw2
;xw;xxx þ w;xw

2
;xxÞ
���L¼ 0

dðw;xÞ
��
0
¼ 0 and

ððkþ 2lÞI þ A11Þw;xx þ ðkþ 2lÞIw2
;xw;xx � 2bfV0ðtÞ

h i���L¼ 0

ð23Þ

For the sake of simplicity and generality, the following

nondimensional parameters are introduced:

w ¼ w

L
x ¼ x

L
s ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞI
qAL4

s
ð24Þ

Following the nondimensionalization procedure and after

elimination of ð�Þ sign for the sake of brevity, the dimen-

sionless form of the transverse equation of motion and the

related boundary conditions can be expressed, respectively,

as:

w;ss þ Lsw;xxxx ¼ � w2
xwxxx þ wxw

2
xx

� �
x

ð25Þ

and

dwj0¼ 0 and Lsw;xxx þ w2
;xw;xxx þ w;xw

2
;xx

���1¼ 0

dðw;xÞ
��
0
¼ 0 and

Lsw;xx þ w2
;xw;xx �

2bL2f

ðkþ 2lÞIh


 �
V0ðtÞ

� 
����
1

¼ 0

ð26Þ

where Ls ¼ ð1þ A11

ðkþ2lÞIÞ
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3 Solution methodology

3.1 Nonlinear static and dynamic equations
of motion

The proposed nonlinear solutions for the static deflection

and the free vibration analysis are presented in this sec-

tion. At first, the total transverse deflection, i,e, w(x, t), is

considered as a combination of a static deflection induced

by the applied voltage, i,e, wsðxÞ, and a dynamic defor-

mation, i.e. wdðx; tÞ, about the assumed static deflection as

Arvin (2017):

wðx; tÞ ¼ wdðx; tÞ þ wsðxÞ ð27Þ

After substitution of Eq. 27 into equation of motion, i.e.

Eq. 25, and the corresponding boundary conditions, i.e.

Eq. 26, and by elimination of time-varying terms the fol-

lowing equation and the boundary condition for static

deflection is achieved:

Lsw
s
;xxxx þ ws2

;x w
s
;xxx þ ws

;xw
s2
;xx

� �
;x
¼ 0 ð28Þ

dwsj0¼ 0 and Lsw
s
;xxx þ ws2

;xw
s
;xxx þ ws

;xw
s2
;xx

���1¼ 0

dðws
;xÞ
���
0
¼ 0 and

Lsw
s
;xx þ ws2

;xw
s
;xx � ð 2bL2f

ðkþ 2lÞIhÞV0

� 
����
1

¼ 0

ð29Þ

The numerical solution such as bvp4c which is a MATLAB

subroutine (for more details see Arvin (2018) and Arvin

(2017)) as well as semi-analytical solution such as Galerkin

method can be implemented to achieve the static deflec-

tion. In this paper, the Galerkin technique is employed.

Accordingly after elimination of d superscript, due to

brevity, one can obtain the nonlinear dynamic equations

about the pre-static deformation as:

w;ss þ Lsw;xxxx þ ws2
;x w;xxxx þ ws

;xxxxw
2
;x þ w2

;xw;xxxx

þ 2ws
;xw

s
;xxxxw;x þ 2ws

;xw;xxxxw;x þ 4ðws
;xw

s
;xxw;xxx

þ ws
;xw

s
;xxxw;xx þ ws

;xw;xxxw;xx þ ws
;xxw

s
;xxxw;x þ ws

;xxw;xxxw;x

þ ws
;xxxw;xxw;x þ w;xxxw;xxw;xÞ þ 3ws2

;xxw;xx þ 3ws2
;xxw

2
;xx þ w3

;xx

ð30Þ

3.1.1 Galerkin projection procedure

The Galerkin projection approach is employed to discretize

the nonlinear dynamic equations of motion. One can

approximate the nonlinear vibration of the piezoelectric

nanobeam as Younis and Nayfeh (2003):

w ¼
Xn
i¼1

wiðxÞqiðtÞ ð31Þ

where the qiðtÞ is the ith generalized displacement coor-

dinate and wiðxÞ denotes the ith linear normal mode of a

clamped-free isotropic beam given by Nayfeh and Nayfeh

(1993):

wiðxÞ ¼ coshðrixÞ � cosðrixÞ

þ cosðriÞ þ coshðriÞ
sinðriÞ þ sinhðriÞ

ðsinðrixÞ � sinhðrixÞÞ
ð32Þ

where ri is the ith root of the characteristic equation for

clamped-free beams given by cosðrÞ coshðrÞ ¼ �1 (Nayfeh

and Nayfeh 1993).

Substitution of Eq. 31 into the nonlinear transverse

equation of motion, i.e. Eq. 30 and applying the Galerkin

projection approach leads to the reduced order model of the

equation of motion for the motion of the kth mode as:

€qkðtÞ þ a3;kqkðtÞ3 þ a2;kq
2
kðtÞ þ a1;kqkðtÞ ¼ 0

qkð0Þ ¼ a0 _qkð0Þ ¼ 0
ð33Þ

where a3;k, a2;k and a1;k are given, respectively, by:

a3;k ¼ n1;k þ n2;k þ 4n3;k;

a2;k ¼ 2n4;k þ 4n5;k þ 4n6;k þ 4n7;k þ 3n8;k þ n9;k;

a1;k ¼ 2n10;k þ Lsn11;k þ 4n12;k þ 4n13;k
þ 4n14;k þ n15;k þ 3n16;k;

in which n1;k to n16;k relations are represented in Appendix

2.

3.1.2 Lindstedt-Poincare technique

The Lindstedt-Poincare method is employed to develop the

nonlinear free vibration solution for the discretized equa-

tion of motion, i.e. Eq. 30. Therefore, the generalized

coordinate is considered as qkðt; �Þ ¼ �x1ðsÞ þ �2x2ðsÞ þ
�3x3ðsÞ where � is a bookkeeping parameter which is used

in the perturbation techniques for ordering process of

variables and s ¼ xNL
k ð�Þt. xNL

k is the kth nonlinear fre-

quency which is given by xNL
k ð�Þ ¼ xk þ �x1;k þ �2x2;k þ

�3x3;k (see Barari et al. 2011) in which xk is the kth linear

natural frequency and xi;k’s are defined during the solution.

By substituting the assumed generalized coordinate in

Eq. 33, one can obtain:

ðxk þ �x1;k þ �2x2;kÞ2
d2

ds2
ð�x1 þ �2x2 þ �3x3Þ

þ a1;kð�x1 þ �2x2 þ �3x3Þ1 þ a2;kð�x1 þ �2x2 þ �3x3Þ2

þ a3;kð�x1 þ �2x2 þ �3x3Þ3 ¼ 0

ð34Þ

Following some simplifications, by equating the coeffi-

cients of the same power of � and recalling from Eq. 33 that

x2
k ¼ a1;k the ordered equations are achieved as: O ð�1Þ :
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xk
2 d

2x1

ds2
þ xk

2x1 ¼ 0; x1ð0Þ ¼ ak ¼
a0

�
_x1ð0Þ ¼ 0

ð35Þ

O ð�2Þ :

xk
2 d

2x2

ds2
þ xk

2x2 ¼ � 2xkx1;k
d2x1

ds2
þ a2;kx

2
1


 �

x2ð0Þ ¼ 0 _x2ð0Þ ¼ 0

ð36Þ

O ð�3Þ :

xk
2 d

2x3

ds2
þ xk

2x3 ¼

� 2xkx1;k
d2x2

ds2
þ 2a2;kx1x2 þ x2

1;k

d2x1

ds2




þ2xkx2;k
d2x1

ds2
þ a3;kx

3
1

�
x3ð0Þ ¼ 0 _x3ð0Þ ¼ 0

ð37Þ

The general solution of the first order equation, i.e. Eq. 35,

takes the following form:

x1 ¼ ak cos/k ð38Þ

where /k ¼ sþ bk;0 in which ak and bk;0 are constants and
are evaluated from the initial conditions.

Substitution of first order solution, i.e. Eq. 38, into

Eq. 36 reshuffles the second order equation as:

xk
2 d

2x2

ds2
þ xk

2x2 ¼ 2xkx1;kak cos/k

� 1

2
a2;ka

2
kð1þ cos 2/kÞ

ð39Þ

Following the common procedure of perturbation methods,

the elimination of the secular term, requires x1;k � 0 ,

thereupon:

x2 ¼ � a2;ka2k
2xk

2
1� 1

3
cos 2/k


 �
ð40Þ

By substituting the firs order and second order solution for

x1 and x2 in Eq. 37 and recalling that ðx1;k ¼ 0Þ one can

obtain:

xk
2 d

2x3

ds2
þ xk

2x3

¼ 2 xkx2;kak �
3

8
a3;ka

3
k þ

5

12

a22;ka
3
k

xk
2

 !
cos/k

� 1

4

2a22;k
3xk

2
þ a3;k

 !
a3k cos 3/k

ð41Þ

Accordingly the elimination of the secular term from

Eq. 41, releases x2;k as:

x2;k ¼
ð9a3;kxk

2 � 10a22;kÞa2k
24xk

3
ð42Þ

After the elimination of the secular term from the third-

order equation, i.e. Eq. 41, the corresponding solution read

as:

x3 ¼
1

32

2a22;k
3xk

4
þ a3;k
xk

2

 !
a3k cos 3/k ð43Þ

The substitution of the first, second and third order solu-

tions, respectively, from Eqs. 38, 40 and 43 into the

expanded from of x, i.e. x ¼ �x1 þ �2xx þ �3x3, the non-

linear solution of Eq. 33 is achieved:

qk ¼ a0 cosðxNL
k t þ bk;0Þ �

a20a2;k
2a1;k

1� 1

3
cos 2ðxNL

k t þ bk;0Þ
� �
 �

þ 1

32

2a22;k
3xk

4
þ a3;k
xk

2

 !
a30 cos 3ðxNL

k t þ bk;0Þ
� �

þ Oð�4Þ

ð44Þ

where

xNL
k ¼ xk þ

1

4
Cka

2
k þ Oð�3Þ ð45Þ

in which Ck is the kth effective nonlinearity coefficient

which is denoted by:

Ck ¼
ð9a3;kxk

2 � 10a22;kÞ
6xk

3
:

4 Numerical results and discussion

As it is known, flexoelectricity effect plays a significant

role just at nano-scales. Hence, for more illustration, in this

paper, a cantilever piezoelectric nanobeam (CPNB) is

Table 1 The geometrical and material data of the assumed piezo-

electric nanobeam (Tadi Beni 2017)

Parameter Description Value (unit)

L Beam length 500 (nm)

b Beam width 10 (nm)

h Beam thickness 15 (nm)

l Scale factor 0.2 h

f Flexoelectric coefficient 5e�12 (C/m)

l Lame constant 42.9 (GPa)

k Lame constant 45.2 (GPa)
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considered for analysis which is made of BaTiO3. The

corresponding geometrical and material data is listed in

Table 1. Henceforth, all the employed parameters are same

as Table 1 unless new data are prescribed.

To verify the current results, the obtained Galerkin

outcomes for the static deflection due to a constant applied

voltage are compared with the available linear analytical

results which is accessible in Tadi Beni (2016) and the

current bvp4c results. The comparison is depicted in Fig. 2

for V0 ¼ 4000 v by the consideration of 1 and 3 linear

normal modes in Galerkin projection. A very good agree-

ment is clear between the current 3-mode Galerkin pro-

jection, the bvp4c method and the analytical results.

Because the Galerkin approach is very handy in the

implementation hence, hereafter 3-mode Galerkin tech-

nique is employed for the static deflection computations.

Another verification is confirmed in calculation of linear

natural frequency in comparison with Arvin (2018). The

considered beam is a rotating micro cantilever beam which

is made of epoxy with the mass density, Young modulus,

Poisson coefficient and the material length scale parameter,

respectively, equal to q ¼ 1220 kg=m3
, E ¼ 1:4 GPa, m ¼

0:3 and l ¼ 17:6 lm. The slenderness ratio, i.e. S ¼ L
ffiffiffi
A
I

q
,

and height to material scale parameter, i.e. t ¼ h
l
, are given,

respectively, as S ¼ 30 and t ¼ 1. In slenderness ratio, L,

A and I are, respectively, the beam length, the beam cross-

section area and the beam are moment of inertia about y-

axis (see Fig. 1). As the considered microbeam is a rotating

beam the dimensionless rotation speed is considered as

kR ¼ 0 in Fig. 9 of Arvin (2018). The compared results for

the first two linear natural frequencies are prepared in

Table 2. The results show a very good agreement. It should

be noted that in Arvin (2018) the rotary inertia influences

are taken into account and hence, the neglecting of rotary

inertia here seems reasonable.

After confirming the current results some case studies

are addressed here.
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Fig. 2 The current non-linear static deflection achieved by 1-mode

Galerkin technique (dotted-dashed-lines), 3-mode Galerkin technique

(solid-lines), and the bvp4c-subroutine (dashed-lines) versus the

corresponding linear analytical results of Tadi Beni (2016) (dotted-

lines): (V0 ¼ 4000 v)

Table 2 The current first two

linear natural frequencies in

comparison with those of Arvin

(2018) (MHz)

Frequency Results of Arvin (2018) Current results Difference percent

x1 0.3108 0.3107 0.03

x2 1.9326 1.9468 0.73
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Fig. 3 The nonlinear static deflection of the CPNB for different

applied voltages: V0 ¼ 1500 v, solid-lines, V0 ¼ 2500 v, dashed-lines,

and V0 ¼ 3500 v, dotted-lines
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Fig. 4 The effect of the flexoelectric coefficient (f ¼ 5 pC=m, solid-

lines, f ¼ 10 pC=m, dashed-lines and f ¼ 20 pC=m, dotted-lines) on

the nonlinear static deflection of the CPNB: (V0 ¼ 500 v)
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4.1 Case studies: static deflection

The nonlinear static deflection of the given CPNB which

undergoes different applied voltages is depicted in Fig. 3. It

can be seen that the static deflection is increased by

increment in the applied voltage magnitude.

Figure 4 demonstrates the nonlinear static deflection of

the CPNB for different flexoelectric coefficients. As it is

expected, according to the last boundary condition in

Eq. 23, increment in the flexoelectric magnitude increases

the resulting applied moment at the tip point of the beam

and subsequently CPNB experiences higher static

deflection.

The scale factor influences on the nonlinear static

response of the CPNB is investigated in Fig. 5 for an

assumed voltage. As it is shown, due to hardening effect of

the scale factor on the beam stiffness, the static deflection

of the CPNB is decreased by increasing the scale factor.

4.2 Case studies: linear natural frequencies

After the static deflection analysis some case studies for

linear natural frequencies are presented here. The length

scale parameter and flexoelectric coefficient influences on

the first three linear natural frequencies for an assumed

constant applied voltage, respectively, are examined in

Figs. 6, 7, and 8. The hardening effects of flexoelectric

coefficient and the material length scale parameter is

obvious. A very interesting phenomenon is evident in the

figures. At the beginning, when the flexoelctric constant is

small enough, the length scale has a dominant role in

stiffness of the considered CPNB while by growing the

flexoelectric constant the induced stiffness due to flexo-

electricity overcomes the length scale parameter one. The

augmented induced stiffness by the increment of the

flexoelectric coefficient, is because of the increasing of the

static deflection by the increment in the flexoelectric con-

stant which was demonstrated in Fig. 4.

The variation of the first natural frequency with respect

to the applied voltage for different flexoelectric coefficient

is demonstrated in Fig. 9. It can be inferred that by

increasing the applied voltage, the flexoelectric constant

plays more significant role in the structural stiffness and

makes the CPNB stiffer.

4.3 Case studies: nonlinear free vibration
analysis

Here some case studies are examined on the nonlinear free

vibration features of the CPNB. The effective nonlinearity
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Fig. 5 The effect of the material length scale factor with respect to the

beam thickness ratio (l=h ¼ 0, dotted-lines, l=h ¼ 0:2, dashed-lines
and l=h ¼ 0:5, solid-lines) on the nonlinear static deflection of the

CPNB (V0 ¼ 500 v)
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Fig. 6 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the first natural frequency in terms of the flexoelectric

coefficient (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼ 0:2 and solid-

lines, l=h ¼ 0:5) V0 ¼ 500 v
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Fig. 7 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the second natural frequency in terms of the

flexoelectric coefficient (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) V0 ¼ 500 v

4104 Microsystem Technologies (2019) 25:4097–4110

123



coefficient with respect to the flexoelectric constant for the

first three modes is depicted, respectively, in Figs. 10, 11,

and 12. From Fig. 10 it can be inferred although a hard-

ening behaviour is evident when the flexoelectric constant

is f ¼ 0 but the CPNB shows a softening treatment, too.

For verification of the predicted treatment when f ¼ 0 one

can see McHugh and Dowell (2018). In McHugh and

Dowell (2018) it is denoted that when just the geometric

nonlinearities are considered, for any cantilever beam

which is imposed by the inextensibility condition, the

hardening behavior is expected for the first mode. When

f ¼ 0, it can bee seen that the bigger material length scale

parameter has the smaller effective nonlinearity due to

hardening effects of the material length scale parameter.

The analysis of the figure for f 6¼ 0 shows that the hard-

ening or softening behaviour depends on the mutual

relation of the material length scale ratio and the flexo-

electric constant values and necessarily the CPNB doesn’t

show the same behaviour for different material length scale

parameter at a specified flexoelectric constant or viceversa.

Another implication is that by increasing the material

length scale parameter the range of the flexoelectric con-

stant which enforces a softening behaviour to the first mode

reduces. Also, for all of l/h ratios, after the CPNB treats as

a soften beam in the first mode it will not show again a

hardening treatment.

Figure 11 illustrates the second effective nonlinearity

coefficient. The hardening behaviour when f ¼ 0 is clear

which can be proved by McHugh and Dowell (2018). In

addition, again when f ¼ 0 the material length scale

parameter with bigger value takes the smaller effective
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Fig. 8 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the third natural frequency in terms of the

flexoelectric coefficient (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) V0 ¼ 500 v
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Fig. 9 The effect of the flexoelectric coefficient (f ¼ 5 pC=m, dotted-

lines, f ¼ 10 pC=m, dashed-lines and f ¼ 20 pC=m solid-lines) on the

first natural frequency
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Fig. 10 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the first mode effective nonlinearity coefficient in

terms of the flexoelectric coefficient (dotted-lines, l=h ¼ 0, dashed-

lines, l=h ¼ 0:2 and solid-lines, l=h ¼ 0:5)
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Fig. 11 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the second mode effective nonlinearity coefficient in

terms of the flexoelectric coefficient (dotted-lines, l=h ¼ 0, dashed-

lines, l=h ¼ 0:2 and solid-lines, l=h ¼ 0:5)
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nonlinearity. The figure illustrates for f 6¼ 0 when the

hardening treatment shifts to a softening behaviour and the

latter behaviour remains for the CPNP. On the other hand,

although the starting hardening behaviour for l=h ¼ 0 and

l=h ¼ 0:2 shifts rapidly by increasing the flexoelectric

constant to a softening treatment but this sharp negative

slope will change into a slow positive slope but never turns

into a hardening behaviour.

The effective nonlinearity of third mode is displayed in

Fig. 12. A hardening behaviour is predicted for the third

mode when the flexoelectric constant is f ¼ 0 which can be

verified by McHugh and Dowell (2018). In agreement with

the first and second modes when f ¼ 0 a greater value of

the material length scale parameter illustrates a smaller

effective nonlinearity. The assessment of the achieved

results when f 6¼ 0 demonstrates a monotonous decrement

of the effective nonlinearity for all cases by the continuous

increment in the flexoelectric constant. The rate of decre-

ment decreases by the increase of the material length scale

parameter due to the hardening effects of the material

length scale parameter. On the other hand, the figure illus-

trates that the third mode always represents a hardening

mode, in the current range of the flexoelectric constant,

independent of the material length scale ratio and the

flexoelectric constant.

For more illustrations the nonlinear natural frequency to

the corresponding linear natural frequency ratio in terms of

the beam tip deflection for the first mode for four different

flexoelectric constants are presented in Figs. 13, 14, and 15.

These figures in agreement with Fig. 10 demonstrate the
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Fig. 12 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the third mode effective nonlinearity coefficient in

terms of the flexoelectric coefficient (dotted-lines, l=h ¼ 0, dashed-

lines, l=h ¼ 0:2 and solid-lines, l=h ¼ 0:5)
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Fig. 13 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the first frequency ratio in terms of the deflection of

the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 0 pC=m
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Fig. 14 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the first frequency ratio in terms of the deflection of

the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 500 pC=m
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Fig. 15 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the first frequency ratio in terms of the deflection of

the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 1000 pC=m
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different type of hardening or softening behaviour for the

first mode which is tightly related to the material length

scale parameter and the flexoelectric coefficient values at

the same time.

The second mode nonlinear natural frequency to the

associated linear natural frequency ration in terms of the tip

deflection of the beam for f ¼ 0 pC/m and f ¼ 1000 pC/m

are depicted, respectively, in Figs. 16 and 17. In accom-

panied by Fig. 11 the hardening or softening behaviour is

predicted for different values of the material length scale

parameter and the flexoelectric coefficient.

The similar study as the second mode is performed for

the third mode for f ¼ 0 pC/m and f ¼ 1000 pC/m,

respectively, in Figs. 18 and 19. The achieved outcomes

are in accordance with Fig. 12.

5 Conclusions

The nonlinear free vibration analysis of a pre-actuated

nano-cantilever isotropic beam was examined. The for-

mulation was developed for an Euler-Bernoulli inextensi-

ble flexoelectric cantilever nanobeam on the basis of the

size-dependent flexoelectricity theory. A higher order

curvature displacement relation was employed to derive the

nonlinear equations of motion by the implementation of the

Hamilton’s principle. The Galerkin projection approach

was applied on the governing partial differential equations

of motion to achieve the reduced order equation of motion.

The Galerkin approach was implemented to extract the

nonlinear static solution due to the pre-applied voltage and

the linear natural frequency. The Lindstedt-Poincare
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Fig. 16 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the second frequency ratio in terms of the deflection

of the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines,

l=h ¼ 0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 0 pC=m
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Fig. 17 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the second frequency ratio in terms of the deflection

of the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines,

l=h ¼ 0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 1000 pC=m
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Fig. 18 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the third frequency ratio in terms of the deflection of

the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 0 pC=m
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Fig. 19 The effect of the length scale parameter to the beam thickness

ratio, i.e. l/h, on the third frequency ratio in terms of the deflection of

the tip point of the CPNB (dotted-lines, l=h ¼ 0, dashed-lines, l=h ¼
0:2 and solid-lines, l=h ¼ 0:5) for f ¼ 1000 pC=m
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technique was employed to find the nonlinear effective

coefficient and the corresponding nonlinear natural fre-

quency. The effects of the applied voltage, the material

length scale parameter, and the flexoelectric coefficient on

the nonlinear static defection, the linear natural frequency

and the nonlinear effective coefficient and the associated

nonlinear natural frequency were investigated. The main

findings are as follows:

(1) The material length scale parameter and the flexo-

electric constant have the hardening effect on the

structural stiffness;

(2) Although in the small flexoelectric region, the

material length scale parameter effect dominates

the flexoelectric influence but with growing the

flexoelectric constant it will overcome the material

length scale parameter role in the stiffening of the

structural stiffness;

(3) When the flexoelectric effect is ignored the inexten-

sible nano-cantilever beam shows a hardening

behaviour;

(4) The third mode of nano-cantilever beam always

displays a hardening behvaiour;

(5) The mutual relation between the flexoelectric coef-

ficient and the material length scale parameter

magnitudes enforces the hardening or softening

treatment to the first and second modes of the

considered nano-cantilever beam.

Appendix 1: Variation of the stored energy

dU ¼
Z
V
r11de11 þ 2l12dj21 � D1dE1 � D3dE3ð ÞdV

¼
Z L

0

EIðw;xxxx þ w3
;xx þ 3w;xw;xxw;xxx þ
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2
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in which I ¼
R b=2
�b=2

R h=2
�h=2 z

2dydz, A11 ¼
R b=2
�b=2

R h=2
�h=2 4ll

2

dydz and E11 ¼
R b=2
�b=2

R h=2
�h=2 f ðU;zÞdydz.

Appendix 2: The employed parameters
for discretization of the equation of motion
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