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Abstract
Nonlinear free/forced vibration of a functionally graded graphene nanoplatelet (GNP) reinforced microbeam having

geometrical imperfection which is rested on a non-linear elastic substrate have been studied in the present research.

Graphene Platelets have been uniformly and non-uniformly scattered in the cross section area of the microbeam. Non-

uniform distribution of GNPs is considered to be linear or non-linear type. Geometric imperfection is considered similar to

the first vibration mode of microbeam. Size effects due to micro-rotations are captured in this study by means of modified

couple stress elasticity. In the case of forced vibration, a uniform harmonic load is exerted to the top surface of microbeam.

Harmonic balance method has been implemented to solve the non-linear governing equation of microbeam having

quadratic and cubic nonlinearities. In this regard, frequency-amplitude curves are obtained and their trends are studied by

changing of GNP amount and distribution, geometric imperfection, forced amplitude and hardening foundation.

1 Introduction

Presenting superior mechanical and thermal properties,

carbonaceous structures are excellent reinforcements for

high performance composites materials. Traditional com-

posites with embedded fibers have less strength and stiff-

ness compared to nano-composite materials reinforced by

carbonaceous structures such as carbon nanotubes (Thai

et al. 2018; Esawi and Farag 2007). This leads to the

generation of new composites having different distributions

of carbon nanotubes such uniform or functionally graded.

In functionally graded nano-composites, carbon nanofillers

are non-uniformly dispersed within the matrix phase in

order to boost the efficient application of the small per-

centage of nanofillers in composite materials (Shen 2009).

There are also different fabrication techniques for func-

tionally graded nano-composites such as thermal spray,

electromechanical deposition and powder metallurgy

(Kwon et al. 2011; Bafekrpour et al. 2013). This situation

led to attraction of attentions from research and engineer-

ing communities for analyzing structural behavior of car-

bon reinforced nano-composite beams, plates and shells

(Mehar et al. 2017; Ansari et al. 2016; Alibeigloo 2014;

Ebrahimi and Habibi 2017, 2018; Torabi et al. 2019; Aragh

2017; Rokni et al. 2015).

Moreover, graphene nanoplatelet (GNP) reinforced

composites with high strength can prominently decrease

weight with a higher efficiency than that of a conventional

metal material (Zarasvand and Golestanian 2017). GNP

reinforced composite materials with polymer matrix have

been broadly utilized in many structural applications,

including aerospace and automotive industries in which

weight decrement is vital for increased payloads and higher

speeds. Graphene sheet can be preferred over conventional

carbon nanofillers such as carbon nanotubes because of

possessing a higher surface area, tensile strength and

thermal/electrical conductivity (Kilic et al. 2018). Struc-

tural elements (beams and plates) made of GNP reinforced

composites are recently studied in the view point of their

static and dynamic behaviors. Analysis of vibration and

stability characteristics of GNP reinforced beams having a

porous matrix is carried out by Kitipornchai et al. (2016).

In another work, Feng et al. (2017) researched free vibra-

tions of a GNP reinforced beam considering geometric

nonlinearity. Zhao et al. (2017) researched bending
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behavior of GNP reinforced plates with trapezoidal shapes.

Free vibration characteristics of cylindrical shells made of

GNP reinforced composites are studied by Barati and

Zenkour (2018). Also, free vibrational behavior of a GNP

reinforced plate with different boundary conditions has

been investigated by Reddy et al. (2018). Also, geometri-

cally nonlinear vibration of small scale beams made of

GNP reinforced composites has been studied by Sahmani

and Aghdam (2017) considering strain gradients.

With the prompt expansion of technologies, composite

materials with carbon nanofillers have gained a broad

attention in micro-mechanics by tailoring their architec-

ture at small scales (Allahkarami and Nikkhah-Bahrami

2018). As stated in Kong et al. (2008), Asghari et al.

(2010), Ahouel et al. (2016) and Bessaim et al. (2015), the

scale influence becomes very prominent for the mechan-

ical properties of micro-sized structures. Hence, investi-

gation on scale impacts on the mechanical characteristics

of a micro-scale beam is of substantial importance.

Experiments on micro-sized structures are not easy to

execution, therefore it is necessary to employ an easier

way which is utilization of non-classical continuum

mechanics capturing size effects. For example, it is

proved that the essence of size effect at micro scale is

related to the micro-rotations of particles inside the

material (Toupin 1962). Modified couple stress theory

having one scale parameter can capture such size-depen-

dency behaviors (Zeighampour and Beni 2014; Li and Pan

2015; Dai et al. 2015; Hu et al. 2016). The theory is also

used to investigate static/dynamic behaviors of micro-

sized beams and plates fabricated from carbon nanotube

reinforced composites. Analysis of free vibrations and

static buckling of a microbeam with embedded carbon

nanotubes has been carried out by Shenas et al. (2018).

Based on modified couple stress elasticity, Rostami et al.

(2018) researched linear forced vibrations of a carbon

nanotube reinforced microbeam. Considering viscoelastic

effects, Mohammadimehr et al. (2017) re-examined

vibration characteristics of a carbon nanotube reinforced

microbeam. It can be understand from previous works on

nanofiller reinforced microbeams that all of them studied

perfect beams only and the influences of geometric

imperfection have not been researched. According to real

states, structure components may have geometric imper-

fection that creates within the manufacturing procedure or

expand within their operating life (Farokhi et al. 2013;

Ghayesh and Farokhi 2017; Farokhi and Ghayesh 2015).

This research deals with nonlinear free/forced vibra-

tional analysis of geometrically imperfect GNP reinforced

microscale beams based on modified couple stress elas-

ticity. The imperfect microbeam is rested on a nonlinear

hardening elastic medium and a harmonic force is applied

to its top surface. Uniform, linear and nonlinear cases of

distribution for GNPs have been considered based on

Halpin–Tsai micromechanical model. These distributions

provide a continual gradation of material property over the

thickness. So, the problem of discontinuity stresses at

interfaces of a multi-layered GNP reinforced composite has

been resolved. Finally, harmonic balance method has been

implemented to solve the nonlinear dynamic equation of

microbeam having quadratic and cubic nonlinearities. It is

shown in this research that GNP weight fraction, GNP

distribution, external force and geometric imperfection

have great impacts on vibrational behavior of microbeams.

2 Modeling of a GNP-reinforced microbeam

In this research, it is considered that graphene platelets are

dispersed uniformly, linearly and nonlinearly thorough the

transverse direction, as illustrated in Fig. 1. Also, a GNP-

reinforced microbeam lying on elastic foundation has been

shown in Fig. 2. Based upon, Halpin–Tsai micromechani-

cal model (Zhao et al. 2017), the GNP volume fraction

(VGPL) has the following relation with the weight fraction

of GNPs (WGPL) as:

VGPL ¼ WGPL

WGPL þ qGPL
qM

� qGPL
qM

WGPL

ð1Þ

where qGPL and qM denote the mass density of GNPs and

polymer matrix, respectively. Then, the elastic moduli of

the nanocompoite can be expressed as a function of matrix

elastic moduli (EM) as (Zhao et al. 2017):

E1 ¼
3

8

1þ nGPLL gGPLL VGPL

1� gGPLL VGPL

� �
EM

þ 5

8

1þ nGPLW gGPLW VGPL

1� gGPLW VGPL

� �
EM ð2Þ

where nGPLL and nGPLW are two geometric parameters

showing the influences of GPL shape and size in axial and

lateral directions (Zhao et al. 2017):

nGPLL ¼ 2lGPL

tGPL
ð3aÞ

gGPLL ¼ EGPL=EMð Þ � 1

EGPL=EMð Þ þ nGPLL

ð3bÞ

nGPLW ¼ 2wGPL

tGPL
ð3cÞ

gGPLW ¼ EGPL=EMð Þ � 1

EGPL=EMð Þ þ nGPLW

ð3dÞ

In above relations, wGPL, lGPL, and tGPL denote GPL

average width, length, and thickness, respectively. Also,
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Poisson’s ratio of nanocomposite material is a function of

Poisson’s ratio of GPL and matrix phases as:

v1 ¼ vGPLVGPL þ vMVM ð4Þ

in which Vm represents the volume fraction of matrix phase

(VM ¼ 1� VGPL).

In this study, GPL dispersion are considered as:

Uniform:

WGPL ¼ k1W
0
GPL ð5aÞ

Linear:

WGPL ¼ k2W
0
GPL

z

h
þ 1

2

� �
ð5bÞ

Nonlinear:

WGPL ¼ k3W0
GPLz

2

s2h2ð4s2 � h2Þ 4h2z2 � h4 þ 16s2

n
ðs2 � z2Þ

� �

ð5cÞ

where W0
GPL is a specific GPL weight fraction which is

considered as W0
GPL ¼ 1%; and s = 0.45 h.

This research deals with the analysis of microbeams

according to classical beam model having the displacement

field as:

Fig. 1 Three types of GNP

distribution over the thickness

Fig. 2 Functionally graded

GPL-reinforced microbeam
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u1 x; y; z; tð Þ ¼ u x; y; tð Þ � z
ow

ox
ð6Þ

u3ðx; y; z; tÞ ¼ wðx; y; tÞ ð7Þ

in which axial and transverse displacements are respec-

tively denoted by u and w. The strain field containing

geometric imperfection and nonlinearity can be introduced

as (Farokhi et al. 2013):

exx ¼
ou1

ox
¼ ou

ox
� z

o2w

ox2
þ 1

2

ow

ox

� �2

þ ow

ox

ow�

ox
ð8Þ

Modeling of a microbeam according to modified couple

stress elasticity needs the components of curvature tensor

in the form:

vxy ¼ � 1

2

o2w

ox2
; vxx ¼ vyy ¼ vzz ¼ vxz ¼ vyz ¼ 0 ð9Þ

Obtained strain and curvature tensors are corresponding

to the axial stress and couple stress by the following

equations (Dai et al. 2015):

rxx ¼ ½knc þ 2lnc�exx ð10Þ

mxy ¼ 2lncl
2vxy ð11Þ

in which Láme’s constants may be written as:

knc ¼
E1v1

1þ v1½ �½1� 2v1�
ð12Þ

lnc ¼
E1

2½1þ v1�
ð13Þ

Based on the classical beam model and the procedure

explained in Li and Pan ( 2015) and Hu et al. (2016), one

can achieve the governing equations by implementing the

minimization of the total potential energy:

oNx

ox
¼ I0

o2u

ot2
� I1

o3w

oxot2
ð14Þ

o2Mb
x

ox2
þ o

ox
Nx

ow

ox
þ ow�

ox

� �� �
þ o2Y1

ox2
¼ qynamic

þ I0
o2w

ot2
þ I1

o3u

oxot2

� �
� I2r2 o2w

ot2

� �

þ kLw� kPr2wþ kNLw
3

ð15Þ

Here, linear, shear and nonlinear elastic substrate

parameters are respectively denoted by kL, kp, and kNL and

ðI0; I1; I2Þ ¼
Z h=2

�h=2

ð1; z ; z2Þq1dz ð16Þ

Also, the in-plane force (Nx), bending moment (Mx
b) and

couple stress resultant (Y1) can be expressed by:

Nx ¼ Axx

ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

ow�

ox

 !
� Bxx

o2w

ox2
ð17Þ

Mb
x ¼ Bxx

ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

ow�

ox

 !
� Dxx

o2w

ox2
ð18Þ

Y1 ¼ �~A
o2w

ox2

� �
ð19Þ

where

Axx ¼
Z h=2

�h=2

knc
1� v1

v1

� �
dz;

Bxx ¼
Z h=2

�h=2

knc
1� v1

v1

� �
z dz;

Dxx ¼
Z h=2

�h=2

knc
1� v1

v1

� �
z2 dz;

~A ¼
Z h=2

�h=2

lncl
2dz;

ð20Þ

Two nonlinear governing equations are obtained for an

imperfect microbeam by replacing Eqs. (17)–(19) in

Eqs. (14) and (15) as:

Axx

o2u

ox2
þ ow

ox

o2w

ox2
þ o2w

ox2
ow�

ox
þ ow

ox

o2w�

ox2

� �
� Bxx

o3w

ox3

¼ I0
o2u

ot2
� I1

o3w

oxot2

ð21Þ

Bxx

o

ox

o2u

ox2
þ ow

ox

o2w

ox2
þ o2w

ox2
ow�

ox
þ ow

ox

o2w�

ox2

� �

� ðDxx þ ~AÞ o
4w

ox4
þ Nx

o2w

ox2
þ o2w�

ox2

� �� �

¼ qynamic þ I0
o2w

ot2
þ I1

o3u

oxot2

� �
� I2r2 o2w

ot2

� �

þ kLw� kPr2wþ kNLw
3

ð22Þ

By ignoring in-plane inertia I0
o2u
ot2

� �
in Eq. (21) and

knowing that the effect of I1 is small, it is possible to

express Eq. (21) as:

Axx

ou

ox
þ 1

2

ow

ox

� �2

þ ow

ox

ow�

ox

 !
� Bxx

o2w

ox2
¼ C1 ð23Þ

Simplifiying Eq. (23) yields:

ou

ox
¼ � 1

2

ow

ox

� �2

� ow

ox

ow�

ox
þ Bxx

Axx

o2w

ox2
þ C1

Axx

ð24Þ

The axial displacement may be obtained by integrating

Eq. (24) as:
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u ¼ � 1

2

Z x

0

ow

ox

� �2

dx�
Z x

0

ow

ox

ow�

ox
dxþ Bxx

Axx

ow

ox
þ C1

A11

x

þ C2

ð25Þ

Axial displacement are restrained at both ends (u(0) = 0,

u(L) = 0) which results in:

C2 ¼ �Bxx

Axx

ow

ox
x¼0j

C1 ¼
Axx

2L

Z L

0

ow

ox

� �2

dxþ Axx

L

Z L

0

ow

ox

ow�

ox
dx� Bxx

L

ow

ox
x¼Lj

þ Bxx

L

ow

ox
x¼0j ð26Þ

Inserting constant C1 into Eq. (24) gives:

ou

ox
¼ � 1

2

ow

ox

� �2

� ow

ox

ow�

ox
þ Bxx

Axx

o2w

ox2
þ

þ 1

2L

Z L

0

ow

ox

� �2

dxþ 1

L

Z L

0

ow

ox

ow�

ox
dx� Bxx

LAxx

ow

ox
x¼Lj

þ Bxx

LAxx

ow

ox
x¼0j ð27Þ

Also, the second derivative of axial displacement can be

obtained from Eq. (27) as:

o2u

ox2
¼ � ow

ox

o2w

ox2
� o2w

ox2
ow�

ox
� ow

ox

o2w�

ox2
þ Bxx

Axx

o3w

ox3
ð28Þ

Using Eqs. (27) and (28), the nonlinear governing

equation of an imperfect microbeam can be simplified as:

Bxx

o

ox
þBxx

Axx

o3w

ox3

� �
� ðDxx þ ~AÞ o

4w

ox4

þ Axx þ 1

2L

Z L

0

ow

ox

� �2

dxþ 1

L

Z L

0

ow

ox

ow�

ox
dx

 "

� Bxx

LAxx

ow

ox
x¼Lj þ Bxx

LAxx

ow

ox
x¼0j
��

o2w

ox2
þ o2w�

ox2

� �� �

¼ qynamic þ I0
o2w

ot2
� I2r2 o2w

ot2

� �

þkLw� kPr2wþ kNLw
3

ð29Þ

3 Solution procedure

Nonlinear vibration problem of geometrically imperfect

microbeams is analytically solved in this section. First, the

lateral displacement component is considered as (Rostami

et al. 2018):

w ¼
X1
i¼1

WiuiðxÞ ð30Þ

where Wi is the vibration amplitude and uiðxÞ ¼
0:5 1� cos 2ip

L
x

� 	� 	
is trial function to satisfy clamped

boundary edges with the following conditions:

w x¼0j ¼ w x¼Lj ¼ 0;
ow

ox
x¼0j ¼ ow

ox
x¼Lj ¼ 0 ð31Þ

Also, the geometric imperfection is same as vibration

mode (Ghayesh and Farokhi 2017; Farokhi and Ghayesh

2015):

w� ¼ W�/ðxÞ ¼ 0:5W� 1� cos 2p
x

L

� �� �
ð32Þ

Inserting Eqs. (30)–(32) into Eq. (29) leads to:

KSWi þ G1W
3
i þ Q1W

2
i þM €Wi ¼ F1 cos xtð Þ ð33Þ

in which

KS ¼ � Dxx þ ~A� B2
xx

Axx

� �
K40ð Þ � kwK00 þ kpK20

þ Axx

L
N11C20W

�2 � Bxx

LAxx

ow

ox
x¼Lj W�C20

þ Bxx

LAxx

ow

ox
x¼0W

�C20j

ð34Þ

G1 ¼
Axx

2L
K11K20 � kNL ~K00 ð35Þ

Q1 ¼
Axx

2L
K11C20W

� þ Axx

L
N11K20W

� � Bxx

LAxx

ow

ox
x¼Lj K20

þ Bxx

LAxx

ow

ox
x¼0K20j

ð36Þ
M ¼ �I0K00 þ I2K20 ð37Þ

F1 ¼
Z L

0

f ðx; tÞuidx ð38Þ

where
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K00 ¼
Z L

0

uiuidx

K20 ¼
Z L

0

u
00

iuidx

K40 ¼
Z L

0

u
0000

i uidx

K11 ¼
Z L

0

u
0

iu
0

idx

~K00 ¼
Z L

0

uið Þ4dx

N11 ¼
Z L

0

/
0

iu
0

idx

C20 ¼
Z L

0

u
00

i/idx

C40 ¼
Z L

0

/
0000

i /idx

ð39Þ

Since the vibration of microbeam occurs at both positive

and negative transverse directions, Eq. (33) must be re-

written as:

KSWi þ G1W
3
i þ Q1Wi Wij j þM €Wi ¼ F1 cos xtð Þ ð40Þ

For harmonic oscillation of system, the amplitude of

microbeam can be defined as:

Wi ¼ ~W cos xtð Þ ð41Þ

Now, Eq. (41) must be inserted in Eq. (40) to obtain the

following equation:

KS

M
~W cosðxtÞ þ G1

M
~W cosðxtÞ
� 	3

þ Q1

M
~W cosðxtÞ
� 	

~W cosðxtÞ


 

� ~Wx2 cosðxtÞ

¼ F1

M
cos xtð Þ

ð42Þ

Based on the properties of trigonometric functions,

Eq. (42) can be simplified as:

K�

M
~W cosðxtÞ þ G1

M
~W3 1

4
cosð3xtÞ þ 3

4
cosðxtÞ

� �

þ Q1

M
~W2 cosðxtÞ cosðxtÞj j � ~Wx2 cosðxtÞ ¼ F1

M
cos xtð Þ

ð43Þ

Also, the following relations are needed for further

simplifications:

cosðxtÞj j ¼ 4

p
1

2
þ 1

3
cosð2xtÞ � 1

15
cosð4xtÞ þ � � �

� �

cosðxtÞ cosðxtÞj j ¼ 4

p
1

2
cosðxtÞ þ 1

3
cosð2xtÞ cosðxtÞ

�

� 1

15
cosð4xtÞ cosðxtÞ þ � � �

�

¼ 4

p
1

2
cosðxtÞ þ 1

6
ðcosðxtÞ þ cosð3xtÞÞ

�

� 1

15
cosð4xtÞ cosðxtÞ þ � � �

�
¼ 8

3p
cosðxtÞ

ð44Þ

Finally, collecting the coefficients of first harmonic

gives the governing equation as:

KS

M
~W þ 3

4

G1

M
~W3 þ 8 ~W2

3p
Q1

M
� ~Wx2 � F1

M

� �
cosðxtÞ ¼ 0

ð45Þ

Table 1 Gradient index effect on total content of GNPs

Uniform (k1) Linear (k2) Nonlinear (k3) %W�
GPL

0 0 0 0

0.33 0.67 0.43 0.33

1 2 1.29 1

Table 2 Material and geometrical parameters for a GNP-reinforced

beam

GNPs Matrix (Epoxy resin)

EGPL= 1.01 TPa EM = 2.85 GPa

qGPL= 1062.5 kg/m3 qM = 1200 kg/m3

vGPL= 0.006 vM = 0.34

tGPL= 1.5 nm –

wGPL= 1.5 lm –

lGPL= 2.5 lm –

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

D
im

en
sio

nl
es

s f
re

qu
en

cy

GPL weight fraction (wt.%)

 Kitipornchai et al. 2016

present

Fig. 3 Vibration frequency validation of a GNP reinforced beam (L/

h = 20)

3142 Microsystem Technologies (2019) 25:3137–3150

123



Solving the above equation gives the amplitude-fre-

quency curves. To examine free vibrations of the

microbeam, it must be considered that F1 = 0. Then, the

nonlinear frequency can be found from Eq. (45) as:

xNL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KS

M
þ 8 ~W

3p
Q1

M
þ 3

4

G1

M
ð ~WÞ2

s
ð46Þ

In this research, results are presented according to the

following non-dimensional quantities:

KL ¼ kL
L4

Dx

;Kp ¼ kp
L2

Dxx

;KNL ¼ kNL
L4

Axx

~F ¼ f
L2

Axxh
; ~x ¼ xL2

ffiffiffiffiffiffiffiffiffiffiffi
qMA
EMh3

r ð47Þ

Fig. 4 Vibration frequency versus dimensionless amplitude for different graphene distribution and weight fractions (L/h = 20, Kw = 0, Kp= 0,

W* = 0.1 h, l/h = 0.2)
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4 Results and discussions

Amplitude-frequency curves derived in the previous sec-

tion are depicted and explained in a number of figures in

the present section. Amplitude-frequency curves are illus-

trated accounting for three cases of GNP distributions

which are uniform, linear and non-linear. Last two cases

(linear and non-linear) provide a continuous gradation of

material property over the thickness, hence, the problem of

discontinuity stresses at interfaces of a multi-layered GNP

reinforced composite has been resolved.

In Tables 1 and 2, the material characteristics of a GNP

reinforced microbeam have been presented. A trigono-

metric function is introduced to describe the geometric

imperfection similar to first mode of vibration. Vibration

frequency validation of a perfect GPN reinforced beam has

been presented in Fig. 3 with those of Kitipornchai et al.

Fig. 5 Nonlinear vibration frequency versus dimensionless amplitude for different graphene distribution and geometric imperfections (L/h = 20,

Kw = 0, Kp = 0, %W�
GPL = 1%, l/h = 0.2)
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(2016) and an excellent agreement can be seen between

two curves. New results obtained in the present research

are illustrated in Figs. 4, 5, 6, 7, 8 and 9, and suitable dis-

cussions are provided in the following paragraphs.

Influences of GNP weight fraction and GNP distribu-

tions on nonlinear vibrational frequencies of the geomet-

rically perfect/imperfect microbeam are examined in

Fig. 4. Based on this figure, the couple stress parameter is

set to l/h = 0.2 and imperfection amplitude is W* = 0.1 h.

The non-dimensional vibration amplitude changes from -

1 to ? 1. Increase of vibration amplitude is corresponding

to larger frequencies due to incorporation of nonlinear

hardening effects. It is clear that frequency curves for a

perfect microbeam are symmetric with respect to the

vibration amplitude. It means that the minimum frequency

(natural frequency) of perfect microbeams is obtained for

Fig. 6 Nonlinear vibration frequency versus dimensionless amplitude for foundation parameters (L/h = 20, l/h = 0.2, W* = 0.2 h, %W�
GPL =

1%)
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~W/h = 0. However, in the case of imperfect microbeams,

the frequency curves are un-symmetric with respect to

dimensionless amplitude. It means that the nonlinear fre-

quency may decrease with increase of dimensionless

amplitude in negative transverse motions.

Another observation from Fig. 4 is that the nonlinear

vibration frequency is significantly increased as the value

of GNP weight fraction becomes greater. This is due to the

reason that GNP nanofillers can elevate the stiffness of

microbeam leading to larger frequencies. Also, the mag-

nitude of frequency increment by increasing in GNP

weight fraction is dependent on the type of GNP distribu-

tion. The highest value of nonlinear vibrational frequency

is observed in the case of nonlinear GNP distribution.

However, the lowest frequency is observed in the case of

linear GNP dispersion in which the GNP weight fraction is

zero at lower surface of microbeam.

Fig. 7 Dimensionless amplitude frequency curves for various graphene distribution and weight fractions (L/h = 20, Kw = 0, Kp = 0, W*

= 0.01 h, l/h = 0.2, ~F = 0.01)
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In Fig. 5, the influence of geometrical imperfection

amplitude (W*) on the variation of nonlinear vibration

frequencies of the GNP reinforced microbeam versus

dimensionless amplitude of motion is studied when l/

h = 0.2. Different types of GNP distribution have been

considered in this example. One can see that in contrast to

the perfect microbeams, the nonlinear frequencies of the

counterpart with imperfection reduce by increasing in

vibration amplitude ~W/h in a given range of vibration

amplitude in ~W/h\ 0. Another conclusion from this fig-

ure is that as the magnitude of imperfection amplitude

becomes greater, the difference between nonlinear vibra-

tion frequencies of perfect and imperfect microscale beams

gets larger.

Figure 6 shows the dependency of nonlinear free

vibrational behavior of geometrically perfect/imperfect

Fig. 8 Dimensionless amplitude frequency curves for different force amplitudes and couple stress parameters (L/h = 20,W* = 0.01 h, %W�
GPL

= 1%)
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microbeams reinforced by uniform distribution of GNPs on

foundation parameters when %W�
GPL = 1% and

W* = 0.2 h. It is evident from this figure that the influence

of nonlinear elastic substrate parameter (KNL) on vibra-

tional frequency is ignorable near the zero vibration

amplitude. Thus, its effects becomes more prominent at

large negative/positive vibration amplitudes. However,

increasing in linear (KL) and shear (KP) foundation

parameters only increases the magnitude of nonlinear

frequency and their effect is not dependent on the vibration

amplitude.

To examine forced vibration behavior of GNP rein-

forced microbeams, Fig. 7 presents the amplitude-fre-

quency curves for different GNP distributions when the

force amplitude is ~F ¼ 0:01. At first, it should be pointed

out that due to the nonlinear hardening effects, the curves

are diverted to the right. However, at a specific frequency,

the amplitude of vibration becomes very large. This

Fig. 9 Dimensionless amplitude frequency curves for different foundation parameters (L/h = 20, l/h = 0.2, W* = 0.01 h, %W�
GPL = 1%)
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frequency is the resonance frequency of microbeam. This

figure shows that by increasing the amount of GNPs, the

resonance of microbeam can be postponed. In fact,

increasing the magnitude of GNP weight fraction can

increase the value of resonance frequency. Also, the

highest and lowest resonance frequencies are obtained

respectively in the case of nonlinear and linear GNP

dispersions.

The effects of couple stress parameter as well as force

magnitude on amplitude-frequency curves of a microbeam

with uniform GNP reinforcement are presented in Fig. 8.

This figure shows that increasing couple stress parameter

results in larger resonance frequencies. This is due to

stiffness hardening effects provided by particles micro-ro-

tations. Also, one can see that increasing force amplitude

only increases the value of maximum deflection (maximum

amplitude) while the resonance frequency remains

unchanged. This is because the resonance frequency

dependent only on linear stiffness and mass density of

microbeams. Therefore, by increasing the force magnitude,

the amplitude-frequency curves becomes wider.

Forced vibration characteristics of a GNP reinforced

microbeam are studied in Fig. 9 for different values of

foundation parameters. One can observe that increasing

nonlinear elastic foundation parameter leads to the devia-

tion of amplitude-frequency curves to the right due to the

enhancement of nonlinear hardening effects. Also, non-

linear foundation parameter cannot change the magnitude

of resonance frequency since the resonance frequency is

not dependent on nonlinear stiffness. It should be explained

that linear and shear foundation parameters do not con-

tribute to the nonlinear stiffness of microbeam. So,

increasing their value can only increase the resonance

frequency without any change in the deviation of curves.

5 Conclusions

This research dealt with nonlinear free/forced vibrations of

a functionally graded graphene nanoplatelet (GNP) rein-

forced microbeam with geometrical imperfection which is

rested on a nonlinear elastic foundation. Graphene Platelets

were uniformly and non-uniformly dispersed in the cross

section area of the microbeam. Small scale effects were

captured by means of modified couple stress theory. Har-

monic balance method was implemented to solve the

nonlinear governing equation of microbeam having quad-

ratic and cubic nonlinearities. It was observed that the

nonlinear vibration frequency increased as the value of

GNP weight fraction became greater. Also, the highest and

lowest vibration frequencies were obtained respectively in

the case of nonlinear and linear GNP dispersions. It the

case of forced vibration analysis, it was seen that nonlinear

foundation parameter as well force amplitude cannot

change the value of resonance frequency. Also, it was

reported that the nonlinear frequency of the microbeam

with geometric imperfection may reduce by increasing in

vibration amplitude within a certain range of vibration

amplitude.
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