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Abstract
In the present study, a size-dependent shell model is developed which can afford to describe the nonlinear torsional

buckling and postbuckling characteristics of cylindrical nanoshells in the presence of surface stress effects. To accomplish

this purpose, the Gurtin–Murdoch theory of elasticity together with the von Karman geometric nonlinearity is implemented

into the first-order shear deformation shell theory. A linear variation through the thickness is considered for the normal

stress component of the bulk to satisfy the balance conditions on the free surfaces of the nanoshell. By means of the virtual

work principle, the non-classical governing differential equations are constructed in which the transverse displacement and

Airy stress function are considered as independent variables. Thereafter, a boundary layer theory is employed including the

effect of surface stress in conjunction with the nonlinear prebuckling deformations and the large postbuckling deflections.

Subsequently, an efficient solution methodology based on an improved perturbation technique is put to use to obtain the

size-dependent critical torsional buckling loads and the associated postbuckling equilibrium paths. It is observed that the

torsional load exhibits a significant increase after reaching the minimum postbuckling load. Also, it is revealed that the

effect of surface stress becomes negligible at high values of the deflection.

1 Introduction

Due to the distinguished mechanical and physical proper-

ties of nano-structured elements, they have attracted

attention of scientific community and have considered

being excellent candidates in wide range of application.

Nanostructures produced by some molecular manipulations

are viewed as the substantial building blocks for various

nanosystems and nanodevices. In these applications, a

nanostructure may be subjected to various loading condi-

tions such as torsional load. As a consequence, an accurate

model to predict the nonlinear buckling and postbuckling

behavior of a nanoshell is necessary. Because the classical

continuum theory is a scale independent theory, some

modified continuum theories have been developed to

characterize the size effect observed in nanoscale

structures. Several investigations have been carried out in

which the proposed modified continuum theories have been

utilized as a bridge between the physics features at mac-

roscale and nanoscale. Strain gradient elasticity theory,

couple stress elasticity theory and nonlocal elasticity theory

are examples of these non-classical theories which have

been employed in several investigations.

For example, Shen and Zhang (2010) presented a size-

dependent investigation on the torsional buckling and

postbuckling of double-walled carbon nanotubes in thermal

environments based on the nonlocal elasticity theory.

Khademolhosseini et al. (2010) developed calibrated non-

local shell models via molecular dynamics simulations for

prediction of critical torsional buckling loads of single-

walled carbon nanotube. Shen and Zhang (2011) proposed

a nonlocal elastic beam model for nonlinear bending,

buckling and vibration behaviors of carbon nanotubes on

elastometric substrates. Ghavanloo and Fazelzadeh (2013)

constructed a nonlocal shell model for radial vibration

response of spherical nanoshells. Simsek (2014) used the

nonlocal elasticity theory within the framework of the

Euler–Bernoulli beam theory to analyze the nonlinear large

amplitude free vibrations of nanobeams. Zhang et al.

(2015) carried out a transient analysis of single-layered
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graphene sheets on the basis of the nonlocal theory of

elasticity and using kp-Ritz method. Dehrouyeh-Semnani

and Bahrami (2016) investigated the size-dependent

mechanical behavior of Timoshenko microbeams on the

basis of the modified couple stress beam element. Reddy

et al. (2016) reported a finite element analysis within the

framework of the modified couple stress theory for func-

tionally graded circular microplates. Sahmani and Aghdam

(2017a, b, c) employed the nonlocal elasticity theory for

size-dependent nonlinear stability analysis of hybrid func-

tionally graded nanoshells under different loading condi-

tions. Nguyen et al. (2017) proposed a new and efficient

isogeometric analysis including high-continuity elements

on the basis of the modified couple stress theory for non-

linear analysis of functionally graded microplates. Yang

et al. (2017) introduced a new size-dependent composite

laminated beam model based on a re-modified couple stress

theory and a refined zigzag theory. Sahmani and Aghdam

(2017d, e, f, g) used the nonlocal strain gradient elasticity

theory for size-dependent analysis of mechanical behaviors

of micro/nano-structures made of multilayer functionally

graded nanocomposites. Kim et al. (2018) studied the

bending, buckling and free vibration responses of func-

tionally graded porous microplates based on the modified

couple stress elasticity theory. Tan and Chen (2018)

investigated the size-dependent electro-thermo-mechanical

behavior of multilayer microactuators by Joule heating

based upon the modified couple stress elasticity theory.

Sahmani and Aghdam (2017h, i, 2018a, b) developed

nonlocal strain gradient continuum elastic models for

capturing size effects on the nonlinear mechanical char-

acteristics of lipid microtubules in a living cell. Wang and

Zheng (2018) proposed a nonlinear size-dependent plate

model based on the new modified couple stress theory for a

pure polarized PLZT microplates. Fang et al. (2018) con-

structed a three-dimensional modified couple stress beam

model to study the size-dependent free vibrations of

functionally graded microbeams. Sahmani and Fattahi

(2018) calibrated a nonlocal plate model via molecular

dynamics simulation for axial buckling behavior of single-

layered graphene sheets. Sahmani et al. (2018) presented

an analytical mathematical solution for nonlocal strain

gradient vibrations of postbuckled laminated functionally

graded micro/nano-beams. Salehipour and Shahsavar

(2018) reported the size-dependent frequency of function-

ally graded micro/nano-plates using a new plate model on

the basis of the modified strain gradient and three dimen-

sional elasticity theories. De Domenico and Askes (2018)

employed stress gradient, strain gradient and inertia gra-

dient beam models to simulate the flexural wave dispersion

occurring in carbon nanotubes. Sahmani and Aghdam

(2017j, 2018c) introduced a truncated cubic unit cell within

the framework of the nonlocal strain gradient elasticity

theory to analyze the nonlinear bending and primary res-

onance of porous micro/nano-beams. They also developed

size-dependent continuum models for smart piezoelectric

and piezomagnetic micro/nano-structures (Sahmani and

Fattahi 2017; Sahmani and Aghdam 2018d; Sahmani and

Khandan 2018).

Through decreasing the scale of a structure, the ratio of

surface area to volume increases. In this manner, the

material properties corresponding to boundary layers of the

elastic media turn to be different from those of the bulk.

This is attributed to this reason that the equilibrium

requirements for the atoms located at or near free surface

are different from those of the atoms in the bulk of struc-

ture. These extra properties known as surface free energies

cause to change the mechanical characteristics of nanos-

tructure which yields interesting behavior. Therefore,

Gurtin and Murdoch (1975, 1978) proposed a generic

theoretical framework based on the concepts of continuum

mechanics that accounts surface free energy. According to

this size-dependent elasticity theory, the surface layer of a

solid is assumed as a mathematical layer of zero thickness

having different material properties from the underlying

bulk which is perfectly attached to the membrane. In recent

years, much research has been performed in which Gurtin–

Murdoch elasticity theory has been used in connection with

the mechanical behavior of nanostructures.

Lim and He (2004) developed a size-dependent model to

analyze the geometrically nonlinear response of thin elastic

films with nanoscale thickness on the basis of continuum

approach using surface elasticity theory. Li et al. (2006)

studied the influence of surface free energy on the stress

concentration around a spherical cavity in a linearly iso-

tropic elastic medium based upon surface elasticity theory.

Wang and Feng (2007) extended the surface elastic model

to investigate the surface stress effects on contact problems

based on a closed-form solution. He and Lilley (2008)

reported the effects of surface stress on the static bending

and bending resonance of nanowires with various boundary

conditions. By using Gurtin–Murdoch elasticity theory,

Mogilevskaya et al. (2008) solved a two-dimensional

problem of multiple interacting circular nano-inhomo-

geneities and nano-pores. Zhao and Rajapakse (2009)

examined the plane and axisymmetric problems corre-

sponding to a surface-loaded elastic layer including effects

of surface free energy. Fu et al. (2010) investigated the

influences of surface free energy on the free vibration and

buckling behavior of nanobeams in the both linear and

nonlinear regimes using Galerkin’s technique. Through

incorporation Gurtin–Murdoch elasticity theory into the

different types of beam theory, Ansari and Sahmani (2011)

predicted the bending and buckling behavior of nanoscale

beams in the presence of surface stress effects. Also,

Ansari and Sahmani (2011) studied the free vibration

3534 Microsystem Technologies (2019) 25:3533–3546

123



response of rectangular nanoplates based on surface elas-

ticity theory and within the framework of different plate

theories. Wang (2012) investigated the postbuckling char-

acteristics of nanobeams containing internal flowing fluid

incorporating the effects of surface stress. Gao et al. (2014)

considered the surface stress effects in the analysis of

nanowire buckling on elastomeric substrate. Sahmani et al.

(2014, 2015) developed a non-classical beam model to

study the nonlinear forced vibrations and free vibrations of

postbuckled nanobeams on the basis of surface elasticity

theory. Zhang et al. (2015) implemented the high-order

surface stress model into the Bernoulli–Euler beam theory

to analyze the transverse vibration of an axially com-

pressed nanowire embedded in elastic medium. Liang et al.

(2015) proposed a theoretical model to study the effects of

surface stress on the postbuckling behavior of piezoelectric

nanowires. Sahmani et al. (2015b, c, d, 2016a, b, c, d;

Sahmani and Aghdam 2017k) explored the surface stress

effects on the nonlinear stability behavior of cylindrical

nanoshells subjected to various loading conditions. Sun

et al. (2018) predicted the surface stress effect on the

buckling characteristics of piezoelectric nanoshells under

electro-mechanical load. Kamali et al. (2018) introduced an

orthotropic elastic shell model for buckling analysis of

microtubules under axial compression based on the surface

elasticity theory. Dong et al. (2019) examined the buckling

behavior of metal nanowires encapsulating carbon nan-

otubes in the presence of surface effects. Sarafraz et al.

(2019) analyzed the nonlinear secondary resonance of sil-

icon nanobeams under subharmonic and superharmonic

external excitations including the effects of surface free

energy.

In the current investigation, for the first time, the surface

elasticity theory is incorporated within the framework of

the first-order shear deformation shell theory to analyze the

nonlinear torsional buckling and postbuckling of a nano-

shell. Also, the surface stress effects in conjunction with

the shear deformation in the large twist angle associated

with the torsional postbuckling behavior of a silicon

nanoshell is studied for the first time. To this end, the

Gurtin–Murdoch elasticity theory is employed to develop a

size-dependent shell model incorporating the effects of

surface stress. After that, a boundary layer theory is

employed including surface stress effects in conjunction

with nonlinear prebuckling deformation and the large

postbuckling deflections. Then by using an improved per-

turbation methodology, the size-dependent postbuckling

equilibrium paths of nanosized shells under torsion are

obtained corresponding to different values of the shell

thickness, surface elastic constants, and surface residual

stress.

2 Preliminaries

In Fig. 1, a cylindrical nanoshell with the length L, thick-

ness h, and mid-surface radius R is shown. The nanoshell

includes a bulk part and two additional thin surface layers

(inner and outer layers). For the bulk part, the material

properties are Young’s modulus E and Poisson’s ratio m.

The two surface layers are assumed to have surface elas-

ticity modulus of Es, Poisson’s ratio ms and the surface

residual tension ss. According to a curvilinear coordinate

system with its origin located on the middle surface of

nanoshell, coordinates of a typical point in the axial, cir-

cumferential and radial directions are denoted by x, y and z,

respectively. Now, in accordance with the classical shell

theory, the displacement field can be expressed as

ux x; y; zð Þ ¼ u x; yð Þ þ zwx x; yð Þ; ð1aÞ
uy x; y; zð Þ ¼ v x; yð Þ þ zwy x; yð Þ; ð1bÞ

uz x; y; zð Þ ¼ w x; yð Þ; ð1cÞ

in which u, v and w denote the middle surface displace-

ments along x; y and z axis, respectively.

Based on the von Karman kinematics of nonlinearity

within the framework of the first-order shear deformation

shell theory, the kinematical strain–displacement relation-

ships can be expressed as follow
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Fig. 1 Schematic view of a cylindrical nanoshell with surface layers
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where e0
xx; e

0
xx; c

0
xy stand for the strain components of the

middle surface, and jxx; jyy; jxy denote the curvature

components of nanoshell.

Then, the constitutive relations can be given as
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in which k ¼ Em= 1 � mð Þð1 þ 2mÞð Þ, l ¼ E= 2 1 þ mð Þð Þ are

Lame’s constants.

Gurtin–Murdoch elasticity theory facilitates considering

surface energy effects in the conventional continuum

approach. In relation with the atomic features of nanos-

tructures, there are always interactions between the elastic

surface and bulk material. As a result, nanostructures

mostly undergo in-plane loads in various directions. These

in-plane loads on the surfaces of the bulk of nanoshell leads

to surface stresses which can be obtained by using surface

constitutive equations of Gurtin–Murdoch elasticity theory

as follow (Gurtin and Murdoch 1975, 1978)

rsij ¼ ssdij þ ss þ ksð Þekkdij þ 2 ls � ssð Þeij þ ssu
s
i;j

rsiz ¼ ssu
s
z;i; i; j ¼ x; yð Þ;

ð4Þ

where ks andls represent the surface Lame’s constants and ss
is the surface residual stress under unstrained conditions. As

a result, the components of surface stress can be determined

with respect to the displacement components as below

rsxx ¼ ks þ 2lsð Þexx þ ss þ ksð Þeyy þ ss �
ss
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In the classical theories, as the stress component rzz is

small compared to the other normal stresses, so it is

assumed that rzz ¼ 0. Nevertheless, this assumption does

not satisfy the surface conditions related to the Gurtin–

Murdoch model. To tackle this problem, it is supposed that

the stress component rzz varies linearly through the

thickness and satisfies the balance conditions on the

surfaces of nanoshell. According to this assumption, rzz
can be obtained as

rzz ¼
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in which the superscripts Sþ and S� refer to the outer and

inner surfaces of nanoshell, respectively. Through inserting

Eq. (5) into Eq. (6), rzz can be achieved as follows

rzz ¼
2ssz
h

o2w

ox2
þ o2w

oy2

� �

: ð7Þ

Now, by substituting the rzz in the constitutive Eq. (3)

corresponding to the normal stresses rxx; ryy
� 	

for the bulk

of the nanoshell, one will have

rxx ¼ kþ 2lð Þexx þ keyy þ
mrzz

1 � mð Þ ; ð8aÞ

ryy ¼ kþ 2lð Þeyy þ kexx þ
mrzz

1 � mð Þ : ð8bÞ

Based on the continuum surface elasticity theory, the total

strain energy of a cylindrical nanoshell incorporating the

surface stress effects can be expressed as
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where S is the area occupied by the middle surface of the

nanoshell. In Eq. (9), the in-plane forces, bending moments

and shear forces are obtained as
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where ks denotes the shear correction factor, and
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and

A�
11 ¼ kþ 2lð Þhþ 2 ks þ 2lsð Þ; A�

12 ¼ khþ 2ss þ 2ks;

A55 ¼ lh; A�
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By using virtual work’s principle as below

d
Zt2

t1

Psdt ¼ 0; ð13Þ

and taking the variation of u, v; and w and integrating by

parts, the non-classical governing differential equations can

be derived as
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The Airy stress function f ðx; yÞ can be defined as
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As a result, the strain components can be expressed as

below
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Also, the geometrical compatibility equation for a perfect

cylindrical shell is written as
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From differential equations of (14c) and (18) and with the

aid of Eqs. (10) and (16a–16c), the nonlinear size-depen-

dent governing differential equations can be derived as
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� ksA55 wy þ

ow

oy

� �

þ u5

o2wx

oxoy

þ E�
11

o3w

ox2oy
þ o3w

oy3

� �

¼ 0;

ð19dÞ

where

u4 ¼ E�
11 � D�

11; u5 ¼ E�
11 � D�

12 � D�
55: ð20Þ

It is assumed that the end supports of nanoshell are

simply supported or clamped. Therefore, the boundary

conditions at x ¼ 0; L can be expressed as

For simply supported edge supports: w ¼ 0; Mxx ¼ 0.

For clamped edge supports: w ¼ 0; ow
ox

¼ 0.

Also, it is clear that

Z2pR

0

Nxydyþ 2pRhrxy ¼ 0: ð21Þ

Moreover, the closed condition (periodicity) can be

written as

Z2pR

0

ov

oy
dy ¼ 0; ð22aÞ

which yields

Z2pR

0

�u2

o2f

oy2
þ u1

o2f

ox2
� 2ssu1

w

R
� 2ss
A�

11 þ A�
12

�

þssu1

ow

oy

� �2

�ssu2

ow

ox

� �2

þw

R
� 1

2

ow

oy

� �2
!

dy ¼ 0:

ð22bÞ

In other hand, the twist angle of nanoshell can be

obtained as

H ¼ 1

2pRL

Z2pR

0

ZL

0

ou

oy
þ ov

ox

� �

dxdy

¼ 1

2pRL

Z2pR

0

ZL

0

�u3

o2F

oxoy
þ ssu3 � 1ð Þ ow

ox

ow

oy

� �

dxdy:

ð23Þ

3 Solution procedure

3.1 Boundary layer-type governing equations

In order to perform the solution methodology, the follow-

ing dimensionless parameters are defined

X ¼ px
L
; Y ¼ y

R
; b ¼ L

pR
; g ¼ L2

p2h2
; � ¼ p2Rh

L2

a�11; a
�
12; a

�
55; d

�
11; d

�
12; d

�
55; e

�
11


 �

¼ A�
11

A110

;
A�

12

A110

;
A�

55

A110

;
D�

11

A110h2
;

D�
12

A110h2
;

D�
55

A110h2
;

E�
11

A110h2

� �

W ¼ �w

h
; F ¼ �2f

A110h2
; Wx;Wy


 �
¼ �2L

ph
wx;wy


 �
;

s ¼ ss
A110

Mxx;Myy


 �
¼

�2L2 Mxx;Myy


 �

p2A110h3
; Ps ¼

rxy
ffiffiffi
L

p
R3=4

ffiffiffi
p

p
A110h5=4

;

/ ¼ H
ffiffiffi
L

p
R3=4

ffiffiffi
p

p
h5=4

;

ð24Þ

in which A110 ¼ kþ 2lð Þh.

Consequently, the dimensionless form of the governing

nonlinear differential equations based on the surface elas-

ticity theory can be presented as follows
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� d�11�
o3Wx

oX3
þ #4�b

2 o3Wx

oXoY2
� d�11�b

3 o
3Wy

oY3
þ #4�b

o3Wy

oX2oY

� 2sg�2 o2

oX2
� 2sg�2b2 o2

oY2

� e�11�
2 o

4W

oX4
� 2e�11�

2b2 o4W

oX2oY2
� e�11�

2b4 o
4W

oY4
� o2F

oX2

¼ b2 o
2F

oX2

o2W

oY2
� 2b2 o2F

oXoY

o2W

oXoY
þ b2 o

2F

oY2

o2W

oX2
;

ð25aÞ

#1

o4F

oX4
þ #3 � 2#2ð Þb2 o4F

oX2oY2
þ #1b

4 o
4F

oY4
� 2s#1

o2W

oX2

þ 2s#2b
2 o

2W

oY2
þ o2W

oX2
¼ �b2 o

2W

oX2

o2W

oY2

þ b2 o2W

oXoY

o2W

oXoY
� 2s#1b

2 o3W

oXoY2

oW

oX

� 4s#1b
2 o2W

oXoY

o2W

oXoY
� 2s#1b

2 oW

oY

o3W

oX2oY

þ 2s#2

o3W

oX3

oW

oX
þ 2s#2b

4 o
3W

oY3

oW

oY
þ 2s#2

o2W

oX2

o2W

oX2

þ 2s#2b
4 o

2W

oY2

o2W

oY2
þ s#3b

2 o
2W

oX2

o2W

oY2

þ s#3b
2 o2W

oXoY

o2W

oXoY
þ s#3b

2 o3W

oX2oY

oW

oY

þ s#3b
2 oW

oX

o3W

oXoY2
;

ð25bÞ

�ksa55�
oW

oX
þ e�11�

o3W

oX3
þ e�11�b

2 o3W

oXoY2
� ksa55Wx

þ d�11

o2Wx

oX2
þ d�55b

2 o
2Wx

oY2
þ #5b

o2Wy

oXoY
¼ 0; ð25cÞ

�ksa55�b
oW

oY
þ e�11�b

o3W

oX2oY
þ e�11�b

3 o
3W

oY3
� ksa55Wy

þ d�55

o2Wy

oX2
þ d�11b

2 o
2Wy

oY2
þ #5b

o2Wx

oXoY
¼ 0;

ð25dÞ

where

#1 ¼ a�11

a�11

� 	2� a�12

� 	2
; #2 ¼ a�12

a�11

� 	2� a�12

� 	2
; #3 ¼ 1

a�55

;

#4 ¼ e�11 � d�11; #5 ¼ e�11 � d�12 � d�55:

ð26Þ

Furthermore, the boundary conditions in dimensionless

form will be at X ¼ 0; p.

For simply supported edge supports: W ¼ 0;Mxx ¼ 0.

For clamped edge supports: W ¼ 0; oW
oX

¼ 0.

Additionally, one will have

1

2p

Z2p

0

b
o2F

oXoY
dY þ e5=4Ps ¼ 0; ð27Þ

and the closed condition becomes

Z2p

0

#1

o2F

oX2
� #2b

2 o
2F

oY2
þ 1 � 2s#1ð ÞW � 2s #1 � #2ð Þ

b2

�

�s#2

oW

oX

� �2

� b2

2
1 � 2s#1ð Þ oW

oY

� �2
!

dY ¼ 0:

ð28Þ

In addition, the dimensionless the twist angle of nano-

shell can be expressed as

/ ¼ 1

4p2�5=4

Z2p

0

Zp

0

�#3b
o2F

oXoY
þ s#3 � 1ð Þb oW

oX

oW

oY

� �

dXdY :

ð29Þ

3.2 Singular perturbation technique

The classical perturbation method has been used in a wide

range of application (Xu and Liu 2017; Henderson et al.

2018; Zhao et al. 2017; Scheidl and Mittibock 2018). In the

preceding subsection, the important parameter � was

introduced. It has been revealed that practically, for a shell-

type structure, one will always have � � 1. As a conse-

quence, Eqs. (25a–25d) represent the boundary layer type

equations which consider the both nonlinear prebuckling

deformations and large deflections in the postbuckling

domain in conjunction with the effect of surface stress.

Now, by assuming � as a small perturbation parameter, the

singular perturbation technique can be put to use which has

been successfully applied to the nonlinear analyses of

cylindrical shells at macroscale (Shen and Chen 1988;

Shen 2008, 2014; Sahmani and Fattahi 2018b; Sahmani

and Aghdam 2018e; Shen and Xiang 2018a, b; Sahmani

et al. 2018a, b; Shen et al. 2018; Sahmani et al. 2019). On

the basis of this technique, it is assumed that

W ¼ W X; Y; �ð Þ þ ~W X; Y; �; nð Þ þ Ŵ X; Y; �; 1ð Þ; ð30aÞ

F ¼ F X; Y ; �ð Þ þ ~F X; Y ; �; nð Þ þ F̂ X; Y; �; 1ð Þ; ð30bÞ

Wx ¼ Wx X; Y ; �ð Þ þ ~Wx X; Y ; �; nð Þ þ Ŵx X; Y ; �; 1ð Þ; ð30cÞ

Wy ¼ Wy X; Y ; �ð Þ þ ~Wy X; Y ; �; nð Þ þ Ŵy X; Y ; �; 1ð Þ; ð30dÞ

where W X; Y ; �ð Þ;F X; Y ; �ð Þ;Wx X; Y ; �ð Þ;Wy X;ð Y; �Þ
denote regular solutions of the nanoshell,

~W X; Y ; �; nð Þ; ~F X; Y; �; nð Þ; ~Wx X; Y;ð �; nÞ; ~Wy X; Y; �; nð Þ and

Ŵ X; Y ; �; 1ð Þ; F̂ X; Y; �; 1ð Þ; Ŵx X; Y; �; 1ð Þ, Ŵy X; Y ; �; 1ð Þ are

the boundary layer solutions corresponding to X ¼ 0 and
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X ¼ p, respectively. These solutions can be expressed in

the forms of perturbation expansions as below

W X; Y ;2ð Þ ¼
X

i¼1

2i=4þ1 Wi=4þ1ðX; YÞ;

F X; Y ;2ð Þ ¼
X

i¼0

2i=4 Fi=4 X; Yð Þ

Wx X; Y ;2ð Þ ¼
X

i¼1

2i=4 Wxi=4
X; Yð Þ;

Wy X; Y ;2ð Þ ¼
X

i¼1

2i=4 Wyi=4
X; Yð Þ

~W X; Y ;2; nð Þ ¼
X

i¼1

2i=4þ1 ~Wi=4þ1 X; Y ; nð Þ;

~F X; Y ;2; nð Þ ¼
X

i¼1

2i=4þ2 ~Fi=4þ2 X; Y; nð Þ

~Wx X; Y ;2; nð Þ ¼
X

i¼0

2i=4þ3=2 ~Wxi=4þ3=2
X; Y; nð Þ;

~Wy X; Y ;2; nð Þ ¼
X

i¼0

2i=4þ2 ~Wyi=4þ2
X; Y; nð Þ

Ŵ X; Y ;2; 1ð Þ ¼
X

i¼1

2i=4þ1 Ŵi=4þ1ðX; Y ; 1Þ;

F̂ X; Y ;2; 1ð Þ ¼
X

i¼1

2i=4þ2 F̂i=4þ2ðX; Y; 1Þ

Ŵx X; Y ;2; 1ð Þ ¼
X

i¼0

2i=4þ3=2 Ŵxi=4þ3=2
ðX; Y; 1Þ;

Ŵy X; Y ;2; 1ð Þ ¼
X

i¼0

2i=4þ2 Ŵyi=4þ2
ðX; Y; 1Þ;

ð31Þ

in which n and 1 stand for boundary layer variables which

are defined as

n ¼ X
ffiffi
�

p ; 1 ¼ p� X
ffiffi
�

p : ð32Þ

By inserting Eqs. (30a–30d) and (31) in the surface elastic

nonlinear governing differential Eqs. (25a–25d) and col-

lecting the expressions with the same order of �, the sets of

perturbation equations will be derived relevant to the both

regular and boundary layer solutions. A tolerance limit

\0:001 is taken into consideration to determine the max-

imum order of � associated with convergence of the solu-

tion methodology. Afterwards, it is assumed that

W0 X; Yð Þ ¼ Að0Þ
00 ;W1=4 X; Yð Þ ¼ W1=2 X;ð YÞ ¼ W3=4 X;ð

YÞ ¼ W1 X; Yð Þ ¼ 0 and W5=4 X; Yð Þ ¼ Að5=4Þ
00 in addition to

F0 X; Yð Þ ¼ �B 0ð Þ
00 XY ; F1=4 X; Yð Þ ¼ F1=2 X; Yð Þ ¼ F3=4

X; Yð Þ ¼ F5=4 X; Yð Þ ¼ 0 and F1ðX; YÞ ¼ �Bð1Þ
00 XY . More-

over, the initial buckling mode of the nanoshell is con-

sidered as follows

W2 X; Yð Þ ¼ A 2ð Þ
00 þA 2ð Þ

11 sin mX � nYð Þ sin nYð Þ
þ A 2ð Þ

02 cos 2nYð Þ: ð33Þ

Through substitution of Eq. (33) into the sets of per-

turbation equations, the coefficients of WiðX; YÞ, Fi X; Yð Þ,

Wxi=4
ðX; YÞ, Wyi=4

ðX; YÞ, can be extracted step by step, all of

which are in terms of A 2ð Þ
11 . The obtained asymptotic

solutions corresponding to clamped edge supports are

presented in ‘‘Appendix A’’.

Now, by using the given boundary, Eq. (27), closed

conditions (28) and based on the unit twist angle (29), the

postbuckling equilibrium paths can be derived as below

Ps ¼ P 0ð Þ
s þ P 2ð Þ

s A 2ð Þ
11 �

� �2

þP 4ð Þ
s A 2ð Þ

11 �
� �4

þ . . .; ð34Þ

and

/ ¼ /ð0Þ þ /ð2Þ A 2ð Þ
11 �

� �2

þ/ð4Þ A 2ð Þ
11 �

� �4

þ . . .; ð35Þ

where P 0ð Þ
s ;P 2ð Þ

s ;P 4ð Þ
s ;/ð0Þ;/ð2Þ;/ð4Þ are introduced in

‘‘Appendix B’’.

In accordance with the maximum dimensionless

deflection of the nanoshell, A 2ð Þ
11 � is considered as the

second perturbation parameter which in contrast to the first

small perturbation parameter �, it may be large. If it is

assumed that the maximum deflection occurs at the

dimensionless point of X; Yð Þ ¼ p=2m; p=2nð Þ, one will

have

Að2Þ
11 � ¼ Wm þ S1W2

m þ . . .; ð36Þ

in which Wm denotes the maximum dimensionless

deflection of the nanoshell as

Wm ¼ wm

h
þ S2; ð37Þ

where the symbols S1 and S2 are given in ‘‘Appendix B’’.

In order to determine the correct values of m and n

corresponding to the maximum deflection, the minimum

value of torsional buckling load obtained by Eq. (34)

should be calculated by taking W ¼ 0 (note that Wm 6¼ 0).

4 Numerical results and discussion

In this section, the postbuckling equilibrium paths of

cylindrical nanoshells subjected to torsion are presented

including surface stress effects. The material properties of

nanoshell made of Silicon are tabulated in Table 1. Also, in

all of the preceding numerical results, the values of length

and radius of nanoshells are selected as the ratios of

Table 1 Material properties of a

cylindrical nanoshell made of

Silicon (Miller and Shenoy

2000; Zhu et al. 2006)

E ðGPaÞ 210

m 0.24

ls ðN/m) - 2.774

ks ðN/mÞ - 4.488

ss ðN/mÞ 0.6048
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L2=Rh ¼ 200; R=h ¼ 50 are held constant, and it is

assumed that the edge supports of nanoshells are clamped.

At first, the validity of the present solving process is

checked. In accordance with the best authors’ knowledge,

there is no investigation in the open literature in which the

torsional buckling and postbuckling of a nanoshell is

studied based on the surface elasticity theory. Therefore, by

ignoring the surface elastic terms, the critical buckling

shear load of a cylindrical shell at usual scale is obtained

via the current solving process and compared with those

reported by Shaw and Simitses (1984) and Simitses (1968).

In Table 2, the critical buckling shear load corresponding

to each work is given. A very good agreement is found

which confirms the validity and accuracy of the current

study.

Depicted in Fig. 2 are the dimensionless postbuckling

load–deflection curves of Silicon nanoshells with various

thicknesses obtained by the classical and non-classical

shell models. It can be seen that the both classical and non-

classical paths are obviously nonlinear with a pattern as the

torsional load exhibits a significant increase after reaching

the minimum postbuckling load. It is indicated that for

cylindrical nanoshells made of Silicon, surface stress

effects cause to increase the critical buckling load. More-

over, it is found that through increase of shell thickness, the

surface stress effect diminishes and the non-classical

postbuckling curve tends to the classical one. Also, it is

observed that the effect of surface stress becomes negli-

gible at high values of deflection.

Figure 3 shows the classical and non-classical dimen-

sionless postbuckling load-rotation curves of cylindrical

nanoshells made of Silicon corresponding to different shell

thicknesses. It is revealed again that the surface stress

effects play more important role in the torsional buckling

and postbuckling behavior of nanoshells with lower value

of thickness. In addition, it is observed that by considering

the effects of surface stress, the slope of prebuckling part of

the load-rotation curve increases which means, it leads to

decrease the critical buckling rotation of nanoshell under

torsional load.

Figures 4 and 5 demonstrate, respectively, the influence

of surface elastic constants on the postbuckling load–de-

flection and load-rotation curves of cylindrical nanoshell. It

is observed that surface stress effect may cause to increase

or decrease the stiffness of nanoshell against torsional load

which depends on the sign of surface elastic constants.

Furthermore, it can be seen that a positive value of surface

elastic constants leads to increase the critical buckling load,

but it decreases the critical buckling rotation. This pattern

is reversed for a negative value of surface elastic constants.

However, for the both positive and negative values of

surface elastic constants, the effect of surface stress

becomes negligible at high values of deflection.

Illustrated in Figs. 6 and 7 are, respectively, the

dimensionless postbuckling load–deflection and load-rota-

tion curves of nanoshell under torsion corresponding to

Table 2 Comparison of the

critical buckling shear loads

Nxyðlbs/in) for an isotropic

cylindrical shell under torsion

LðinÞ R ðinÞ hðinÞ References Present work

4 4 0.004 5.88 (Shaw and Simitses 1984) 5.81

5.99 (Simitses 1968)

4 8 0.1886 30660 28966.7
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Fig. 2 Dimensionless postbuckling load–deflection curves of cylin-

drical nanoshells with different thicknesses
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Fig. 3 Dimensionless postbuckling load-rotation curves of cylindrical

nanoshells with different thicknesses
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various values of surface residual stress. It is shown that in

contrast to a negative value of residual surface stress, a

positive one causes to increase the critical buckling load,

but it decreases the critical buckling rotation. So, a positive

value of ss leads to decrease the slope of prebuckling part

of the load-rotation curve, but a negative one causes to

increase it.

5 Conclusion

In the present investigation, the nonlinear size-dependent

buckling and postbuckling behavior of cylindrical nano-

shells subjected to torsional load was studied incorporating

the effects of surface stress. To this end, Gurtin–Murdoch

elasticity theory was implemented into the classical shell

theory to develop non-classical shell model which takes the

effects of surface stress into account efficiently. After-

wards, a boundary layer theory was put to use including the

surface stress effects in conjunction with the nonlinear

prebuckling deformations and the large postbuckling

deflections. Finally, a two-stepped singular perturbation

technique was utilized to obtain the size-dependent post-

buckling equilibrium paths of nanoshells under torsion.

It was seen that the torsional load exhibits a consider-

able increase after reaching the minimum postbuckling

load. Additionally, it was found that through increase of

shell thickness, the surface stress effect diminishes and the

non-classical postbuckling curve tends to the classical one.

Also, it was observed that the effect of surface stress
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Fig. 4 Effect of surface elastic constants on the dimensionless

postbuckling load–deflection curves of cylindrical nanoshells
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becomes negligible at high values of deflection. Further-

more, it was revealed that a positive value of surface elastic

constants leads to increase the critical buckling load, but it

decreases the critical buckling rotation. For a negative

value of surface elastic constants, this pattern is reversed.

Moreover, it was indicated that, in contrast to a negative

value of residual surface stress, a positive one leads to

decrease the slope of prebuckling part of the load-rotation

curve.

Appendix A

The obtained asymptotic solutions are as below

W ¼ Að0Þ
00 þ �5=4 Að5=4Þ

00 �Að5=4Þ
00 sin

CX
ffiffi
�

p
� �

þ cos
CX
ffiffi
�

p
� �� �

e
�CXffi

�
p




�Að5=4Þ
00 sin

C p� Xð Þ
ffiffi
�

p
� �

þ cos
C p� Xð Þ

ffiffi
�

p
� �� �

e
�C p�Xð Þffi

�
p
�

þ �2 A 2ð Þ
00 þA 2ð Þ

11 sin mX � nYð Þ sin nYð Þ þ A 2ð Þ
02 cos 2nYð Þ

h

� Að2Þ
00 þA 2ð Þ

02 cos 2nYð Þ
� �

sin
CX
ffiffi
�

p
� �

þ cos
CX
ffiffi
�

p
� �� �

e
�CXffi

�
p

� Að2Þ
00 þA 2ð Þ

02 cos 2nYð Þ
� �

sin
C p� Xð Þ

ffiffi
�

p
� �

þ cos
C p� Xð Þ

ffiffi
�

p
� �� �
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Appendix B

The periodicity condition yields

Að0Þ
00 ¼ 2s #1 � #2ð Þ

b2 1 � 2s#1ð Þ
; ð42Þ

Að5=4Þ
00 ¼ 0; ð43Þ

Að2Þ
00 ¼ 0; ð44Þ

Að4Þ
00 ¼ s#2m
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4 1 � 2s#1ð Þ A 2ð Þ

11

� �2

þ2b2n2 1 � 2s#1ð Þ A 2ð Þ
02

� �2

:

ð45Þ

The parameters in Eqs. (34–37) are as follow

P 0ð Þ
s ¼ K0 þ �2K3b

� 	
��1; ð46Þ

Að4Þ
00 ¼ s#2m

2 þ b2n2 1 � 2s#1ð Þ
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� �2
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� �2

:

ð47Þ
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/ð0Þ ¼ Ps#3

2
; ð49Þ

/ð2Þ ¼ � s#3 � 1ð Þbmn
4


 �

�
3
4; ð50Þ

/ð4Þ ¼ s#3 � 1ð Þbmn
2

� �
K0K14 þ 4K5

4 K0 � K4ð Þ

� �2
 "

þ K13

K0K12 þ 4 K7 � K8ð Þ

� �2
!#

�11=4;

ð51Þ

where Kiði ¼ 0; . . .; 16Þ are the parameters in terms of

#1; #2; #3; #4; #5;m; n; b obtained via the sets of perturba-

tion equations.

S1 ¼ K0

K2

��1 � s#2m
2 þ b2n2 1 � 2s#1ð Þ
4 1 � 2s#1ð Þ

� �

�; ð52Þ

S2 ¼ � 2s #1 � #2ð Þ
b2 1 � 2s#1ð Þ

� �

��1: ð53Þ
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