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Abstract
The Micro-Electro-Mechanical System (MEMS) gyroscope is a well-known device, which has been widely used in

medicine due to its small size. In this study, a new adaptive fractional integral sliding mode controller is proposed for

control of a MEMS gyroscope. The goal is to achieve an appropriate control method that includes high tracking perfor-

mance and robustness against external disturbances. The fractional order integral sliding mode controller gains will be

updated by a new adaptive law. The effectiveness of the proposed controller is validated by simulation results. Results

show that the adaptive fractional integral sliding mode control controller successfully tracked the desired trajectory in

comparison with the fractional integral sliding mode control method. The Lyapunov theory is used in order to show that the

adaptive fractional integral sliding mode control is stable.

1 Introduction

Industry has been looking for a low-cost sensor for many

years. The high cost of inertial sensors has hampered their

use in medicine, robotics, and automotive applications.

Therefore, MEMS gyroscopes have been designed for use in

many different applications because of their small size and

low-cost. MEMS gyroscope usually use vibrating mechan-

ical element as a sensing element in order to detect the

angular velocity (Passaro et al. 2017). Control of a MEMS

gyroscope can be taken into consideration when applied in a

system. MEMS gyroscopes are constantly subjected to

external perturbations and quadrature errors, therefore, a

robust control method needs to be used in MEMS gyro-

scopes in order to suppress these external disturbances.

Many researchers have used the sliding mode controller in

MEMS gyroscope applications. Fei and Yuan (2013) con-

sidered dynamic sliding mode control for the state tracking of

MEMSgyroscopes. The novel switching function is proposed

via the method of differentiating the conventional sliding

mode surface. Batur et al. (2006) used sliding mode control to

ensure the stability of a MEMS gyroscope. The numerical

simulations demonstrated that the sliding mode controller

appropriately estimated the unknown angular velocity.

However, slidingmode control is not applicable in the control

of a MEMS gyroscope as it creates a chattering phenomenon,

as well as causing low tracking performance and accuracy. In

order to solve those problems, researchers have used different

techniques in addition to the sliding mode control.

An important tool to be taken into consideration for this

difficulty is theNeural network. Zhang et al. (2018) proposed

the sliding mode control with composite learning for MEMS

gyroscopes in order to improve the system tracking perfor-

mance, stability, and accuracy. Yang and Fei (2013), pro-

posed an adaptive sliding mode control using a radial basis

function (RBF) network in order to estimate the unknown

system dynamics forMEMSgyroscopes. Fei andChu (2016)

proposed a new global PID sliding mode controller for

MEMS gyroscopes. The main drawbacks of the PID sliding

mode controller is the creation of a chattering phenomenon.

Therefore, by using a RBF neural network, the chattering

phenomenon is eliminated. The neural network has some

disadvantages such as long training times, requiring a large

amount of training data, and the necessity of fine tuning the

network architectures to achieve the best performance. As a

result of these problems, scientists have been using another

tool for improving control of the MEMS gyroscope.

Fei and Xin (2015) proposed an adaptive fuzzy sliding

mode control scheme in order to deal with nonlinearity

terms, parameter uncertainties, and external perturbations

of MEMS gyroscopes. In order to estimate both the
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switching control term and the equivalent control term, the

adaptive fuzzy control is used. Fang et al. (2015) proposed

a Lyapunov based H-infinity control method in order to

eliminate the effect of different external disturbances. Fei

et al. (2013) proposed an adaptive fuzzy sliding mode

control law with bound approximation in order to control

the position of a MEMS gyroscope in the presence of

external perturbations and model uncertainties. Fuzzy

control has been widely used by scholars (Ren et al. 2016;

Fang et al. 2014; Fei and Xin 2012), but implementation of

such a controller is difficult and needs expert experience of

how to choose the fuzzy logic rules.

Additionally, other researchers have pursued the inclu-

sion of new control methods. A new robust compound

fractional order integral terminal sliding mode control and

proportional-derivative control is proposed for MEMS

gyroscopes. The proposed compound controller is free

from chattering and has high tracking performance (Rah-

mani 2018). Rahmani et al. (2018a) proposed a new PID

sliding mode control and super-twisting control based on

bat algorithm for control of a MEMS gyroscope. Fang et al.

(2018) proposed a new adaptive backstepping controller for

a MEMS gyroscope. The simulation results validated the

suggested control law by showing excellent tracking per-

formance and guaranteed asymptotic stability.

Based on the results of previous studies, a new control

method should be designed for control of MEMS gyro-

scopes. The proposed control method is new, and has not

yet been deployed in a MEMS gyroscope.

In particular, a new adaptive fractional sliding mode

control is proposed for control of MEMS gyroscopes. The

main contributions of the proposed control method, which

are novel in comparison to previous studies are:

1. MEMS gyroscope have continuously encountered

external perturbations and model uncertainties. A

novel fractional integral sliding mode control method

is designed to suppress external disturbances.

2. A new robust control method is proposed in order to

suppress these external disturbances, the main draw-

back of this proposed control method is that it is not

able track the desired trajectory suitably. Therefore, a

new adaptive law is applied to improve tracking

performance and accuracy.

3. The stability of the proposed control method is verified

via Lyapunov theory.

The rest of this paper is organized as follows. In Sect. 2,

the summary has described the dynamic equation of the

MEMS gyroscope. In Sect. 3, the new fractional integral

sliding mode control is included. In Sect. 4, new adaptive

fractional integral sliding mode control has been delin-

eated. Section 5: presents simulation results and provide

the conclusion and contributions of the work.

2 Dynamics of MEMS gyroscope

A MEMS z-axis MEMS gyroscope is illustrated in Fig. 1.

The dynamics of a MEMS gyroscope has been widely used

in different studies.

The main equation of the MEMS gyroscope dynamic

model can be denoted as follows (Rahmani 2018):

€q ¼ � Dþ 2Xð Þ _q� Kbqþ uþ E ð1Þ

The Eq. (1) parameters can be shown as below (Rah-

mani 2018):

q ¼
x

y

� �
; u ¼

ux

uy

� �
; X ¼

0 �Xz

Xz 0

� �

D ¼
dxx dxy

dxy dyy

� �
; Kb ¼

x2
x xxy

xxy x2
y

" #
;

ð2Þ

where E is external disturbance. From Eq. (1), the dynamic

equations for a MEMS gyroscope becomes (Rahmani

2018):

€q ¼ � Y _q� Pqþ uþ E; ð3Þ

where Y = (D ? 2X) and P = Kb. DY and DP determine

some uncertainties of the parameter variations. The Eq. (3)

can be denoted as Rahmani (2018):

€q ¼ �ðY þ DYÞ _q� ðPþ DPÞqþ uðtÞ þ E: ð4Þ

The uncertainties can be described in terms of l and u as

lower and upper uncertainty values as shown below:

DYl\ DYj j\DYu and DPl\ DPj j\DPu:

Fig. 1 Structure of a MEMS gyroscope (Rahmani 2018)
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3 New fractional integral sliding mode
control

Fractional calculus is a conventional method which can be

used in different structures (Rahmani et al. 2016a). It is an

imortant topic in control system engineering. Fractional

order operators can be applied to a sliding mode controller

as an effective method to improve its robustness and

tracking performance. In addition, choosing a fractional

sliding mode surface is the main part of fractional sliding

mode control process. If the fractional sliding mode surface

is selected appropriately, an excellent control surface can

be obtained. The new proposed fractional sliding mode

surface can be defined as:

sðtÞ ¼ _eðtÞ þ aDl�2ðeðtÞÞ

þ c
Z t

0

ðsignðeðsÞÞ þ signð _eðsÞÞÞds; ð5Þ

where a and c are positive constants. D = d/dt is fractional

order operator.

Where tracking error can be shown as:

eðtÞ ¼ qd � q; ð6Þ

where qd is desired tracking performance. The fractional

order operator type is Grunwald–Letnikov (Rahmani and

Ghanbari 2016). The reasons why that fractional sliding

mode surface is selected are below:

1. _eðtÞ improves tracking performance of the proposed

control method.

2. aDl�2ðeðtÞÞ improves the robustness of the fractional

sliding mode controller.

3. c
R t

0
ðsignðeðsÞÞ þ signð _eðsÞÞÞds improves the stability

of the proposed control method.

The control input can be defined as follows:

uðtÞ ¼ ueqðtÞ þ urðtÞ ð7Þ

where ueqðtÞ is the equivalent control and urðtÞ is the

reaching control law. In order to obtain the equivalent

control scheme, sðtÞ need to be equal to zero ( _sðtÞ ¼ 0) as

shown below:

_sðtÞ ¼ €eðtÞ þ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ
þ signð _eðtÞÞÞ: ð8Þ

Double derivation from Eq. (6) and substitution into

Eq. (8) generates:

_sðtÞ ¼ €qd � €qþ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ
þ signð _eðtÞÞÞ: ð9Þ

By forcing Eq. (9) to be zero, it can be illustrated as:

€qd � €qþ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞ
¼ 0:

ð10Þ

Substituting Eq. (3) into Eq. (10) generates:

€qd þ Y _qþ Pq� u� E þ ðl� 2ÞaDl�1ðeðtÞÞ
þ cðsignðeðtÞÞ þ signð _eðtÞÞÞ
¼ 0: ð11Þ

The equivalent control method can be shown as:

ueqðtÞ ¼ €qd þ Y _qþ Pq� E þ ðl� 2ÞaDl�1ðeðtÞÞ
þ cðsignðeðtÞÞ þ signð _eðtÞÞÞ: ð12Þ

The equivalent control law cannot solely be robust

against external perturbations and model uncertainties. In

order to solve this problem, a reaching control law can be

defined, which improves the robustness of the control

method. The reaching control law can be obtained through

Lyapunov theory as Rahmani et al. (2016b, 2018b), Rah-

mani and Ghanbari 2016):

LðtÞ ¼ 1

2
sTðtÞsðtÞ: ð13Þ

The condition for stability can be defined as:

_LðtÞ ¼ sTðtÞ _sðtÞ\0; sðtÞ 6¼ 0: ð14Þ

Substituting Eq. (9) in Eq. (14) produces:

_LðtÞ ¼ sTðtÞð€qd � €qþ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ
þ signð _eðtÞÞÞÞ:

ð15Þ

Substituting Eqs. (4) and (7) into Eq. (15) generates:

_LðtÞ ¼ sTðtÞð€qd þ ðY þ DYÞ _qþ ðPþ DPÞq� ueqðtÞ � urðtÞ
� E þ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞÞ:

ð16Þ

Substituting Eq. (12) into Eq. (16) produces:

_LðtÞ ¼ sTðtÞð€qd þ ðY þ DYÞ _qþ ðPþ DPÞq� €qd � Y _q� Pqþ E

� ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞ � urðtÞ
� E þ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞÞ:

ð17Þ

By simplifying Eq. (17), it can be shown as:

_LðtÞ ¼ sTðtÞðDY _qþ DPq� urðtÞÞ
� sTðtÞð DYj j _qj j þ DPj j qj j � urðtÞÞ:

ð18Þ

The reaching control law need to be chosen in order to

guarantee that Eq. (18) is less than zero as shown below:

urðtÞ ¼ DYuj j _qj j þ DPuj j qj j: ð19Þ

Substitution of Eq. (19) into Eq. (18) generates:
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_LðtÞ� sTðtÞðð DYj j � DYuj jÞ _qj j þ ð DPj j � DPuj jÞ qj jÞ: ð20Þ

The Eq. (20) shows that _LðtÞ� 0, which can be taken

into consideration when determining that the proposed

control method is stable. Therefore, the reaching control

law can be defined as follows:

urðtÞ ¼ KrsðtÞ; ð21Þ

where Kr is reaching control gain.

4 New adaptive fractional integral sliding
mode control

Adaptive fractional sliding mode control can improve

tracking performance and accuracy. The adaptive law

decreases the gain inside and increases the gain outside a

vicinity of the sliding surface (Liao et al. 2018). The new

adaptive control law can be defined as follows:

_a ¼ _c ¼ � kisignðsiÞ � kisi; i ¼ 1; 2; 3; 4; ð22Þ

where ki (i = 1, 2, ….,n) are positive adaptive law gains.

The new fractional integral sliding mode control block

diagram is shown in Fig. 2.

The Lyapunov theory for the proposed fractional inte-

gral sliding mode control can be defined as follows:

LðtÞ ¼ 1

2
sTðtÞsðtÞ þ 1

2ki
a2 þ 1

2ki
c2: ð23Þ

Derivation from Eq. (23) produces:

_LðtÞ ¼ sTðtÞ _sðtÞ þ 1

ki
a _aþ 1

ki
c _c: ð24Þ

Substituting Eqs. (4) and (7) into Eq. (24) generates:

_LðtÞ ¼ sTðtÞð€qd þ ðY þ DYÞ _qþ ðPþ DPÞq� ueqðtÞ � urðtÞ
� E þ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞÞ

þ 1

ki
a _aþ 1

ki
c _c:

ð25Þ

Substituting Eq. (12) into Eq. (25) produces:

_LðtÞ ¼ sTðtÞð€qd þ ðY þ DYÞ _qþ ðPþ DPÞq� €qd � Y _q� Pqþ E

� ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞ � urðtÞ
� E þ ðl� 2ÞaDl�1ðeðtÞÞ þ cðsignðeðtÞÞ þ signð _eðtÞÞÞÞ

þ 1

ki
a _aþ 1

ki
c _c:

ð26Þ

By simplifying Eq. (17), and substituting Eq. (22) into

Eq. (26), it can be shown as:

_LðtÞ ¼ sTðtÞðDY _qþ DPq� urðtÞÞ � aðsignðsiÞ þ siÞ
� cðsignðsiÞ þ siÞ

� sTðtÞð DYj j _qj j þ DPj j qj j � urðtÞÞ
� aj j signðsiÞ þ sij j � cj j signðsiÞ þ sij j:

ð27Þ

Substituting Eq. (19) into Eq. (27) generates:

_LðtÞ� sTðtÞðð DYj j � DYuj jÞ _qj j þ ð DPj j � DPuj jÞ qj jÞ
� aj j signðsiÞ þ sij j � cj j signðsiÞ þ sij j: ð28Þ

Fig. 2 Block diagram of the proposed fractional integral sliding mode control
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The Eq. (28) illustrates that _LðtÞ� 0, which can be taken

into consideration when evaluating if the proposed control

method is stable. As a result of this, the reaching control

law can be shown as follows:

urðtÞ ¼ KrsðtÞ; ð29Þ

where Kr is reaching control gain.

5 Simulation results

This research developed a new adaptive fractional integral

sliding mode control of MEMS gyroscope. The effective-

ness of the proposed control method is validated by

numerical simulation in MATLAB Software via ODE45

order.

The new fractional integral sliding mode control

parameters are chosen as l = 1.5, a = 0.75, c = 0.75, and

Kr = 7. The new adaptive fractional integral sliding mode

surface parameters are selected as

k1 = k2 = k3 = k4 = 0.75.

The desired motion trajectory is determined by qd1-
= sin(4.17t) and qd2 = 1.2sin(5.11t).The initial values of

the system are selected as q1ð0Þ ¼ 0:4; q2ð0Þ ¼
0:6; _q1ð0Þ ¼ 0 and _q2ð0Þ ¼ 0:

The parameters of the MEMS gyroscope are selected as

Rahmani (2018):

m ¼ 1:8� 10�7 kg kxy ¼ 12:779N/m

dxy ¼ 3:6� 10�7 Ns/m

kxx ¼ 63:955N/m dxx ¼ 1:8� 10�6 Ns/m

kyy95:92N/m dyy1:8� 10�6 Ns/m:
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Fig. 3 Position tracking of x-axis and y-axis under new fractional

integral sliding mode control (FOISMC) and new adaptive fractional

integral sliding mode control (AFOISMC)
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Fig. 4 Position tracking error of x-axis and y-axis under new

fractional integral sliding mode control (FOISMC) and new adaptive

fractional integral sliding mode control (AFOISMC)
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The conventional natural frequency of each axis of a

MEMS gyroscope is in the kHz range, so, x0 is chosen as

1 kHz. It is suitable to choose 1 lm as the reference length

q0 when the displacement rang of the MEMS gyroscope in

each axis is sub-micrometer level. The unknown angular

velocity is assumed Xz = 100 rad/s. Therefore, the non-

dimensional values of the MEMS gyroscope parameters are

chosen as Rahmani (2018):

x2
x ¼ 355:3; x2

y ¼ 532:9; xxy ¼ 70:99; dxx ¼ 0:01; dyy
¼ 0:01; dxy ¼ 0:002; Xz ¼ 0:1:

Figure 3 shows position tracking of the x-axis and

y-axis using the new fractional integral sliding mode con-

trol and adaptive fractional integral sliding mode control.

The proposed control method tracks the desired trajectory

suitably. It demonstrates that the tracking performance of

the new adaptive fractional integral sliding mode control is

better than in the fractional integral sliding mode control.

Figure 4 shows position tracking error of x-axis and y-axis

under the new fractional integral sliding mode control as

well as the new adaptive fractional integral sliding mode

control. The value of the position tracking error in the

x-axis under fractional integral sliding mode control is

0.033, which cannot track zero values during the 10 s

interval. In contrast, the value of position tracking error of

the x-axis under the new adaptive fractional integral sliding

mode control is equal to zero after 2 s. Therefore, it can be

inferred that by using this new adaptive law, the position

tracking error will converge to zero. Similarly, the value of

position tracking error of the y-axis under the new frac-

tional integral sliding mode control is equal to 0.047 during

the 10 s sample time, which shows position tracking error

cannot converge to zero in that period of time. However,

the value of position tracking error of the y-axis under the
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Fig. 5 Velocity of x-axis and y-axis under new fractional integral

sliding mode control (FOISMC) and new adaptive fractional integral

sliding mode control (AFOISMC)
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Fig. 6 Control input of x-axis and y-axis under new fractional

integral sliding mode control (FOISMC) and new adaptive fractional
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new adaptive fractional integral sliding mode control is

equal to zero after 1.7 s. Considering these results, the new

adaptive fractional integral sliding mode control has high

tracking performance and zero tracking error performance

in comparision to the new fractional integral sliding mode

control. Figure 5 shows the velocity in the x-axis and

y-axis under the new fractional integral sliding mode

control and the new adaptive fractional integral sliding

mode control. Figure 6 illustrates the control input of

x-axis and y-axis under the new fractional integral sliding

mode control and the new adaptive fractional integral

sliding mode control.

The robustness of the proposed control method is eval-

uated by applying a random noise function (d(t) = 0.5*

randn(1,1)). Figure 7 shows that the adaptive fractional

integral sliding mode control is robust against external

disturbances and is able to suppress the applied noise

effectively.

6 Conclusion

In this study, a new adaptive fractional integral sliding

mode control for MEMS gyroscopes was proposed. The

proposed control method is robust against external pertur-

bations and model uncertainties. The robustness of the new

fractional integral sliding mode control and new adaptive

fractional sliding mode control is validated by the appli-

cation of random noise. It shows that by using the adaptive

law, the control method proposed will suppress the external

disturbances more effectively in comparison with the new

fractional integral sliding mode control. Moreover, the

effectiveness of the proposed control method is considered

in terms of trajectory tracking and accuracy, where the

adaptive fractional integral sliding mode control had better

performance than the fractional integral sliding mode

control. Simulation results verified the effectiveness of the

proposed control law.
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