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Abstract
In this research, nonlinear dynamic behaviors of multiscale composites doubly curved shells have been investigated by

employing multiple scales Perturbation Method. Three-phase composites shells with polymer/Carbon nanotube/fiber (PCF)

according to Halpin–Tsai model have been assumed. The displacement- strain of nonlinear vibration of multiscale lam-

inated doubly curved shells via higher order shear deformation (HSDT) theory and using Green–Lagrange nonlinear shell

theory is obtained. The governing equations of composite doubly curved shell have been derived by implementing

Hamilton’s principle and shell considered to be simply supported. For investigating correctness and accuracy, this paper is

validated by other previous researches. Finally, bifurcation diagram, phase portraits and Poincare maps are investigated.

The results indicate different dimensionless force; curvature ratio and kind of distribution pattern have strong influence on

nonlinear vibration control of the composite multiscale doubly curved shell.

1 Introduction

The composite material individual including stiff rein-

forcement fibers and matrix employ in the aerospace and

other industries, are Carbone nanotube—reinforced, Gra-

phene platelet- reinforced (CNTF and GPLF respectively)

which are strong and stiff (for their density). A composite

material with most or all of the useful (stiffness, low

density, high strength and toughness) is achieved with few

or none of the especially weaknesses of the component

materials. In order to, multiscale models are used for

micromechanics and atomic simulations to investigate the

constitutive properties of diffrent functionalized nanotube

materials (Odegard et al. 2005; Gao and Li 2005). The

mechanical response in a single polymer-CNT using FE

analysis is investigated by Chen et al. (2003). The non-

linear statics and dynamics behavior of composite structure

investigated in significant previous research that are pre-

sented some of them.

The nonlinear vibration of composite shells in

hygrothermal environments is investigated by Naidu and

Sinha (2007). In frame work first-order shear deformation

theory and Green–Lagrange type nonlinear displacement

and strain have been obtained. The results analyzed by

finite element method. The effects of thin cylindrical shell

panel in hygrothermal environment and curvature radios

are investigated in this research. Large amplitude vibration

analysis of doubly curved composite spherical shell via

higher order shear deformation theory is presented by

Panda and Singh (2008). They studied different parameters

such as aspect ratio, hygrothermal loading, curvature ratio,

stacking sequences, boundary conditions and side to

thickness ratio. Yazdi (2013) presented the nonlinear

vibration behavior of doubly curved cross-ply shell. The

displacements-strains have been obtained via by Donnell’s

shell theory and von-Karman type nonlinearity and by

HPM method have been solved. Singh and Panda (2014)

investigated nonlinear vibration behavior of doubly curved

composite shell panel based on higher order shear defor-

mation theory. Finally, the influences of aspect ratio, cur-

vature ratio, stacking sequence have been studied.

Nonlinear vibration of cylindrical shell in frame work

higher order shear deformation theory are presented by

Amabili and Reddy (2010). They have been illustrated

nonlinear term are significant role to predict the nonlinear

response of composite shell. Alijani et al. (2011) studied

primary and subharmonic responses of FGM shallow shell

by multiple scales analytical method. Based on Donnell’s
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type nonlinear strain–displacement relationships have been

obtained. They found that two-to-one internal resonance

may be taken measure in doubly curved FGM shells by

kind of the volume fraction exponent. Continued from

previous work, large amplitude forced vibrations of rect-

angular plates Via higher order shear deformation theory

have been investigated by Alijani and Amabili (2013).

From the experimental and analytical method they are

presented that nonlinear frequency result in important

effect in nonlinear to linear response of plates. In order to,

fundamental frequency of functionally graded material

doubly curved shallow shell is studied by Chorfi and

Houmat (2010). Based on FEM method they established

their results. And they investigated the influence of thick-

ness ratio, volume fraction versus nonlinear to linear

vibration. The fundamental frequency of FGM doubly

curved shell embedded in elastic foundation is presented by

Shen et al. (2015). in frame work shear deformation theory

and von-Karman nonlinear strain–displacement have been

obtained. The inflence of volume fraction index, Pasternak

foundation, curveture ratio and other parameter have been

investigated. Singh and Panda (2015) presented large

amplitude of composite single and doubly curved shell via

the piezoelectric layer according to the higher-order shear

deformation theory and Green–Lagrange nonlinearity.

They studied different parameters such as aspect ratio,

curvature ratio, stacking sequences, boundary conditions,

side to thickness ratio and number of piezoelectric layers.

Heydari et al. (2015) researched the nonlinear bending of

functionally graded/CNT plates via first order shear

deformation plate theory subjected to uniform pressure and

embedded in elastomeric medium based on generalized

differential quadrature method. The nonlinear bending of

hybrid plates including CNTRC layers embedded in elastic

foundations where influence of matrix cracks by Fan and

Wang (2017). Shen et al. (2017) investigated the nonlinear

vibration of composites functionally graded-Graphene

reinforcement plates resting on elastic foundation in ther-

mal environments. According to the FSDT thermally

postbuckled plates is studied by Lee and Lee (1997). Wu

et al. (2017) studied the nonlinear dynamic instability

behavior of FG/polymer/GPL nanocomposite by using

Timoshenko Beam theory. The vibration behavior of

sandwich plates with composite face sheets was presented

by Shiau and Kuo (2006). Recently, based on the nonlocal

strain gradient theory Sahmani and Aghdam (2017)

investigated the buckling and postbuckling of multilayer

GPLRC nanoshell. Recently, large amplitude vibration of

graphene- reinforced composite cylindrical shell subjected

to thermal environment is investigated by Shen et al.

(2017). In frame work Reddy’s third order shear

deformation theory and von-Karman theory the linear and

nonlinear relationship equations of displacement- strain

have been obtained. The equations of motion are solved by

perturbation method. Two end conditions movable and

unmovable are assumed. They carried out the effect of

several parameters such as temperature rising, different

distribution pattern, end condition situation, stacking

sequence. Mahapatra et al. (2015) investigated based on

higher order shear deformation theory nonlinear vibration

behavior of composite single/doubly curved shell subjected

to hygrothermal environment. Influence of several param-

eters such as geometrical and material properties versus

nonlinear frequency under hygrothermal environment are

studied. The wave propagation behaviors of functionally

graded plate subjected to the thermal environments have

been investigated by Boukhari et al. (2016). Ahouel et al.

(2016) investigated by the bending, buckling and vibration

of functionally graded (FG) nanobeams in frame work

nonlocal differential theories. The free vibration behaviors

of functionally graded nano plates resting on elastic foun-

dation have been presented by Bounouara et al. (2016).

Large deflection of composite spherical shell subjected to

the hygrothermal environment has been investigated by

Mahapatra et al. (2016a, b). They studied different

parameters such ad aspect ratio, hygrothermal loading,

curvature ratio and side to thickness ratio. The vibration of

composite structure subjected to the hygrothermal envi-

ronment has been investigated by Mahapatra et al.

(2016a, b). They studied different parameters such ad

aspect ratio, hygrothermal loading, curvature ratio and side

to thickness ratio. In continues Mahapatra et al. (2016a, b)

analyzed deflection of composite cylindrical shell. This

structure has been considered by Green–Lagrange nonlin-

earity via higher order shear deformation theory. The

effects kind of parameters such as geometrical and material

properties versus nonlinear frequency under hygrothermal

environment is investigated. The nonlinear vibration of the

functionally graded sandwich structure reinforcement by

CNT subjected to the thermal environment based on

higher-order shear deformation theory and Green–La-

grange geometrical nonlinear strains is investigated by

Mehar et al. (2017a, b). Large amplitude of composite plate

under hygrothermal environment has been investigated by

Mahapatra et al. (2016a, b). They studied different

parameters such as aspect ratio, hygrothermal loading,

curvature ratio and side to thickness ratio. The bending and

free vibration behavior of isotropic functionally graded

sandwich composite plates according to the new hyperbolic

shear deformation theory has been studied Mahi and

Tounsi (2015). Bouafia et al. (2017) investigated bending

and free flexural vibration response of functionally graded
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nanobeams in frame works of nonlocal quasi-3D theory.

They presented several parameters such as the influence of

the nonlocal parameter, the beam aspect ratio and material

gradient index on the FG nanobeam. They discussed a lot

of parameters in detailed in their researches. The bending

and vibration behavior of functionally graded beams has

been presented by Bourada et al. (2015). They investigated

numerical results of their studied compared with other

theories to show the effect of the inclusion of transverse

normal strain on the deflections and stresses. Bousahla

et al. (2016) the buckling behavior of functionally graded

plates subjected to linear and non-linear temperature rises

via four-variable refined plate theory. They studied the

effects of influences kind of parameters such as ratio of

thermal expansion, aspect ratio, side-to-thickness ratio and

gradient index will be investigated on buckling response.

The free vibration analysis of functionally graded (FG)

plates by using a new simple higher-order shear deforma-

tion theory has been studied by Houari et al. (2016). They

discussed a lot of parameters in detailed in their researches.

The bending and dynamic response of functionally graded

plates by using new first-order shear deformation theory is

proposed by Bellifa et al. (2016). The hygro-thermo-me-

chanical bending behavior of functionally graded material

plate subjected to variable two-parameter elastic founda-

tions is presented by Beldjelili et al. (2016) by employing a

four-variable refined plate theory. They studied influence

of plate aspect ratio, power-law index, elastic foundation

parameters, temperature rise and side-to-thickness ratio on

the static behavior of FGM plates. Thermal stability of

functionally graded sandwich plates by employing simple

shear deformation theory has been studied by Bouderba

et al. (2016). Bellifa et al. (2017a, b) presented the buckling

behavior of functionally graded plates via a new dis-

placement field which includes undetermined integral

variables. El-Haina et al. (2017) studied thermal buckling

of thick functionally graded sandwich plates based on

stress function and sinusoidal shear deformation theory.

They presented the influence of functionally graded layers

thickness, power law index, loading type on the thermal

buckling of sandwich plate. The thermal buckling behavior

of functionally graded sandwich plates via higher shear

deformation theories has been presented by Menasria

(2017). According to the their researches the effects of

material index, thickness and aspect ratios, loading and

sandwich plate type on the critical buckling. The nonlinear

postbuckling response of nanobeams based on nonlocal

zeroth-order shear deformation has been investigated by

Bellifa (2017a, b). They discussed a lot of parameters in

detailed in their works. The free vibration characteristics of

functionally graded nanobeams resting on elastic founda-

tion subjected moisture and temperature on have been

studied by Mouffoki et al. (2017). They discussed influence

of power law index, hygro-thermal environments, nonlo-

cality and elastic foundation on the free vibration analyzed

of FG beams. The thermal buckling analysis of functionally

graded sandwich by using stress function and sinusoidal

shear deformation theory has been investigated by El-

Haina et al. (2017). They investigated the effect of loading

type, functionally graded layers thickness, power law index

on the thermal buckling behavior of thick functionally

graded sandwich. They studied influence of the porosity

volume fraction and volume fraction distributions on wave

propagation of functionally graded plate. Chikh et al.

(2017) thermal buckling analysis laminated composite

plates based on higher order shear deformation theory.

They discussed a lot of parameters in detailed in their

works. The buckling force behavior of FG nanoplates

resting on an elastic Kerr foundation and subjected to

hygrothermal environment is investigated by Shahsavari

et al. (2018). They presented effects on the buckling of FG

nanoplates of porosity amount, power-law index, geome-

try, moisture and elastic foundation. The wave propagation

in FGM plate has been investigated via four variable

refined plate theories and an efficient shear deformation

theory has been proposed by Fourn et al. (2018). The sta-

bility response of plate in frame work a novel nonlocal

refined theory for of orthotropic single-layer graphene

sheet has been proposed by Yazid et al. (2018). Their

research presented buckling response of embedded ortho-

tropic nanoplates such as graphene by using a new refined

plate theory and nonlocal theory. The dynamics analysis of

nanobeam with surface effects has been presented by

Youcef et al. (2018). Menasria et al. (2017) presented

thermal buckling response of functionally graded (FG)

sandwich plates via four variables of higher order shear

order theory. They discussed effects of material index,

aspect and thickness ratios, and loading type on the critical

buckling. The buckling behavior of single layer graphene

sheet by using novel shear deformation theory based on

nonlocal elasticity theory has been proposed by Mokhtar

et al. (2018). Karami et al. (2018a, b, c) investigated wave

dispersion in anisotropic doubly-curved nanoshells is pre-

sented. They demonstrated that the nonlocal-strain gradient

parameters, material properties and wave number effects

on wave frequencies and phase velocities. The thermal

buckling response of embedded FG nano plates via new

nonlocal trigonometric shear deformation theory has been

presented by Khetir et al. (2017). Besseghier et al. (2017)

proposed free vibration behavior of functionally graded

(FG) nanoplates resting on two-parameter elastic founda-

tion is investigated based on a novel nonlocal refined

trigonometric shear deformation theory. The mechanical

analysis of anisotropic nanoparticles based on three

dimensional elasticity theory in with nonlocal strain gra-

dient theory has been investigated by Karami et al.
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(2018a, b, c). Karami et al. (2018a, b, c) presented the

influence of triaxial magnetic field on the anisotropic

nanoplates. Furthermore they proposed the nonlocal strain

gradient elasticity theory and small scale effects. The wave

dispersion behavior of FG nanoplates by employing a size-

dependent quasi-3D model has been proposed by Karami

et al. (2018a, b, c). Bellifa et al. (2017a, b) studied buckling

response of functionally graded plates by using a new

displacement field which includes undetermined integral

variables. Belabed et al. (2018) presented vibration of

functionally graded sandwich plate with new 3 unknown

hyperbolic shear deformation theories. The thermal buck-

ling response of functionally graded sandwich plates with

various boundary conditions by using simple first-order

shear deformation theory has been investigated by Kaci

et al. (2018). Their numerical results prove that the present

simple first-order shear deformation theory can achieve the

same accuracy of the existing conventional first-order shear

deformation theory which has more number of unknowns.

Belabed et al. (2018) studied of sound transmission through

corrugated core FGM sandwich plates filled with porous

material via 3-unkonw hyperbolic shear deformation the-

ory. Based on their studied the influence of the temperature

and volume fraction distributions on wave propagation of

functionally graded. Thermoelasic deflections of composite

sandwich shell subjected to the thermo-mechanical loading

are investigated by Mehar et al. (2018a). They studied

different parameters such as flexural behavior and struc-

tural stiffness. The vibroacoustic behavior of laminated

composite curved panels subjected to hygrothermal envi-

ronment is studied in frame work a new higher-order finite-

boundary element model is investigated by Sharma et al.

(2018a, b). They studied different parameters such as

geometry, modular ratio, aspect ratio, hygrothermal load-

ing, curvature ratio and side to thickness ratio on the hygro-

thermos- acoustic responses. Furthermore, Sharma et al.

(2018a, b) investigated thermoacoustic responses of a new

higher-order coupled finite-boundary element scheme of

the composite panel. Influence of several parameters such

as geometrical and material properties versus acoustic

frequency are studied. The nonlinear deflection behavior

carbon nanotube-reinforced polymer composite based on a

novel higher order has been studied by Mehar et al.

(2018b). They investigated several parameters and dis-

cussed about these effects. Finally, it can be mentioned that

present article is presented the large amplitude dynamic

behavior of multiscale composite doubly curved shell. The

equations of motion are constructed in frame work HSDT

and Green–Lagrange type geometric nonlinearity. Based

on multiple scales Perturbation theory the equations of

motion are solved. Bifurcation diagram, phase portraits and

Poincare maps are investigated.

2 Theory and formulation multiscale
composite

Figure 1 illustrated multiscale composite doubly curved

shell with length of l, thickness of h and shell curvatures of

R1;R2. The shell is embedded in a distributed hygrother-

mal load, which is considered in the symmetry plane of the

shell cross section, i.e. in the x–y plane.

2.1 Multiscale model

The effective constituent of the PCF multiscale composite

can be presented via Halpin–Tsai model (Thostenson et al.

2002) and micromechanics approaches of scheme have

been expressed by Shen (2009).

The properties of the PCF shell are concentrated to be

orthotropic can be presented as (Shen 2009):

E11 ¼ VfE
F
11 þ Vmcn; ð1Þ

1

E22

¼ 1

EF
11

þ Vmcn

Emcn

� VfVmnc �
V2
f
Emcn

EF
22

þ V2
mcnEmcn

Emcn � 2VfVmcn

Vf E
F
22 þ VmcnEmcn

;

ð2Þ
1

G12

¼ Vf

GF
11

þ Vmcn

Gmcn

; ð3Þ

q ¼ Vfqf þ Vmcnqmcn; ð4Þ

#12 ¼ Vf vf þ Vmcnvmcn; ð5Þ

where EF
11;E

F
22 are the Young’s modulus of CNT, G12 shear

modulus and q is mass density, #12 Poisson’s ratio of

fibers, respectively, the corresponding properties of the

isotropic matrixes of CNT composite presented with

Emcn;Gmcn; qmcn and Vmcn and Volume fractions of the fiber

presented by Vf .

Via Halpin–Tsai model, composites tensile modulus has

been expressed (Kim et al. 2009):

Fig. 1 Geometry of doubly curved multiscale composite shell
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Emcn ¼
EM

8
5

1þ 2bddVcn

1� bddVcn

� �
þ 3

1þ 2 lcn
dcn

� �
bllVcn

1� bllVcn

0
@

1
A

2
4

3
5;
ð6Þ

bll ¼
Ecn
11

EM
� dccn

4tcn

� �
Ecn
11

EM
þ lcn

2hcn=gpl

� � ; ð7Þ

bdd ¼
Ecn
11

EM
� dcn

4hcn

� �
Ecn
11

EM
þ dcn

2hcn

� � ; ð8Þ

where Ecn
11; refers to the Young’s modulus, hcn; dcn;, lcn

presented thickness, outer diameter, length and Vcn are the

volumes fraction of Carbon Nanotubes, respectively, and

Vmcn and Emcn are the volumes fraction of the matrixes and

Young’s modulus, respectively.

For the different distribution multiscale composite shell,

the weight fraction of CNT changes layerwise in accor-

dance with the according distribution pattern such as U, X,

A and O are studied. CNT volume fraction of n-th layer

corresponding to each distribution pattern can be presented

as (Feng et al. 2017):

U : Vn
cn ¼ Vcn; ð9aÞ

X : Vn
cn ¼ 2Vcn

2n� nt � 1j j
nt

� �
; ð9bÞ

O : Vn
cn ¼ 2Vcn 1� 2n� nt � 1j j

nt

� �
; ð9cÞ

A : Vn
cn ¼ Vcn

2n� 1j j
nt

� �
; ð9dÞ

where the total number of layers can be expressed by nt and

the total volumes fraction of CNT can be presented by

(Rafiee et al. 2013):

Vcn ¼
wcn

wcn þ qcn
qm

� �
� qcn

qm

� �
wcn

; ð10Þ

where qcn=gpl are the mass densities of the CNT L and qm is

epoxy resin matrix, wcn are the mass fraction of the CNT,

respectively.

The mass densities of CNT can be presented as:

qmnc ¼ Vcnqcn þ vmqm; ð11Þ

Gmnc ¼
Emnc

2ð1þ vmcnÞ
; ð12Þ

Vmcn ¼ Vm; ð13Þ

where vm ; vmcn Poisson’s ratio of the matrix, CNT and a11
refer to the thermal expansion coefficients of longitudinal

and a22 presented in transverse directions (Shen 2009). So

af11 is the thermal expansion coefficient of longitudinal

fiber and a22 presented in transverse directions of the fiber.

amcn can be expressed as (Hu et al. 2013):

a11 ¼
VfE

f
11a

f
11 þ VmcnEmcnamcn

Vf E
f
11 þ VmcnEmcn

; ð14Þ

a22 ¼ 1þ Vf ÞVf a
f
22 þ ð1þ Vmnc

� �
Vmcnamcn � v12a11;

ð15Þ

amcn ¼
1

2

VcnEcnacn þ vmEmam
vcnEcn þ vmEm

� �� 	
1� vmcnð Þ þ ð1

þ vmÞamVm þ ð1þ vcnÞacnVcn;

ð16Þ

where amcn, bmcn; are the thermal expansion and moisture

coefficients of the epoxy resin CNT and GPL matrix and

acn are the thermal expansion coefficients of the CNT.

b11 ¼
VfE

f
11 þ VmcnEmcnbm

Vf E
f
11 þ VmcnEmcn

; ð17Þ

b22 ¼ 1þ Vmcnð ÞVmcnbm � v12b11: ð18Þ

2.2 Kinematic relations

In frame work, higher-order shear deformable theory, the

displacement fields at an arbitrary point in the composite

shell can be expressed as:

u ¼ u0 þ zux þ z2wx þ z3hx; ð19aÞ

v ¼ v0 þ zuy þ z2wy þ z3hy; ð19bÞ

w ¼ w0: ð19cÞ

In these equations, u0, v0, and w0 are the original dis-

placements of the shell in the x, y directions; the rotations

of transverse normal at the mid-plane in the x and y axes

represented by ux and uy.wx ;wy; hx and hxa re higher order

terms of Taylor series expansion defined at the mid-plane.

The vanishing of the shear strains at the top and the

bottom surfaces of the shell requires

cxzjZ�h=2 ¼ 0; cyzjZ�h=2 ¼ 0;

these equations give:

wx ¼ � 4

3h2
z3 ux þ

ow0

ox

� �
; wy ¼ � 4

3h2
z3 uy þ

ow0

oy

� �

hx ¼
wx

2R1

; hy ¼
wy

2R1

;

u ¼ u0 þ zux �
4

3h2
z3 ux þ

ow0

ox

� �
; ð20aÞ
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v ¼ v0 þ zuy �
4

3h2
z3 uy þ

ow0

oy

� �
; ð20bÞ

w ¼ w0; ð20cÞ

where the geometric imperfection w0 in the normal direc-

tion has been introduced. Equation (20) represent the

parabolic distribution of shear effects through the thickness

and satisfy the zero shear boundary condition at both the

top and bottom surfaces of the shell. This is the justification

for the use of a third-order shear deformation theory.

Green–Lagrange type geometric nonlinearity, the strain

components exx, eyy and cxy can be shown as:

exx
eyy
cxy
cyz
cxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

ou0

ox
þ w0

R1

ov0

oy
þ w0

R2

ou0

oy
þ ou0

ox

ou0

ox
þ ow0

ox
� u0

R1

� �

ov0

oy
þ ow0

oy
� v0

R2

� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

þ 1

2

ou0

ox
þ w0

R1

� �2

þ ov0

ox

� �2

þ ow0

ox
� u0

R1

� �2
" #

ou0

oy

� �2

þ ov0

oy
þ w0

R2

� �2

þ ow0

oy
� v0

R2

� �2
" #

2
ou0

ox
þ w0

R1

� �
ou0

oy
þ ov0

ox

ov0

oy
þ w0

R2

� �
þ ow0

ox
� u0

R1

� �
ow0

oy
� v0

R2

� �
 �

2
ou0

ox
þ w0

R1

� �
ou0

oz
þ ov0

ox

ov0

oz
þ ow0

ox
� u0

R1

� �
ow0

oz


 �

2
ou0

oy

ou0

oz
þ ov0

oy
þ w0

R2

� �
ov0

oz
þ ow0

oy
� v0

R2

� �
ow0

oz


 �

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

:

ð20aÞ

The constitutive relation of the composite doubly curved

shell can be expressed as:

rxx
ryy
syz
sxy
sxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

Qn
11

Qn
12

0

0

0

Qn
12

Qn
22

0

0

0

0

0

Qn
44

0

0

0

0

0

Qn
55

0

0

0

0

0

Qn
66

2
666664

3
777775

exx � a11 T zð Þ � T0ð Þ
eyy � a22 T zð Þ � T0ð Þ

cxz
cxy
cxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð21Þ

If the fiber angle with the geometric x axis is expressed

by h, the relation (31) can be transferred to the geometric

coordinates as:

rxx
ryy
syz
sxy
sxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

T

¼

�Qn
11

�Qn
12

0

0

0

�Qn
12

�Qn
22

0

0

0

0

0

�Qn
44

0

0

0

0

0

�Qn
55

0

0

0

0

0

�Qn
66

2
6666664

3
7777775
T

exx � a11 T zð Þ � T0ð Þ
eyy � a22 T zð Þ � T0ð Þ

cxz
cxy
cxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

T

:

ð22Þ

The reduce stiffness modulus of composite doubly

curved can be expressed by:

Q11 ¼
E11

1� m12m21
; Q12 ¼

m12E22

1� m12m21
;

Q22 ¼
E22

1� m12m21
; Q44 ¼ G23; Q55 ¼ G13;

Q66 ¼ G12:

ð23Þ

Transformed shell principal coordinates are in expressed

Appendix A.

Now via Hamilton’s principle can be written:

Z t

0

dðV þ U � TÞdt ¼ 0; ð24Þ

where, V is the work done by external energy, U is strain

energy, and T is kinetic energy.

The strain energy is expressed as:

U ¼ 1

2

XN
n¼1

Za

0

Zb

0

Zhn
hn�1

rxxexx þ ryyeyy þ syzcyz þ sxzcxz þ sxycxy
� �� 

� 1þ z

R1

� �
1þ z

R2

� �
dc1dc2dz:

ð25Þ

The first variation can be obtained as:

dU ¼
XN
n¼1

Za

0

Zb

0

Nxxde
0
xx þMxxdk

0
xx þ Pxxdk

2
xx

��

þNyyde
0
yy þMyydk

2
yy þ Pyydk

2
yy þ Nxyde

0
xy

þMxydk
2
xy þ Pxydk

2
xy þ Kyydc

0
yz þ Ryyk

1
yz

þKxxdc
0
xz þ Rxxk

1
xz

�

� 1þ z

R1

� �
1þ z

R2

� �
dc1dc2;

ð26Þ
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where, for convenience a shell by rectangular base in

dimension a and b in c1 and c2 directions, has been

considered.

q1, q2 are the Lame coefficients of the shell can be

expressed as q1 ¼ c1 1þ Z
R1

� �
; q2 ¼ c:2 1þ Z

R2

� �
.

R1 and R2 are the principal radii of curvature in q1 and

q1 directions, respectively

The Kinetic energy can be presented as:

T ¼ 1

2
qn
XN
n¼1

Za

0

Zb

0

Zhn
hn�1

ð _u20 þ _v20 þ _w2
0Þ

� 1þ z

R1

� �
1þ z

R2

� �
dc1dc2dz: ð27Þ

For simplified the kinetic energy relationship of com-

posite shell can be obtained:

T ¼ 1

2
qn
XN
n¼1

Za

0

Zb

0

_u20 þ _v20 þ _w2
0:

�

þh2
17

315
_u2
x þ _u2

y

� �
þ _ux _u0

41

120R1

þ 2

15R2

� �


þ _uy _v0
41

120R2

þ 2

15R1

� �
þ 1

4

_u20
R1

þ _v20
R2

� �
þ _w2

0

12R1R2

þ o _w0

q1oc1

o _w0

252q1oc1
þ _u0
120R1

� _u0
30R2

� 8
_ux

315

� �

þ o _w0

q2oc2

o _w0

252q2oc1
þ _v0
120R2

� _v0
30R1

� 8
_uy

315

� ���
dc1dc2:

ð28Þ

The first variation of work can be expressed in the fol-

lowing form:

dPw ¼
Z2p

0

ZL

0

qhyg þ q
� � ow0

ox

odw0

ox
� cd

ow0

ot


 �
dc1dc2;

ð29Þ

where qhyg; q expressed by:

q ¼ q0 � q1cosXt;

qhyg ¼ NTn þ NHn

NTn and NHn are applied forces due to variation of

temperature and moisture where are written as:

NTn ¼
Zhn

hn�1

�Q11a11 þ �Q12a12½ �ðT� T1Þdz; ð30Þ

NHn ¼
Zhn

hn�1

�Q11b11 þ �Q12b12½ �ðH � H1Þdz: ð31Þ

And T � T1,H � H1 are variation of temperature and

moisture, T can be defined by sinusoidal temperature fol-

lowing as:

T ¼ T1 þ DT 1� Cos
p
2

1

2
þ z

h

� �� �
: ð32Þ

By setting the coefficients of du, dv,dw, dux and duy to

zero and substituting Eqs. (25), (27), and (29) into Eq. (24)

may be stated as:

oNx

ox
þ oNxy

oy
¼ �I0

o2u0

ot2

� �
� �J1

o2ux

ot2

� �
þ s1�I3

o2

ot2
ow0

ox

� �
;

ð33aÞ

oNxy

ox
þ oNy

oy
¼ �I0

o2v0

ot2

� �
� �J1

o2uy

ot2

 !
þ s1�I3

o2

ot2
ow0

oy

� �
;

ð33bÞ

o �Kx

ox
þ o �Ky

oy
þ o

ox
Nx

ow0

ox
� u0

R1

� �
þ Nxy

ow0

oy
� v0

R2

� �
 �

þ o

oy
Nxy

ow0

ox
� u0

R1

� �
þ Ny

ow0

oy
� v0

R2

� �
 �

þ s1
o2Py

ox2
þ 2

o2Pxy

oxoy
þ o2Py

oy2

� �
� Nx

R1

� Ny

R2

þ qhyg

¼ I0
o2w0

ot2

� �
� s21I6

o2

ot2
o2w0

ox2
þ o2u0

oy2

� �

þ s1 I3
o2

ot2
ou0

ox

� �
þ I3

o2

ot2
ov0

oy

� �


þJ4
o2

ot2
oux

ox
þ
o2uy

oy

 !#
;

ð33cÞ

o �Mx

ox
þ o �Mxy

oy
� �Kx ¼ J1

o2u0

ot2

� �
þ k2

o2ux

ot2

� �

� s1J4
o2

ot2
ow0

ox

� �
; ð33dÞ

o �Mxy

ox
þ o �My

oy
� �Ky ¼ J1

o2v0

ot2

� �
þ k2

o2uy

ot2

 !

� s1J4
o2

ot2
ow0

oy

� �
; ð33eÞ

where:

�Mi ¼ Mi � s1Pi i ¼ 1; 2; 6ð Þ; s1 ¼
4

3h2
; s2 ¼ 3s1:

ð34aÞ
�Kj ¼ Kj � s2Rj ðj ¼ 1; 2Þ: ð34bÞ

Here, Nx; Ny; Nxy and Mx; My; Mxy expressed the total

in-plane forced and moment resultants and Px; Py; Pxy and
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Rx; Ry are the third order stresses resultants can be written

as:

Nx;Mx; Px ¼
Zh=2

�h=2

rxð1; z; z3Þdz; ð35aÞ

Ny;My; Py ¼
Zh=2

�h=2

ryð1; z; z3Þdz; ð35bÞ

Px;Rx ¼
Zh=2

�h=2

sxzð1; z; z3Þdz; ð35cÞ

Py;Ry ¼
Zh=2

�h=2

syzð1; z; z3Þdz: ð35dÞ

The mass inertias of composite shell can be express in

the following form:

Ii ¼
XN
n¼1

Znþ1

n

qnzidz; ði ¼ 0; . . .; 6Þ; ð36aÞ

Ji ¼ Ii � s1Iiþ2; i ¼ 1; 4ð Þ; ð36bÞ
�K2 ¼ I2 � 2s1I4 þ s21I6; ð36cÞ

�I0 ¼ I0 þ 2
s1

R1

I3 þ
s1

R1

� �2

I6; ð36dÞ

�J1 ¼ J1 þ
s1

R1

I4; ð36eÞ

�I3 ¼ I3 þ
s1

R1

I5: ð36fÞ

3 Solution procedure

The boundary conditions of the multiscale composite have

been considered simply-supported (S–S):

u0ðx; 0; tÞ ¼ u0ðx; b; tÞ ¼ 0; ð37aÞ
v0ðx; 0; tÞ ¼ v0ðx; b; tÞ ¼ 0; ð37bÞ
w0ðx; 0; tÞ ¼ w0ðx; b; tÞ ¼ 0; ð37cÞ
uxðx; 0; tÞ ¼ uxðx; b; tÞ ¼ 0; ð37dÞ
uyð0; y; tÞ ¼ uyða; y; tÞ ¼ 0; ð37eÞ

Zb

0

Nx x¼0;aj dy ¼
Zb

a

q0 � q1cosXt; ð37fÞ

Nyð0; y; tÞ ¼ Nyða; y; tÞ ¼ 0; ð37gÞ
�Mxðx; 0; tÞ ¼ �Mxðx; b; tÞ ¼ 0; ð37hÞ
�Myð0; y; tÞ ¼ �Myða; y; tÞ ¼ 0: ð37iÞ

Furthermore for obtain the boundary conditions, the

displacement of the composite shell are driven as:

u0 x; y; tð Þ ¼
X1
n¼1

X1
m¼1

UmnðtÞcos
npx
b

� �
sinðmyÞ; ð38aÞ

v0 x; y; tð Þ ¼
X1
n¼1

X1
m¼1

VmnðtÞcos
npx
b

� �
sinðmyÞ; ð38bÞ

w0 x; y; tð Þ ¼
X1
n¼1

X1
m¼1

WmnðtÞcos
npx
b

� �
sinðmyÞ; ð38cÞ

ux x; y; tð Þ ¼
X1
n¼1

X1
m¼1

uxmnðtÞ cos
npx
b

� �
sinðmyÞ; ð38dÞ

uy x; y; tð Þ ¼
X1
n¼1

X1
m¼1

uymnðtÞcos
npx
b

� �
sinðmyÞ; ð38eÞ

where Umn tð Þ;Vmn tð Þ;Wmn tð Þ;uxmn tð Þ and uymnðtÞ refer to
the unknown functions of the time; n and m are the number

mode of frequency in the x and y directions, respectively.

Here, npx
b
¼ l are assumed.

By substituting Eqs. (37a–37i) into Eqs. (33a–33e) and

driving the Navier procedure, the following expressions

can be expressed:

a11Umn tð Þ þ a12Vmn tð Þ þ a13Wmn tð Þ þ a14uxmn tð Þ
¼ M11

€Umn tð Þ þM13
€Wmn þM14 €uxmn tð Þ; ð39aÞ

a21Umn tð Þ þ a22Vmn tð Þ þ a23Wmn tð Þ þ a24uxmn tð Þ
þ a25uymnðtÞ
¼ M22

€VmnðtÞ þM23
€Wmn þM25 €uymn tð Þ; ð39bÞ

a31UmnðtÞ þ a32Vmn tð Þ þ a33Wmn tð Þ þ a34W
3
mn tð Þ

þ a35uxmn tð Þ þ a36uymn tð Þ
¼ M33

€Wmn þM34 €uxmn tð Þ þM35 €uymn tð Þ; ð39cÞ

a41Umn tð Þ þ a42Vmn tð Þ þ a43Wmn tð Þ þ a44uxmn tð Þ
þ a45uymnðtÞ
¼ M44 €uxmn tð Þ; ð39dÞ

a51Umn tð Þ þ a52Vmn tð Þ þ a53Wmn tð Þ þ a54uxmn tð Þ
þ a55uymnðtÞ
¼ M55 €uymn tð Þ; ð39eÞ

where the coefficients aij and Mij experssion stiffness

matrix and mass matrix of sandwich composite shell that

are defined in Appendix.

The nonlinear differential equation of nanocomposite

can be driven as:
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d2Wmn tð Þ
dt2

þ l _wþ P1Wmn tð Þ þ P2W
2
mn tð Þ þ P3W

3
mn tð Þ

¼ qcosXt;

ð40Þ

where:

P3 ¼ �M33 þM34 þM35

a34
: ð41Þ

And the linear frequency of the nanocomposite nano-

shell is expressed by:

xl ¼
ffiffiffiffiffi
p1

p ð42Þ

where initial conditions are illustrated by:

Wmn 0ð Þ ¼
�W

h
;
dWmn tð Þ

dt

����
t¼0

¼ 0; ð43Þ

primary resonance:

For primary resonance case, it is considered that the

frequency of excitation and linear frequency of the system

x0 are near together as X ¼ x0. So a detuning parameter r
is employing to illustrate the nearness X of to x0 as:

x2 ¼ Xþ er; ð44Þ

Table 1 The properties of multiscale composite shell (Shen et al. 2015; Sahmani and Aghdam 2017)

Carbon (fiber) Epoxy (matrix) Carbon nanotube Graphene platelet

E
f
11ðGPaÞ ¼ 233:05 vm ¼ 0:3 Ecn Gpað Þ ¼ 640ð1� 0:0005DTÞ Egpl Gpað Þ ¼ ð3:52� 0:0034TÞ

E
f
11ðGPaÞ ¼ 23:1 qm kgmð Þ ¼ 1200 dcn mð Þ ¼ 1:4� 10�9 dgpl mð Þ ¼ 14:76� 10�9

G
f
12ðGPaÞ ¼ 8:96 Em Gpað Þ ¼ ð3:51� 0:0034T þ 0:142HÞ tcn mð Þ ¼ 0:34� 10�9 tgpl mð Þ ¼ 14:77� 10�9

tf ¼ 0:6 am K�1ð Þ ¼ 45 1þ 0:001Tð Þ lcn mð Þ ¼ 25� 10�6 hgpl mð Þ ¼ 0:188� 10�9

qf kg
m3

� �
¼ 0:2 b ¼ 2:68� 10�3wt%�1 lcn mð Þ ¼ 0:25� 10�9 #12 ¼ 0:177

a11ðK�1Þ ¼ �0:54� 10�6 #12 ¼ 0:33 qgpl kg=m3ð Þ ¼ 4118

a22ðK�1Þ ¼ 10:8� 10�6 qcn kg=m3ð Þ ¼ 1350 a11 K�1ð Þ ¼ �0:9� 10�6

a11ðK�1Þ ¼ 4:5361� 10�6 a22 K�1ð Þ ¼ �0:95� 10�6

a22ðK�1Þ ¼ 4:6677� 10�6

Table 2 Comparison of dimensionless frequencies for 4-layer cylin-

drical shell (a/b = 1, R/a = 5)

A* a/h (Singh and Panda 2014) Present

0.2

10 1.1371 1.1376

50 1.0118 1.0124

100 1.0046 1.0053

0.4

10 1.4168 1.4199

50 1.0340 1.0370

100 1.0118 1.01201

0.8

10 1.8669 1.9342

50 1.1058 1.1162

100 1.0342 1.0409

Table 3 Comparison of

dimensionless frequencies for

laminated cylindrical shell [a/

h = 100 (m, n = 1, 2)]

Vgpl Distribution pattern Dimensionless frequency (xl)

Ansari and Torabi (2016) Shen et al. (2017) Present

0.12

U 3.3656 3.3704 3.3689

A 3.2019 3.1568 3.2011

X 3.5674 3.6150 3.5779

0.17

U 4.2870 4.2866 4.2867

A 4.1155 4.0412 4.1079

X 4.5410 4.6106 4.5401
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where r are the detuning parameters.

The uniformly approximate solutions of (50) are

obtained as:

w ¼ w0 T0; T1; T2; . . .ð Þ þ ew1 T0;T1; T2; . . .ð Þ
þ e2w2 T0; T1; T2; . . .ð Þ; ð45Þ

where T0 = t and T1 = .et
The terms of T0 and T1 are expressed as:

F tð Þ ¼ e�qcosðx0T0 þ rT1Þ; ð46Þ

the derivatives to yield:

d

dt
¼ D0 þ eD1; ð47Þ

d

dt
¼ D2

0 þ 2eD0D1 þ e2ðD2
1 þ 2D0D1Þ: ð48Þ

Substituting (43), (44) and (45) into (40) and putting the

coefficients of to zero yield the following differential

equations:

e0 : D2
0w0 þ X2w0 ¼ 0; ð49Þ

e1 : D2
0w1 þ X2w1

¼ �2D0D1w0 � lD0w0 � P3w
3
0 � kcosðx0T0 þ rT1Þ:

ð50Þ

With this approach it generates to be simply to write the

solution of Eq. (55) as:

w0 T0; T1; T2; . . .ð Þ ¼ exp iT0ð Þ þ �A exp �iT0ð Þ; ð51Þ

where A is an unknown complex function and A is the

complex conjugate of A. A governing equation are defined

by requiring w1 to be periodic in T0 and extracting secular

Fig. 2 Numerical integration

phase plots for different

excitation force a �q ¼ 5; b
�q ¼ 10, c �q ¼ 15. d �q ¼ 20 of

doubly curved shell with
a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:3,

h = 2 mm, H = 1 and (m, n = 1,

1)
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terms that are coefficients of e�ix0T0 the finding equation

will be determined as:

2ix0ðA0 þ lAÞ þ 3P3A
2 �A� 1

2
k exp �irT1ð Þ ¼ 0: ð52Þ

Assumed A be in polar form:

A ¼ 1

2
a exp icð Þ; ð53Þ

where a and c are real parameters. Separating this terms

parts of the derived equation, it cause

a
0 ¼ �laþ 1

2

�q

x0

sin rT1 � cð Þ; ð54Þ

ac
0 ¼ 3

8

P3

x0

a3 � 1

2

�q

x0

cos rT1 � cð Þ; ð55Þ

where:

h ¼ rT1 � c ð56Þ

and substituting Eqs. (59, 60) in Eq. (61) yield:

a
0 ¼ �laþ 1

2

�q

x0

sin h; ð57Þ

ac
0 ¼ 3

8

P3

x0

a3 � 1

2

�q

x0

cos h: ð58Þ

Singular point of this system at a
0 ¼ 0 and h

0 ¼ 0

illustrates the steady-state motion of the system. So, in

steady-state condition can be expressed as:

a ¼ �laþ 1

2

�q

x0

sin h; ð59Þ

ra� 3

8

P3

x0

a3 ¼ � 1

2

�q

x0

cos h: ð60Þ

The fixed points of Eq. (57, 58) correspond to solutions

with constant amplitude and phase. These solutions satisfy

la ¼ 1

2

�q

x0

sin h; ð61Þ

r� 3

8

P3

x0

a2 ¼ � 1

2

�q

x0

cos h: ð62Þ

The equation of frequency response presented by:

Fig. 3 Numerical integration

Poincare sections for different

excitation force a �q ¼ 5; b
�q ¼ 10, c �q ¼ 15. d �q ¼ 20 of

doubly curved shell with
a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:3,

h = 2 mm, H = 1 and (m, n = 1,

1)
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r� 3

8

P3

x0

a2
� �2

þl2
" #

a2 ¼ �q2

4x2
0

: ð63Þ

Substituting Eq. (66) into Eqs. (59–60) and substituting

that result into Eqs. (61–61), can be obtained as:

w ¼ a cosðx0tþ ert� hÞ þ OðeÞ: ð64Þ

With this, the amplitude response (magnification factor)

can be obtained as:

M ¼ a

�qj j ¼
1

2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� 3

8
P3

x0
a2Þ2 þ l2

q : ð65Þ

Similar to the case of the linear oscillator, the maximum

value of the magnification factor can be found from

dM

dX
¼ 0;

d2M

d2X
: ð66Þ

Equation (65) with respect to X yields:

1

32
a 3P3a

2 � 8X� 8
� �

3P3

da

dX
� 4

� �
þ ðl2

þ X� 1� 3P3a
2Þ2

� � da

dX
¼ 0; ð67Þ

which can be solved for da
dX as:

da

dX
¼ 8a 3P3a

2 � 8X� 8ð Þ
27P2

3a
4 � 96 X� 1ð ÞP3a2 þ 64ðl2 þ X� 1Þ2

� � :
ð68Þ

Fig. 4 Numerical integration phase plots for different distributions pattern a X; b U, c A, d O of doubly curved shell with
a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:3; �q ¼ 10, h = 2 mm, H = 1 and (m, n = 1, 1)
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This derivative vanishes (and so does dM
dX) when:

3P3a
2 � 8X� 8

� �
¼ 0 ) ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðX� 1Þ

3P3

s
: ð69Þ

To find the values of the critical points X1 and X2, these

points correspond to vertical tangencies of the response

curve; that is, where dX
dM

¼ 0:

27P2
3a

4 � 96 X� 1ð ÞP3a
2 þ 64ðl2 þ X� 1Þ2

� �
: ð70Þ

This condition can be found by equating the denomi-

nator of Eq. (70) to zero, which translates to This condition

can be found by equating the whose roots provide:

X1;2 ¼
1

8
ð8þ 6P3a

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9P2

3a
4 � 64l2

q
; ð71Þ

a�
ffiffiffiffiffiffiffiffi
8l
3P3

r
: ð72Þ

The condition for the existence of real solutions is:

4 Results and discussion

Numerical results of the nonlinear vibration of doubly

curved shell are presented in this section. The properties of

multiscale composite shell are established in in Table 1,

further more weassumed Elliptic paraboloid shell

(R1 6¼ R2Þ. Carbon nanotube with effective thickness

tcnt= 0.0348 nm are selected as reinforcements and G13-

= G23 = 0.5G12 considered. The validity of thepresent

study is proved by the means of comparing the dimen-

sionless frequencies of this modelby several previous

researches. The correctness of the nonlinear to linear fre-

quency of the doublycurved shell composite based on first

shear deformable theory compared with Singh and Panda

(2014) is presented in Table 2. As well as, it is brightly that

the results of this comparison are similar. The geometric

and material properties E1

E2
¼ 40; G12 ¼ G12 ¼ G13 ¼

0:6E2; G23 ¼ 0:5E2; t12 ¼ t13 ¼ t23 ¼ 0:25 are consid-

ered for compare results with Singh and Panda (2014).

Table 3 illustrated the dimensionless frequency �x ¼

Fig. 5 Numerical integration Poincare sections for different distributions pattern a X; b U, c A, d O of doubly curved shell with
a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:3; �q ¼ 10, h = 2 mm, H = 1 and (m, n = 1, 1)
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x R2

h

ffiffiffiffi
q0
E

q
for U, A, X, O distribution pattern with R1 ¼ R2

(cylindrical shell) and R
h
¼ 10; h ¼ 5 nm @ T ¼ 300K are

assumed via first order shear deformation theory and ver-

ified by Ansari and Torabi (2016) and Shen (2017) results.

The dimensionless parameters are adopted as:

�u0 ¼ p
u0

a
; �v0 ¼ p

v0

b
; �w0 ¼

w0

R
; �ux ¼ ux;

�uy ¼ uy; �y ¼ p
y

b
; �x ¼ p

x

a
; �z ¼ z

h
;

�R1 ¼
R1

R
; �R2 ¼

R2

R
; X ¼ xl

R2

h

ffiffiffiffiffi
q0
E

r
; �q ¼ ðRhÞ7=2

Eh7
q:

ð73Þ

Numerical integration phase plots of doubly curved shell

with different excitation force with U distribution pattern
a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:3, h = 2 mm, T = 300, H = 1

and (m, n = 1, 1) on the (X, _XÞ plane are presented in

Fig. 2. Stacking sequence is considered cross ply [0=90]S.

The systems have been shown regular chaotic motion or

quasi-periodic motion. To reveal the dynamic behaviors for

a given magnitude of different excitation force such as A,

B, C and D which dimensionless force in theses Figs have

been assumed 5, 10, 15, 20. It can be found Fig. A has two

fixed points in the phase space, according to the periodic

motion of the doubly curved shell. By increasing dimen-

sionless force to 10, fixed points number has been taken

Fig. 6 Numerical integration phase plots for different temperature and moisture rise of doubly curved shell with T ¼ 300; T = 400, T = 500 and

T = 600 a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:25; �F ¼ 10, h = 2 mm and (m, n = 1, 1)
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leapt, but Fig. 2c has four fixed point in phase portrait and

Fig. 2d similar to b mode have lots of fixed points.

Figure 3 Investigated numerical integration Poincare

sections for different excitation force (A) �q ¼ 5;(B)

�q ¼ 10, (C) �q ¼ 15. (D) �q ¼ 20Þ of doubly curved shell

with U distribution pattern, a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:3,

h = 2 mm, H = 1 and (m, n = 1, 1) on the (X, _XÞ plane.

Also, stacking sequence is assumed cross ply [0=90]S. It is

known that the Poincare sections reveal the similar evo-

lution of the dynamic analysis. It is significant express that

the chaos retains until the other bifurcation yield to its

invisibility.

Numerical integration phase plots and Poincare sections

of doubly curved shell with a
R1

¼ 0:1; b
R2

¼
0:05; cd ¼ 0:3; �q ¼ 10, h = 2 mm, T = 300, H = 1 and

the cross ply [0=90]S composite shell mode is considered

(m, n = 1, 1) are investigated in Figs. 4 and 5. Different

distribution pattern such as X, A, U, O are considered.

Unlike linear frequency, it is observed that frequency of the

O distribution is highest and X is the lowest value. Via the

chaotic motion of the system, Fig. 4. presented different

Fig. 7 Numerical integration Poincare sections for temperature and moisture rise of doubly curved shell with T ¼ 300; T = 400, T = 500 and

T = 600 a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:25; �F ¼ 10, h = 2 mm and (m, n = 1, 1)

Fig. 8 Bifurcation diagrams of doubly curved shell with
a
R1

¼ 0:1; b
R2

¼ 0:05; cd ¼ 0:25, h = 2 mm, H = 1 and (m, n = 1, 1)

for uniform distribution
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distribution pattern to describe the nonlinear frequency of

the system. It can be shown that the Poincare sections in

Fig. 5. reveal the similar evolution of the dynamic analysis.

It is clear that increasing the value xnl makes the chaotic

motion region are increased. It is because the stiffness of

the dynamic system decreases.

Figures 6, 7. Investigated numerical integration phase

plane and Poincare map under influence of hygrothermal

environment with U distribution pattern,
a
R1

¼ 0:1; b
R2

¼ 0:05, h = 2 mm, a
h
¼ 10; a

b
¼ 1, DH = 1,

T = 300 and (m, n = 1, 1) is shown in Stacking sequence is

considered cross ply [0PCF=90SMA]S. It is brightly shown

that the nonlinear frequency parameters increase by tem-

perature and moisture rising. Based on the results of this

numerical research, it is found that the rise of temperature

and moisture coefficient could adjust the nonlinear vibra-

tion responses of the composite doubly curved shell. By

increasing magnitude of rise temperature and moisture

volume fraction inherent frequency of the system changes

and dynamic behavior of chaotic motion is different in

various modes of rise temperature and moisture. By the

numerical results it is found that the Poincare sections

reveal the similar evolution of the dynamic analysis and the

chaos retains until the other bifurcation yield to its

invisibility.

Figure 8 investigated bifurcation diagram of doubly

curved shell with a
R1

¼ 0:1; b
R2

¼ 0:05, h = 2 mm and (m,

n = 1, 1),cd ¼ 0:25 Vs ¼ 5% and the cross ply

[0PCF=90SMA]S composite shell mode is considered (m,

n = 1, 1). This diagram was constructed by splicing toge-

ther intersections on the Poincare section corresponding to

a chaotic motion with increasing values of �q in the range

[0.5–1.1].

5 Conclusion

In this research, nonlinear dynamics of smart multiscale

composite doubly curved shell via Halpin–Tsai model is

studied. The nonlinear model is obtained by Green–

Lagrange-type geometric nonlinearity in frame work

higher order shear deformation theory. Via Hamilton’s

principle the governing equation are derived and solved

numerically by using the multiple scales Perturbation

method. For investigated the accuracy and correctness of

present work, the numerical results has been verified by

important pervious researches. Base on numerical study

can be expressed significant resales as:

• The highest value of the nonlinear frequency for O

distribution pattern and the lowest value for the X

distribution pattern of nanoshell.

• The nonlinear frequency of composite doubly curved

shell increases with decrease of decrease by increasing

curvature ratio.

• By increasing rise of temperature and moisture rise

nonlinear frequency increase.

• Increasing the value xnl yields the chaotic motion

region are increased.

• The Poincare sections reveal the similar evolution of

the dynamic analysis.

Appendix

Transformed shell principle coordinate can be expressed

by:

�Qn
11 ¼ Qn

11cos
4hþ 2 Qn

12 þ 2Qn
66

� �
sin2hcos2hþ Qn

22sin
4h

�Qn
12 ¼ ðQn

11 þ Qn
22 � 4Qn

66Þsin2hcos2hþ Qn
12ðsin4hþ cos4hÞ

�Qn
22 ¼ Qn

11sin
4hþ 2ðQn

12 þ 2Qn
66Þsin2hcos2hþ Qn

22cos
4h

�Qn
66 ¼ ðQn

11 þ Qn
22 � 2Qn

12 � 2Qn
66Þsin2hcos2hþ Qn

66ðsin4hþ cos4hÞ
�Qn
44 ¼ Qn

44cos
2hþ Qn

55sin
2h

ð74Þ

where Qij i; j ¼ 1,2; 3,4; 5,6ð Þ presented the transformed

reduce stiffness modulus.

Motions equations of multiscale composite shell can be

expressed in terms of u, v, w, /x;/y displacements are

obtained by substituting Eqs. (19a–19c) into (33a–33d)

yields:
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