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Abstract
Current work focuses on stagnation point flow of MHD Carreau fluid with heterogeneous–homogeneous reactions. Non-

linear stretched sheet of variable thickness is the main agent for flow induction. Liquid is assumed an electrically

conducted. Nonlinear thermal radiation and heat generation/absorption aspects are addressed. Proper transformations lead

to dimensionless the governing problem. Resultant systems are tackled numerically via NDSolve based Shooting scheme.

Importance of emerging variables is addressed through graphical illustrations. Tables regarding the estimations of skin

friction and rate of heat transfer are computed and examined for various physical variables. It is found that convective and

radiation variables improve the liquid temperature. Obtained outcomes are also compared in limiting way and found an

excellent agreement.

1 Introduction

There is a wide range of chemical reactions in nature which

have widespread practical applications. These reactions are

involved in various processes especially in fog formation

and dispersion, food processing, hydrometallurgical

industry, air and water pollutions, atmospheric flows, fibres

insulation and crops damage due to freezing etc. In these

process the molecular diffusion of species on the boundary

or inside the chemical reaction is very intricate. Some of

the reactions have the capacity to proceed gradually or do

not react at the moment with out catalyst. In this direction

(Merkin 1996) studied a model for isothermal homoge-

neous–heterogeneous reactions in boundary layer flow over

a flat plate. Forced convection stagnation point flow of

viscous fluid with homogeneous–heterogeneous reactions

was explored by (Chaudhary and Merkin 1995). (Khan and

Pop 2015) put forward such effects on the flow of

viscoelastic fluid towards a stretching sheet. The boundary

layer flow of Maxwell fluid over a stretching surface with

homogeneous-heterogeneous reactions was examined by

Hayat et al. (2015a). The characteristics of homogeneous–

heterogeneous reactions in the region of stagnation point

flow of carbon nanotubes over a stretching cylinder with

Newtonian heating was presented by Hayat et al. (2015b).

(Farooq et al. 2015) discussed the homogeneous–hetero-

geneous reaction in flow of Jeffrey liquid. Aspects of

homogeneous–heterogeneous reactions in flow of Sisko

liquid was studied by Hayat et al. (2018a). Temperature

based heat source and nonlinear radiative flow of third

grade liquid with homogeneous-heterogeneous reactions is

explored by Hayat et al. (2018b).

Heat transport and flow phenomena because of stretch-

ing surface have various practical uses in technological and

engineering processes. Such phenomenon encountered in

paper production, fiber production, extrusion of polymer

and metal, wire drawing, hot rolling, refrigeration and heat

conduction in tissues etc. Both stretching and kinematics of

heat transport during such procedure have a crucial con-

sequence on standard of final outcomes. Initially (Sakiadis

1961) provided the study of boundary layer flow bounded

by a stretching sheet. (Crane 1970) and (Gupta and Gupta

1977) inspected heat/mass transport analysis over a

stretching sheet with constant surface temperature. After-

wards several theoretical attempts have been performed by

several researchers (Bhattacharyya 2011; Turkyilmazoglu
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2011; Malvandi et al. 2014; Shehzad et al. 2015; Hayat

et al. 2016a; Ibrahim et al. 2013; Hayat et al. 2016b; Meraj

et al. 2017; Zhu et al. 2017; Mahanthesh et al. 2016;

Abbasi et al. 2016; Hayat et al. 2017a, b; Sheikholeslami

and Shehzad 2017; Hayat et al. 2018c). Further, the

stretching sheet with variable thickness occur in practical

uses more frequently than a flat sheet. Such flow phe-

nomenon are used in marine structures, aeronautical,

mechanical and civil. Variable thickness is used for

reduction of structural elements weight and advance way to

use material (Shufrin and Eisenberger 2005) Some

notable attempts in this direction can be seen via (Fang

2012; Subhashini et al. 2013; Hayat et al.

2015c, 2016c, 2017c, 2018d; Hayat et al. 2018e).

Present study disclose the aspects of homogeneous–

heterogeneous reactions and magnetohydrodynamic

(MHD) flow of Carreau fluid past a nonlinear starching

sheet with variable thickness. It is assumed that plate is

heated and exposed to transverse magnetic field. Features

of heat generation/absorption and nonlinear thermal radi-

ation are considered in mathematical modeling. Further we

imposed convective condition at the surface. Mathematical

formulation is constructed through boundary layer and

small magnetic Reynolds number assumptions. Resulting

nonlinear systems are then attempted numerically by

NDSolve technique. Numerical computations and discus-

sion of plots are carried out for various influential vari-

ables. Further comparative analysis is provided to validate

our current outcomes.

2 Formulation

We intend to inspect steady two-dimensional flow of

Carreau fluid in the region of stagnation point flow towards

a nonlinear stretching sheet with variable thickness. Liquid

is conducting electrically via constant magnetic field of

strength B0 (see Fig.1). We ignored the contribution of

induced magnetic field utilizing the small magnetic Rey-

nolds number assumptions. Let Ue ¼ U1ðxþ b1Þm and

Uw ¼ U0ðxþ b1Þm indicate the respective velocities of

external and sheet flow. Where reference velocities are

signified by U0 and U1. Features of radiation and heat

generation/absorption are addressed in governing expres-

sion. In addition the contribution of homogeneous-hetero-

geneous reactions are considered. For cubic autocatalysis

the homogeneous reaction can be written as (Merkin 1996;

Chaudhary and Merkin 1995):

Aþ 2B ! 3B; rate ¼ Kcab
2: ð1Þ

On catalyst surface the first-order isothermal reaction is

expressed as

A ! B; rate ¼ Ksa; ð2Þ

where a and b the respective concentrations of chemical

species A and B and Kc and Ks show the rate constants.

Both the reaction processes are assume to be isothermal.

The governing expression for flow under consideration are:

ou

ox
þ ov

oy
¼ 0; ð3Þ

u
ou

ox
þ t

ou

oy
¼ m

o2u

oy2
1þ C2 ou

oy

� �2
" #n�1

2

þ mðn� 1ÞC2 ou

oy

� �2
o2u

oy2
1þ C2 ou

oy

� �2
" #n�3

2

þ rB2
0

q
ðUe � uÞ þ Ue

dUe

dx
;

ð4Þ

u
oT

ox
þ v

oT

oy
¼ k

qcp

o2T

oy2
� 1

qcp

16r�

3m�
o

oy
T3 oT

oy

� �

þ Q0ðT � T1Þ
qcp

; ð5Þ

u
oa

ox
þ v

oa

oy
¼ DA

o2a

oy2
� Kcab

2; ð6Þ

u
ob

ox
þ v

ob

oy
¼ DB

o2b

oy2
þ Kcab

2: ð7Þ

u ¼ Uw ¼ U0ðxþ b1Þm; v ¼ 0; �koT
oy
¼ hf ðTf � TÞ;

DA
oa
oy
¼ Ksa; DB

ob
oy
¼ �Ksa at y ¼ A1ðxþ b1Þ

1�m
2 ;

)

ð8Þ

u ! Ue ¼ U1ðxþ b1Þm; T ! T1; a ! a0; b ! 0 as y

! 1;

ð9Þ

Fig. 1 Schematic flow diagram
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where (u, v) denotes the respective velocity components

in (x, yÞ directions, Q0 the coefficient of heat generation/

absorption, m ¼ l
q the kinematic viscosity, q the liquid

density, C the material time constant, l the dynamic vis-

cosity, k the thermal conductivity, r the electrical con-

ductivity, m� the mean absorption coefficient, r� the

Stefan-Boltzmann constant, b1 the stretching constant, (DA,

DB) the diffusion species coefficients of A and B, (a, b) the

chemical species of concentration, (T1, T) the ambient and

surface temperatures and n expresses the power law index.

Noted that n ¼ 1 corresponds to viscous fluid. The trans-

formations are defined as follow:

On using Eq. (10), the continuity expression is identi-

cally satisfied while Eqs. (4, 5, 6, 7, 8, 9) become
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Non-dimensional form of skin friction and local Nusselt

number are

Fig. 2 f 0ðnÞ through k

Fig. 3 f 0ðnÞ through M

Fig. 4 f 0ðnÞ through n

Fig. 5 f 0ðnÞ through We
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where Rex ¼ Uwðxþ b1Þmþ1=m indicates local Reynolds

number.

3 Discussion

In order to find the numerical solutions valid locally for

Eqs. 17, 18, 19, 20, 21, 22, we employ NDSolve based

Shooting technique. Using the numerical technique the

interpretations have been performed for numerous estima-

tions of embedded variables. Aspects of k on f 0ðnÞ is

captured in Fig. 2. Clearly velocity enhances for k[ 1 but

Fig. 6 hðnÞ through Pr

Fig. 7 hðnÞ through c1

Fig. 8 hðnÞ through Rd

Fig. 9 hðnÞ through c

Fig. 10 hðnÞ through We

Fig. 11 gðnÞ through K1
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for k\1 the layer thickness reduces. Further it is noted that

for k ¼ 1 there is no boundary layer due to same free

stream and velocities. Influence of M on f 0ðnÞ is disclosed
in Fig. 3. Higher M leads to rise the Lorentz forces (re-

sistive forces) which consequently decay the liquid

velocity. Figure 4 indicates behavior of n on f 0ðnÞ: It is
found that f 0ðnÞ substantially rise the velocity. Features of

We on f 0ðnÞ is plotted in Fig. 5. As expected, higher We

result in an increment of velocity. Variations of Pr on h nð Þ
is drawn in Fig. 6. Here we see that higher estimations of

Pr decay thermal conductivity and thus decline the liquid

temperature. Figure 7 exhibits the impact of c1 on tem-

perature distributions. This Fig. indicates that thermal field

enhances for larger estimations of c1. Effects of Rd on h nð Þ
is declared in Fig. 8. As expected the heat is generated due

to radiation process in working liquid which consequently

rise the temperature. Temperature for c is captured in

Fig. 9. Clearly h nð Þ is enhanced via c: Figure 10 disclose

the impact of We on h nð Þ: Higher values of We correspond

Fig. 12 gðnÞ through K2

Fig. 13 gðnÞ through Sc

Table 1 Numerical values of skin friction �Re1=2Cfx for M, We, k
and m

M We k m �Re1=2Cfx

0.0 10 0.3 0.5 0.822512

0.5 0.979605

0.9 1.179412

0.3 0.5 0.3 0.5 0.882353

1.0 0.561191

1.4 0.440423

0.3 10 0.0 0.5 0.708107

0.6 0.989598

1.2 1.39814

0.3 10 0.3 0.5 0.88235

1.0 0.954615

1.5 1.019150

Table 2 Numerical outcomes of surface temperature gradient �h0ð0Þ
for different values of c1, k, We, Rd hw and c when Pr ¼ 6:2,
M ¼ k ¼ 0:3, m ¼ 0:5, n ¼ 1:0, K1 ¼ 0:5 ¼ K2 and Sc ¼ 0:9:

c1 k Rd We c hw �
ffiffiffiffiffiffi
mþ1
2

p
h0ð0Þ

0.0 0.3 0.3 10 0.3 1.0 0.23253

0.5 0.224449

0.7 0.205668

0.5 0.0 0.3 10 0.3 1.0 0.239721

0.4 0.237523

0.7 0.238520

0.5 0.3 0.0 10 0.3 1.0 0.232933

0.5 0.219102

1.0 0.206431

0.5 0.3 0.3 0.5 0.3 1.0 0.238231

1.5 0.238330

2.5 0.238370

0.5 0.3 0.3 0.1 1.0 0.082281

0.5 0.342964

0.8 0.487868

0.5 0.3 0.3 10 0.3 0.5 0.229682

1.0 0.228521

0.3 0.3 0.3 1.5 0.227122

Table 3 Comparison for numerical estimations of �
ffiffiffiffiffiffi
mþ1
2

p
h0ð0Þ with

Hayat et al. (2017) for distinct values of k and We when

c1 ¼ Rd ¼ hw ¼ 0

�
ffiffiffiffiffiffi
mþ1
2

p
h0ð0Þ

k We Hayat et al. (2017) Present study

0.0 10 0.23806 0.238721

0.4 0.23839 0.238123

0.7 0.23870 0.237520

0.2 0.5 0.23823 0.238043

1.5 0.23833 0.238223

2.5 0.23837 0.238579
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to enhancement of fluid temperature. Figure 11 depicts

impact of K1 on g nð Þ. Higher estimations of K1 enhance

g nð Þ. Figure 12 presents effect of K2 on g nð Þ: Here g nð Þ
reduces for larger K2. Behavior of Sc on g nð Þ is noticed in

Fig. 13 Decaying feature of g nð Þ is seen for higher Sc.

Table 1 reports numerical outcomes of drag force

(� Reð Þ1=2Cfx ) for distinct flow variables We, M, k, n and

m. It is shown that � Reð Þ1=2Cfx enhances for n,We, andM.

Table 2 is prepared for variations of Nusselt number

�h0 0ð Þ against various embedded variables. It scrutinizes

that Nusselt number is enhanced for n, Pr, k and c while it
diminishes forM. Table 3 certifies the validation of present

analysis with limiting study provided by Hayat et al.

(2017d). Clearly obtained outcomes are an exellent

agreement.

4 Final remarks

Main points include:

• Velocity enhances via We and n while it diminishes

through M.

• Temperature field decays through higher Pr and We.

• Thermal layer thickness and temperature are enhanced

for higher Rd, c and c1.
• Concentration shows reverse trend for higher estima-

tions of K2 and K1.

• Surface drag force enhances via k; m and M.

• Nusselt number reduces for Rd and hw
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