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Abstract
An analysis regarding diverse features of Sisko fluid flow over a curved stretching surface in the presence of magneto-

nanoparticles is presented. For larger value of the curvature parameter, the curved surface reduces into the planner sheet.

The governing equations are modeled in curvilinear coordinate system and transformed into system of nonlinear ordinary

differential equations. The obtained equations are solved numerically by employing the boundary value solver (bvp4c) in

Matlab as well as bvp traprich in Maple. From the obtained results, we observed a decline in the magnitued of velocity field

as well as pressure inside the boundary layer with increasing values of magnetic parameter. On the other hand, the

temperature of fluid is noticed in enhancing trend with growing values of Brownian motion and thermophoresis parameters.

Moreover, concentration is also to be growing with augmented values of the Schmidt number. A comparison for validation

of the present results is performed between the bvp4c function in Matlab and Richardson extrapolation method in Maple

with an excellent agreement. The results are also verified with previous works.

List of symbols
(r, s) Curvilinear coordinates

(a, b, n) Material constants

R Radius of curvature

V Velocity vector

(u, v) Velocity components

qf Fluid density

g Dimensionless variable

B0 Applied magnetic field

I The identity tensor

S The extra stress tensor

f Dimensionless stream function

qm The wall heat flux

k Thermal conductivity

T Temperature of fluid

Tw Temperature at the wall

T1 Ambient temperature

C Nanoparticle volume friction

Cw Concentration at the wall

C1 Ambient concentration

DB Brownian diffusion coefficient

DT Thermophoresis diffusion coefficient x

w Stream function

h Dimensionless temperature

/ Dimensionless concentration

A1 First Rivlin–Ericksen tensor

c Constant

cp Specific heat

a1 Thermal diffusivity

p The pressure

s Cauchy stress tensor

sw Surface shear stress

Cf Skin friction coefficient

Nus Local Nusselt number

Shx Local Sherwood number

ðRea;RebÞ Local Reynolds numbers

A Material parameter of the Sisko fluid

K Dimensionless radius of curvature

M Magnetic parameter

Pr Generalized Prandtl number

Sc Generalized Schmidt number

Nb Brownian motion parameter

Nt Thermophoresis motion parameter
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1 Introduction

Recently attention towards fluid flow with nanotechnology

is playing a significant role in the development of nano-

divices. Meanwhile, introduction of nanofluids for heat

transfer in base fluid is a new door towards the arena of

engineering and technology. In order to improve effec-

tiveness of many processes, the characteristics of heat

transfer must be improved with some new agents. There-

fore, nanometer size particles namely nanoparticles are

responsible for enhancing heat transfer. Thus nanofluids

have many applications in industry such as heat exchang-

ers, microchannel heat sinks and lubricants, cancer therapy

and coolants etc. In like manner, in late decades, several

examiners have been occupied with considering nanofluids

applications in different fields. Choi (1995), for instance,

built up the idea of nanofluids in cooling advances. Such

regular fluids as water, oil and ethylene glycol in nature are

poor in thermal conductivity, which restrains the heat

transfer execution. Because of development in innovation

by means of scaling down of an electronic gadget requires

the further progress of heat transfer from vitality sparing.

To triumph over this demanding situation leads to a new

elegance of fluid called nanofluid. Since nanofluids have a

higher thermal conductivity when contrasted with regular

fluids and they have high potential to upgrade heat transfer

rate in building frameworks particularly for cooling of

electronic gadgets. In this regard, Hayat et al. (2016) dis-

cussed water–carbon nanofluid flow with variable heat flux

by a thin needle. Ahmed and Akbar (2017) addressed

numerical simulation of the forced convective nanofluid

flow through an annulus sector duct. At present a few

hundred gatherings around the globe chip away at

nanofluids (Beck et al. 2007; Das et al. 2007; Lee and

Mudawar 2007; Turkyilmazoglu 2017a; Akbar et al. 2018).

Buongiorno (2006) demonstrated that the single phase

model is conflict with the experimental perception and

unadulterated liquid relationships, (for example, Dittus–

Boelter’s) under predict the nanoliquid heat transfer coef-

ficient. At that point an alternate model that wipes out the

deficiencies of the single phase or scattering models (DPM

models) was created. He thought about seven slip instru-

ments, at that point presumed that exclusive Brownian

diffusion and thermophoresis are the overwhelming slip

mechanisms in nanoliquids. With these findings as a pre-

mise, he proposed a non-homogeneous two phase equilib-

rium model for convective transport in nanoliquids. One of

the upsides of this new model is that the impact of the

relative velocity amongst nanoparticles and base fluid is

depicted more mechanistically than in the scattering

models. Kuznetsov and Nield (2010) illustrated convective

boundary layer flow of nanofluid due to vertical plate.

Akbar (2013) presented numerical study of Williamson

nanofluid fluid flow in an asymmetric channel. Radiative

flow of micropolar nanofluid accounting thermophoresis

and Brownian moment is reported by Hayat et al. (2017a).

Nadeem et al. (2014) elucidated numerically MHD

boundary layer flow of non-Newtonian Maxwell fluid over

a stretching sheet in the companying nanoparticles. Due to

a wide range of applications of such types of nanoparticles

in the flow which many researchers (Khan et al. 2017a;

Hayat et al. 2017b, c; Turkyilmazoglu 2018; Nabil et al.

2018) paved attention to improve the thermal conductivity

of different types of fluids.

The liquid flow because of continuous stretching of

surface is considered in numerous mechanical procedure.

For instance, polymer handling, expulsion process, wire

and fiber covering, sustenance stuff preparing, outline of

different heat transfer and substance preparing hardware,

and so on. In a dissolve turning process, the extruder from

bite the dust is by and large drawn and all the while

extended into a fiber or sheet, at that point it hardens

through fast. In this regard, Crane (1970) was the first who

discussed the fluid flow due to a linear stretching sheet. His

work has been reached out from multiple points of view

alongside expected physical highlights including heat and

mass transfer along flat plate, impact of suction and

injection, magnetic field etc. Stretching flow subject to

suction and injection was scrutinized by Gupta and Gupta

(1977). Ahmad and Asghar (2012) found the analytical and

numerical solutions for flow and heat transfer for hyper-

bolic stretching surface. Turkyilmazoglu (2015) investi-

gated the exact solutions of MHD flow and heat transfer

over two–three dimensional deforming bodies. Equiva-

lences and correspondences between the deforming body

induced flow and heat in two–three dimensions was

deliberated by Turkyilmazoglu (2016). The effects of

radiation with magnetic field on stretching surface were

studied by Turkyilmazoglu (2017b). Furthermore, Mat

Yasin (2016) reported the solution of MHD two-phase

dusty fluid flow and heat model over deforming isothermal

surfaces. Recently, Turkyilmazoglu (2017c) discussed

mathematically the existence for MHD mixed convection

flow of a micropolar fluid past a cooled or heated in the

presence of heat generation/absorption effects on the

stretching surface.

Rather than planner boundary, there is a developing

interest for studying of the effects of curvature by a few

examiners recently. Very few papers have been examined

on this theme and found that its essence inside the

boundary layer is not any more insignificant as on account

of a stretching sheet. Sajid et al. (2010) considered curved

stretching surface of viscous fluid flow and found that the

boundary layer thickness increments for a curved surface

contrasted with flat surface. Rosca and Pop (2015)
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examined the boundary layer flow over an unsteady per-

meable stretching/shrinking sheet. Furthermore, it is also

strongly observed that in case of curved surface as com-

pared to flat surface the drag force is smaller. The pre-

ceeding work was then extended by Sajid et al. (2011).

Moreover, Abbas et al. (2016) addressed slip effect with

heat generation and thermally radiated boundary layer flow

on curved surface.

The Sisko liquid model is of much significance because

of its satisfactory portrayal of numerous non-Newtonian

liquids over the most imperative scope of shear rates. This

model is a three parameter experimental model, which is

suitable in describing flow in the power-law and upper

Newtonian regions. Informative results about this fluid

model are presented in the form of shear-thinning and

shear-thickening characteristics. Specifically, the pseudo

plastic or shear thinning fluids are those in which for

decreasing shea rate, the viscosity of such fluids increases.

This importance is one of the attentions towards the rhe-

ological study of one of the example of shear thinning

fluids like blood, ketchup, whipped cream etc. Particularly

bio rheology speaks to the examination experienced on the

flow and distortion of biological systems and materials got

from living life forms. The objective of biorheology is to

relate the rheological properties of frameworks/materials to

their molecular, cell and auxiliary properties. Blood rhe-

ology is profoundly important for both scholarly and down

to practical purposes. The flow properties of blood directly

affect human wellbeing, from stenosis or hemolysis up to

cardiovascular medical procedure. From the rheological

perspective, blood is essentially a complex liquid frame-

work, deformable particles (mostly red cells) suspended in

plasma. The investigation of flow conduct of blood, focuses

particularly on the current connection between its micro

structural changes and rheology. During the flow of blood

being a pseudo plastic or shear thinning fluid characteris-

tics of Sisko fluid model can be studied. For the reason of

their excellent combined dampening and dispersing nature,

Sisko (1958) introduced this phenomenon for the first time

in 1958. The basic boundary layer flow equations due to

stretching velocity in two dimensional Cartesian geometry

was first time formulated and then solved analytically for

integral values by Khan and Shahzad (2013). Malik et al.

(2014) demonstrated the effects of convective boundary

conditions and non isothermal nonlinear stretching sheet

with vertical magnetic field in the Sisko fluid flow. Khan

et al. (2017b) studied the influence of Cattaneo–Christove

heat flux model with homogeneous–heterogeneous reac-

tions in the flow of Sisko fluid for the bidirectional

stretching geometry. Moreover, a lot of works in this

regard are illustrated in references (Khan et al. 2017;

Ahmad et al. 2017; Khan et al. 2018a, b, c).

Keeping all above in the view, the motivation behind

present paper is to study the impact of nanoparticles and

magnetic field in the boundary layer flow with heat and

mass transfer characteristics of Sisko fluid over a curved

stretching sheet. The curvilinear coordinates system is

utilized to formulate the momentum equations for the Sisko

fluid flow in two dimensional geometry. Overseeing the

transformed ODEs arising due to the new geometry are

then considered for solution while using the Matlab built in

function namely bvp4c. The flow pattern is displayed in the

form of streamlines and the related velocity, temperature

and concentration profiles of the fluid and are presented

through several graphs. Another important concern in this

regard is displayed in the form of tabular values of the local

skin friction, Nusselt and Sherwood numbers. To verify the

problem formulation, a comparison is performed with the

previous published data. Additionally, a comparison of the

present method is performed with Richardson extrapolation

method in Maple with an excellent agreement.

2 Configuration of the problem

The effect of Brownian motion and thermophoresis

parameters in an incompressible steady flow of Sisko fluid

due to curved stretching sheet in the presence of magnetic

field is considered. Flow configuration presented is mod-

eled in curvilinear coordinated and is shown in Fig. 1. The

curved surface coiled in a circle of radius R about the

curvilinear coordinates (r, s) and is stretched kinematically

along the axial direction s with velocity Uw ¼ cs. The

distance of surface from the origin R defines the shape of

curved geometry of the problem. So that larger values of

R goes to slightly curved sheet. The temperature and

concentration of fluid at surface are Tw and Cw, respec-

tively, while the ambient temperature and concentration of

Fig. 1 Physical model and coordinates system
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the fluid are T1 and C1, respectively. Under the afore-

mentioned assumptions, the basic equations for the Sisko

nanofluid flow in the form of continuity, momentum along

with Boussinesq approximation, heat and concentration are

developed as follows

o

or
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ou
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r þ R
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The associated boundary conditions are as follows:

u ¼ UwðsÞ ¼ cs; v ¼ 0; T ¼ Tw; C ¼ Cw at r ¼ 0;

ð6Þ

u ! 0;
ou

or
! 0; T ! T1; C ! C1 as r ! 1: ð7Þ

The governing momentum, energy and concentration

equations can be transformed into the coupled nonlinear

ordinary equations by using the following

suitable transformations

u ¼ Uwf
0 gð Þ; v ¼ �UwR

r þ R
Re

� 1
nþ1

b

2n

nþ 1
f gð Þ þ 1� n
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� �
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w ¼ sUwRe
� 1
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s
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1
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b :

ð8Þ

Upon making use of transformations (8), Eq. (1) is iden-

tically satisfied and Eqs. (2) and (3) are reduced in the

following form

oP
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¼ f 02
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Eliminating the pressure term between Eqs. (9) and (10) in

combination with Eq. (8), then Eqs. (4) to (7) reduces in the

following form
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Table 1 Comparison of bvp4c with Richardson extrapolation method,

when n ¼ 3; A ¼ 3:5 and K ¼ 1

Parameter � 1
2
Re

1
nþ1

b Cf

M bvp4c results Richardson extrapolation results

1 12.25384 12.25449348

2 13.4114 13.47354718

3 14.56970 14.52145277

4 15.41951 15.43107230
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/00 þ ScK

gþ K

2n

nþ 1

� �
f/0 þ 1

gþ K
h0 þ Nt

Nb

h00 þ 1

gþ K
h0
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ð13Þ

f ð0Þ ¼ 0; f 0ð0Þ ¼ 1; hð0Þ ¼ 1; /ð0Þ ¼ 1; ð14Þ

f 0 ! 0; f 00 ! 0; h ! 0; / ! 0 as g ! 1;

ð15Þ

where all the physical parameters which governs the flow

are listed below:

Table 2 Comparison of the

present work with previous

results when

n ¼ 1; A ¼ 0and K ! 1

Parameter � 1
2
Re

1
nþ1

b Cf

M Present results Mabood and Das (2016) Imtiaz et al. (2016)

1 1.414323 1.4142135 1.4142

5 2.449627 2.4494897 2.4494

10 3.316768 3.3166200 3.3166

50 7.141577 7.1414284 7.1414
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Fig. 2 Streamlines pattern for A = 0. a n = 1.0 and b n = 0.5
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The important physical quantities of interest namely the

local skin-friction coefficient, Nusselt and Sherwood

numbers are defined by
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sw

1
2
qf U2

w

; Nus ¼
qms

k Tw � T1ð Þ ; Shs ¼
qms

DB Cw � C1ð Þ :
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Using the transformations defined through Eq. (8), we

finally obtain the reduced form of the local skin friction,

Nusselt and Sherwood numbers as follows:
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Fig. 4 Streamlines pattern for A = 0. a n = 0.5 and b n = 1.5
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3 Results validation

The governing nonlinear ODEs (11)–(13) are considered

for the numerical solution. The results obtained with the

implementation of bvp4c method are given through Table 1

and are compared with bvp traprich in Maple which uses

Richardson extrapolation method. An excellent agreement

is found between these two numerical methods. Numerical

outcomes produced in the limiting cases are compared with

published work by Mabood and Das (2016) and Imtiaz

et al. (2016). The results found in present study are in

excellent correlation with the earlier works and presented

in Table 2.

4 Numerical outcomes and discussion

Numerical simulation of the Sisko magneto-nanofluid flow

due to curved stretching surface is performed. The Buon-

giorno nanofluid model is considered to study heat and

mass transfer phenomena in flow of Sisko fluid. Highly

nonlinear Eqs. (11) to (13) with the boundary conditions
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(14) and (15) are modeled in curvilinear coordinates. All

governing parameters like material parameter A, magnetic

field parameter M, power-law parameter n, radius of cur-

vature K, generalized Prandtl number Pr, Brownian motion

parameter Nb, therrmophoresis parameter Nt and general-

ized Schmidt number Sc are used to demonstrate the flow,

heat as well as mass transfer characteristics of Sisko

nanofluid.

4.1 Flow pattern

To show the flow pattern in the form of streamlines with

the influence of different flow parameters like material

parameter A and power-law parameter n. While the

remaining flow parameters are fixed, i.e., Reb ¼ 1000, c ¼
1 and M ¼ 2:0. Streamlines in Fig. 2a are plotted for the

Newtonian fluid, ðn ¼ 1 and A ¼ 0Þ. The flow pattern

subjected to this case exhibits a non-symmetric reduction

behavior near the curved surface, while on other hand

through Fig. 2b, the behavior of the flow near the stretching

surface is prominent for shear thinning fluid and the flow in

this case reduces symmetrically about the horizontal axis.

In both Figs., the effect of A and n causes the flow being

drag into the center and this is due to the equal forces of

buoyant flow. The flow pattern of Sisko fluid is plotted

through Fig. 3a, where the fluid flow is stretched toward the

curved surface symmetrically about the horizontal axis and

flow of Sisko fluid is reduced near the curved stretching
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Fig. 9 Effect of K and M on pressure PðgÞ
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surface for n[ 1. Another flow pattern is plotted through

Fig. 3b for A ¼ 2:5 and n ¼ 1. A symmetric conduct about

the horizontal axis away from the curved stretching surface

is observed and fluid flow is reduced near the stretching

curved surface, where the fluid flow is found in non-uni-

form pattern. The flow pattern produced for shear-thinning

and shear-thickening fluids in Fig. 4a, b, where the fluid

flow is stretched near the curved stretching surface for both

cases, i.e., 0\n\1 and n[ 1.

4.2 Velocity profile

A considerable growing effect of increasing values of A is

noticed during plotting the velocity profile and related

momentum boundary layer thickness of Sisko fluid flow

over a curved stretching surface as shown in Fig. 5a, b. The

result for the shear thinning fluid is more effective as

compared to shear thickening fluid. This physical

enhancement conduct with the variation of material

parameter causes low shear rate with higher viscosity and

high shear rate for low viscosity regarding Sisko nanofluid

flow. The influence of uplifting values of K on velocity
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Fig. 10 Effect of A on temperature hðgÞ
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Fig. 11 Effect of K on temperature hðgÞ
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profile for shear-thinning as well as shear-thickening fluids

is found in the increasing order along with associated

momentum boundary layer thickness as demonstrated

through Fig. 6a, b. Here the result is more acceptable in the

case of shear thinning fluid. It has been examined that the

radius of curved surface increases for augmented values of

curvature parameter K due to which motion of the fluid

rises. A very significant reduction behavior through Fig. 7a,

b is observed for higher values of M, when n is fixed for

shear-thinning and shear-thickening fluids and relevant

momentum boundary layer thickness is perceived in

reduction conduct. The physical reasoning concerning to

this conduct is due to the enhancment of Lorentz forces

which reduces the velocity of the fluid.

4.3 Pressure profile

Figure 8a establishes a decreasing conduct in the magni-

tude of the pressure for larger values of n. On other hand,

the effect of higher values of material parameter on mag-

nitude of pressure inside boundary layer is observed in the

form of declining behavior and is shown through Fig. 8b.

In both cases the associated boundary layer thickness is

detected in enrichment demeanor. Furthermore, the
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Fig. 12 Effect of M on temperature hðgÞ

η

θ(
η)

0 2.5 5 7.5 10 12.5
0

0.2

0.4

0.6

0.8

1

Pr = 1.2
Pr = 1.4
Pr = 1.6
Pr = 1.8

Sc = 0.5, K = 5.0, M = 2.0,

A = 3.8, Nb = 1.5, Nt = 1.2.

(a) n =0.8

η

θ(
η)

0 2.5 5 7.5 10 12.5
0

0.2

0.4

0.6

0.8

1

Pr = 1.2
Pr = 1.4
Pr = 1.6
Pr = 1.8

Sc = 0.5, K = 5.0, M = 2.0,

A = 3.8, Nb = 1.5, Nt = 1.2.

(b) n =1.8
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decreasing values of curvature parameter cause an esca-

lating behavior in the magnitude of pressure profile inside

the boundary layer and is shown in Fig. 9a. Wherein a

curved surface is reduced in the planner surface for higher

value of K and the pressure profile becomes zero. For

smaller values of K, the curved surface will be more

curved. It can be explained on the basis that the curvature

of the surface give rises to a secondary flow due to the

curvilinear nature of the fluid flow under the accomplish-

ment of centrifugal force as the fluid particles navigate the

curved track along the surface of the sheet. The secondary

flow is therefore superimposed on the primary flow due to

augment the velocity field. Though, in the situation of a

curved surface the variation of pressure is significant inside

the boundary layer and therefore the pressure discrepancy

cannot be neglected as is frequently done for a flat

stretching sheet. Fig. 9b exhibits a declining conduct in the

magnitude of pressure profile inside the boundary and

associated boundary layer for the larger values of magnetic

parameter.
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Fig. 14 Effect of Nb on temperature hðgÞ
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4.4 Temperature profile

Figure 10a, b demonstrate a diminishing behavior for the

increasing values of A. Whereas the temperature profiles of

fluid and relevant boundary layer thickness also reduce for

shear-thinning and shear-thickening fluids. Physically this

is due to fact that the increasing values of A enhance the

shear rate and as a result the viscosity of the fluid shall be

reduced. The impact of the several increasing values of K

enriche the temperature field and thermal boundary layer

thickness in both cases, i.e., shear-thinning and shear-

thickening fluids. This significant behavior is presented in

Fig. 11a, b. Through Fig. 12a, b, an enhancement behavior

is perceived while plotting the temperature profile of the

liquid flow. Figure 13a, b showing a diminishing conduct

of temperature profiles with increasing values of Pr for

shear thinning fluid as well as shear thickening fluid. The

associated thermal boundary layer is reduced in this case.

Enhancment of Brownian motion parameter results in

growing the temperature field and related boundary layer

thickness is also increases for shear-thinning fluid as well

as shear-thickening fluid as shown through Fig. 14a, b.
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Fig. 16 Effect of A on concentration /ðgÞ
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From Fig. 15a, b, it is concluded that whenever the ther-

rmophoresis parameter is considered in the increasing

order the temperature profile and the associated thermal

boundary layer will be enhanced while testing both the

cases, i.e., shear thinning and shear thickening fluids.

4.5 Concentration profile

In Figure 16a, b we have investigated the variation of A

while plotting the nanoparticle concentration profile.

Wherein a reduction is found for both shear-thinning and

shear-thickening fluids. The associated layer thickness is

also diminshed. A remarkable increasing nanoparticle

concentration with the several values of M is plotted

through Fig. 17a, b, where both cases are considered

namely shear-thinning and shear-thickening fluids. The

result is very significant in case of shear thinning fluid.

Figure 18a, b illustrate the influence of K on the

nanoparticle concentration. It is noted that for the growing

values of K the concentration profile and the associated

boundary layer is diminishing for both situations, i.e.,

shear-thinning as well as shear-thickening fluids. From
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Fig. 19a, b it is observed that by varying Nb, a deteriorating

behavior is demonstrated while plotting the nanoparticle

concentration for shear-thinning fluid as well as shear-

thickening fluid. In this regard the boundary layer thickness

is also reduced. In Fig. 20a, b the increasing values of Nt

cause a reduction in nanoparticle concentration profile and

associated boundary layer thickness. Shear thinning and

shear thickening fluids properties are also utilized but the

result are more acceptable in case of shear thinning fluid.

Figure 21a, b depict a diminishing behavior of nanoparticle

concentration for growing values of Sc and related layer

thickness is also reduced in both shear-thinning as well as

shear-thickening fluids.

4.6 Local skin friction, Nusselt and Sherwood
number

Behavior of the material parameter A on the local-skin

friction is observed in the increasing order for shear-thin-

ning fluid case as well as shear-thickening fluid and is

shown in Fig. 22a, b. Diminishing behavior is illustrated

during plotting of local Nusselt number in both situations
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of power-law fluids, i.e., shear-thinning and shear-thick-

ening fluids and is presented in Fig. 23a, b. Through

Fig. 24a, b, the effect of increasing values of Sc on the local

Sherwood number is found in the augmented conduct while

testing both cases of shear-thinning as well shear-thicken-

ing fluids. The effect of A, M and K are utilized to

demonstrate the impact of resistive forces. In this regard

the tabular values as shown in Table 3 are computed to

depict the effect of frictional forces during fluid flow. Local

skin friction increases, whereas the magnetic parameter is

taking in increasing order while on the other hand

enhancing values of curvature parameter causes a reduc-

tion. In preceding table three constraints are imposed on

the power-law index n, i.e., for n ¼ 1 (non-Newtonain

fluid), n ¼ 0:5 (shear-thinning fluids) and n ¼ 1:5 (shear-

thickening fluid). The impacts of different governing flow

parameters on the local Nusselt number is depicted in

Table 4. The rate of heat transfer is reducing while

increasing magnetic parameter M and rate of heat transfer

is increasing function of curvature parameter K for three

cases, i.e., non-Newtonian, shear-thinning and shear-

thickening fluids. A decreasing behavior is noticed for the
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rate of heat transfer when the Brownian motion and ther-

rmophoresis parameters are varying in increasing order.

Table 5 is presented to show the rate of mass transfer with

the influence of different flow parameters like A, M, K, Pr,

Nb, Nt and Sc. The rate of mass transfer is diminishing

whenever the curvature parameter K increases for the same

restrictions on the power-law index n as presented in the

previous table. Enhancement in rate of the mass transfer is

perceived for numerous values of Brownian motion

parameter Nb and an opposite trend is noted for different

growing values of therrmophoresis parameter Nt. Rate of

mass transfer also increases when the Schmidt number rises

for all three restrictions on the power-law index n.

5 Concluding remarks

The Sisko nanofluid flow over a curved stretching surface

accompanying magnetic field was analyzed in this work.

The modeled governing equations are considered for the

numerical computations. All outcomes are presented in the

form of graphs and tabular values. A comparison with

previous data and another built in method in Maple namely

bvp traprich which uses Richardson extrapolation is carried

out to validate the computational results.

The velocity profile was noticed in increasing trend for

higher values of dimensionless radius of curvature K and a

reverse behavior have been observed with increasing val-

ues of magnetic parameter for both shear-thinning and

shear-thickening fluids. With decreasing values of the

curvature parameter K, the magnitude of pressure profile

was exhibited in an increasing order inside boundary layer.

However, outside boundary layer it becomes zero. The

magnitude of pressure profile was also zero when K goes to

infinity. The magnitude of pressure was noticed in

declining conduct while increasing the magnetic field.

Enhancement in the temperature profile of non-Newtonian

Sisko nanofluid flow was noticed with growing values of

curvature parameter K, Brownian motion parameter Nb and

thermophoresis parameter Nt. Concentration profile was

also reduced with various increasing values of K when

n ¼ 0:8 and n ¼ 1:8. An important diminishing trend due
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Fig. 24 Local Sherwood number via Nt for different values of Sc

Table 3 Variation of the local-skin friction for varying values of A,

M and K

Parameters � 1
2
Re

1
nþ1

b Cf

A M K n ¼ 1 n ¼ 0:5 n ¼ 1:5

1.0 0.5 5.00 2.184967 1.271161 1.092852

2.0 2.824880 2.091291 2.033590

3.0 3.418372 2.771860 2.762832

4.0 3.986743 3.392510 3.396965

2.5 0.0 5.00 2.572119 2.090984 1.998892

0.3 2.927944 2.293858 2.261481

0.6 3.216605 2.509374 2.475155

0.9 3.465605 2.706815 2.662586

2.5 0.5 1.00 7.859173 6.723026 5.365357

5.00 3.125707 2.440097 2.404286

10.0 2.676065 2.075501 2.142240

10,000 2.293271 1.762268 1.888027
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to the increasing values of Nt was perceived and a reverse

conduct was observed during increasing values of Nt.

Additionally, rates of heat and mass transfer were

decreasing with growing values of curvature parameter K.

Table 4 Variation of the local

Nusselt number for varying

values of A; M; K; Pr; Nb and

Nt

Parameters Re
� 1

nþ1

b Nus

A M K Pr Nb Nt n ¼ 1 n ¼ 0:5 n ¼ 1:5

1.0 0.5 5.00 1.2 0.5 0.2 0.5428404 0.3904329 0.6062883

2.0 0.5680547 0.4250426 0.6180089

3.0 0.5819859 0.4482958 0.6344736

2.5 0.0 5.00 1.2 0.5 0.2 0.6010958 0.4906416 0.6535533

0.3 0.5851487 0.4512341 0.6367576

0.6 0.5715394 0.4314192 0.6229344

2.5 0.5 1.00 1.2 0.5 0.2 0.5681793 0.392331 0.6446413

2.00 0.5762132 0.4604958 0.6451662

3.00 0.5783584 0.4443001 0.6348335

2.5 0.5 5 1.0 0.5 0.2 0.5318680 0.4011869 0.5780918

1.2 0.5758907 0.4368973 0.6273031

1.4 0.6136945 0.4691347 0.6696514

2.5 0.5 5 1.2 0.2 0.2 0.6583165 0.5010048 0.7155884

0.4 0.6026236 0.4579071 0.6559572

0.6 0.5498898 0.417402 0.5994468

2.5 0.5 5 1.2 0.5 0.2 0.5758907 0.4368973 0.6273031

0.5 0.5271755 0.3974202 0.5760875

0.8 0.4826844 0.3601035 0.5293191

Table 5 Variation of local

Sherwood number for varying

values of A; M; K; Pr; Nb; Nt

and Sc

Parameters Re
� 1

nþ1

b Shs

A M K Pr Nb Nt Sc n ¼ 1 n ¼ 0:5 n ¼ 1:5

1.0 0.5 5.00 1.2 0.5 0.2 0.5 0.2639435 0.2136013 0.2869661

2.0 0.2901100 0.2277653 0.3013438

3.0 0.3080178 0.2419765 0.3261540

2.5 0.0 5.00 1.2 0.5 0.2 0.5 0.3387689 0.2801454 0.358471

0.3 0.3130858 0.2444946 0.3293312

0.6 0.2940983 0.2308953 0.3089076

2.5 0.5 1.00 1.2 0.5 0.2 0.5 0.4844747 0.4653732 0.5061337

2.00 0.3574861 0.3518147 0.3864713

3.00 0.3224309 0.2833551 0.340895

2.5 0.5 5 1.0 0.5 0.2 0.5 0.3138149 0.2471073 0.3305256

1.2 0.2998606 0.2341961 0.3149727

1.4 0.2878966 0.2236126 0.3015996

2.5 0.5 5 1.2 0.2 0.2 0.5 0.00468151 0.01129199 -0.0111103

0.4 0.2510269 0.1975569 0.2610270

0.6 0.3321572 0.2591847 0.3506789

2.5 0.5 5 1.2 0.5 0.2 0.5 0.2998606 0.2341961 0.3149727

0.4 0.1749665 0.144632 0.1739438

0.6 0.0706546 0.07289905 0.05445231

2.5 0.5 5 1.2 0.5 0.2 0.5 0.2998606 0.2341961 0.3149727

0.9 0.5259361 0.3936558 0.5648702

1.3 0.7033079 0.531955 0.7598461
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