
TECHNICAL PAPER

Nonlocal second-order strain gradient elasticity model and its
application in wave propagating in carbon nanotubes

Chenlin Li1 • Huili Guo1 • Xiaogeng Tian1

Received: 12 July 2018 / Accepted: 6 August 2018 / Published online: 13 August 2018
� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Recent experimental studies indicate that Young’s modulus of carbon nanotubes increases steeply with tube diameter

decreasing. The consideration of this effect is of great importance for the fabrication and exploitation of nano-elec-

tromechanical devices. Nevertheless, the rapid stiffness enhancement effect noticed from experimental observation maybe

unable to be predicted by using size-dependent elasticity models available in literatures. It is strongly necessary to further

shed light on the size-dependent mechanical mechanism and characterize the rapid strengthening effect of stiffness for

nano-sized materials. To achieve this goal, the nonlocal second-order strain gradient elasticity model is established by

introducing the second-order strain gradient field with nonlocal effect into the stored energy function of nonlocal first-order

strain gradient elasticity theory. With the aids of the laws of thermodynamics, the constitutive relations are obtained. The

Hamilton principle is used to derive the governing equations of equilibrium and boundary conditions. The proposed model

is applied to investigate the problem of wave propagating in carbon nanotubes. The new dispersion relations derived are

presented for evaluating the influences of size-dependent parameters on the characteristics of wave propagation. The results

show that present model can predict the rapid increasing effect of carbon nanotubes with the decrease of tube size.

1 Introduction

The small-scale effect is referred to the changes in the

dimensions of an internal feature (structure) or in the

external physical dimensions of nano-sized materials lead

to the changes of material mechanical, electrical, optical

and magnetic properties. The consideration of this effect in

the experimental and theoretical analysis of the new and

multifunctional nanomaterials is of great importance for

the fabrication and exploitation of nano-electromechanical

devices, such as nanorod (Bahrami 2017a, b), nanobeams

(Bahrami and Teimourian 2015, 2016), functionally graded

nanobeam (Rahmani and Pedram 2014), thin rectangular

and circular annular nano-plates (Ilkhani et al. 2016;

Bahrami and Teimourian 2017), nanocomposites (Bi et al.

2017) and nano-electromechanical resonator (Bouchaala

2018). Nowadays, carbon nanotubes (CNTs) have been

used as one of the most promising functional materials in

nanodevices (Liew and Wang 2007; Chen et al. 2013) due

to their excellent performance in thermal, chemical,

mechanical and electrical properties (Yu et al. 2005;

Dupuis 2005; Lipomi et al. 2011; Lekawa-Raus et al. 2014;

Goya et al. 2017). Ever since the discovery of CNTs (Iijima

1991), a large number of experimental and theoretical

attempts on this topic have been made in order to provide a

thorough and comprehensive understanding on the material

characteristics of CNTs. As a matter of fact, CNTs share

the remarkable features of low weight, high aspect ratios,

higher stiffness and axial strength and so on (Thostenson

et al. 2001). The great advantages of CNTs in mechanical

aspects motivate their widespread application in nan-

otechnology. For example, CNTs can be used as super-

strong reinforcement fibers in strong and lightweight

nanocomposites (Tjong 2013). In the current studies, it has

been experimentally reported that the Young’s modulus of

CNTs increases steeply with decreasing tube diameter

(Treacy et al. 1996). It was also found that the change in

external dimension affects their stiffness, namely, the

Young’s modulus of CNTs increases significantly (slightly)

with decreasing tube diameter (helicity) (Yao and Lordi
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1998). However, most of theoretical models in available

literatures may fail to characterize the rapid strengthening

effect of stiffness of CNTs. It is strongly necessary to

establish a new model to illustrate this phenomenon and

give more accurate predictions. This is expected to be

helpful for the theoretical modeling of nanomechanics and

may be beneficial to the analysis and design of CNTs.

Although experimental investigations on CNTs are very

difficult to achieve, numerous theoretical attempts have

been carried out. Among them, molecular dynamic (MD)

method is used as a powerful tool to predict physical

properties of CNTs based on the following assumptions:

(i) the atom in CNTs is treated as a discrete mass point and

(ii) the bonding forces between each pair in long range

distance satisfies the Newton’s laws of motion. Until now,

MD simulations available in literatures are mainly devoted

on the studies of mechanical characteristics of CNTs (Liew

et al. 2004; Fang et al. 2016; Liu et al. 2017). One of the

topics of primary interest on this topical issue is focused on

the studies of its Young’s modulus (Hsieh et al. 2006;

Agrawal et al. 2006). In mechanical sense, the Young’s

modulus (i.e. the elastic modulus) is a measurement of the

stiffness of a solid material. It represents the factor of

proportionality in Hooke’s law. The Young’s modulus is

available to be used to calculate the change in the dimen-

sion of a bar made of an isotropic elastic material under

tensile/compressive loads. At micro scale, the classical

elasticity theory is valid to some extent. However, its

applicability is questionable at micro/nano scale (Eringen

1983). The classical continuum mechanics and couple-

stress models can be used to investigate the mechanical

problems of CNTs (Liew and Wang 2007; Ke and Wang

2011). However, the rapid stiffness enhancement effect of

CNTs noticed from experimental observation maybe

unable to be predicted by using size-dependent elasticity

models available in literatures due to the absence of the

material constants related to structural scale parameters in

the constitutive relations (Srinivasa and Reddy 2013;

Reddy and Srinivasa 2014). The key issue is that the

microstructure of materials (e.g. the lattice spacing

between atoms) becomes more and more important and the

material discrete structure cannot be homogenized into a

continuum at small length scale (Govindjee and Sackman

1999). Although MD method is feasible to predict

mechanical behavior of CNTs, it is always computationally

intensive and prohibitively expensive. Even if the solutions

can be found, they should be compared with ones obtained

experimentally. On the other hand, while MD models are

conceptually valid for small length scales, they are difficult

to formulate accurately and only applicable to nano-sys-

tems with limited number of molecules/atoms. To com-

pensate for the aforementioned defects of MD approach,

nonlocal continuum elastic stress field theory is a possible

solution (Eringen and Edelen 1972; Eringen 1983, 2002).

This theoretical framework involves information regarding

the behavior of material microstructure. Due to the intro-

duction of internal length scale parameter, the information

about the long range forces between atoms is inherently

incorporated in it.

The nonlocal elastic stress field model plays a vital role

in exploring the size-effects on mechanical properties of

CNTs. It has been suggested that nonlocal continuum

mechanics is a powerful tool in analysis related to nan-

otechnology applications (Peddieson et al. 2003). With the

aids of a positive distance-decaying kernel function, the

nonlocal integral constitutive relation of Eringen’s model

(Eringen and Edelen 1972) states that the stress field at a

reference point is interrelated to the strain filed at all points

within a continuous domain. Nevertheless, this integral-

type non-local formulation is difficult to be solved. To deal

with the problem, a nonlocal differential model was put

forward based on the fact that the kernel function of the

nonlocal integral constitutive equation can be transformed

into a differential one with the exact same properties

(Eringen 1983). It is one of the most widely used in the

literatures to evaluate size-dependent effect of CNTs. The

recent progress in the development of nonlocal models can

be found in the review article (Arash and Wang 2012). In

the latest work, a unified integro-differential nonlocal

elastic model is illustrated, of which the novelty is depicted

by two-phase integro-differential form of Eringen nonlocal

elasticity theory (Khodabakhshi and Reddy 2015). In the

past several decades, application of differential nonlocal

elastic stress field model can be found in the studies of size

effect on mechanical properties of CNTs is an important

area of interest. This model was also introduced to account

for the size effect of the problems of buckling analysis

(Sudak 2003; Golmakani and Vahabi 2017), wave propa-

gation (Narendara et al. 2011) and vibration control (Be-

hera and Chakraverty 2017) in Euler–Bernoulli/

Timoshenko nanobeams (Reddy 2007; Thai 2012). Also,

application of nonlocal elastic stress field model can be

found in various material systems (Li et al.

2016b, 2017, 2018).

The description of the mechanical behavior of nano-

sized materials is not limited to the relations between stress

and strain. Higher-order theories of elasticity, which

include contributions from strain gradients, have been

developed (Toupin 1963; Mindlin 1964, 1965). In terms of

the deformation metrics used, higher-order theories can be

classified into general strain gradient theories and couple

stress theories. The strain gradient elasticity theories can be

treated as extensions of classical elasticity with additional

higher-order strain gradient terms. They were put forward

based on the assumption that the materials should be

viewed as atoms with higher-order deformation mechanism
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at micro/nano-scale. Within the theoretical framework of

couple stress theories, the higher-order rotation gradients

are included as the deformation metrics. To further explore

the practical applications of physical phenomenon of

interest, the simple models with one additional material

length scale parameter (Aifantis 1992; Yang et al. 2002)

and thermodynamically-based gradient theories (Srinivasa

and Reddy 2013) were also proposed. In the context strain

gradient theories, most of studies have been conducted to

investigate the static and dynamic problems and the pre-

dicted results present a pronounced stiffness enhancement

effect with increasing gradient coefficients (Ma et al. 2008;

Reddy 2011). The stiffness strengthening effect has been

verified from experimental tests. However, Eringen’s dif-

ferential nonlocal model is limited to its capability of

predicting softening stiffness of CNTs, namely, the

Young’s modulus reduces with increasing nonlocal scale

parameter. In order to predict the softening and strength-

ening stiffness of CNTs, the nonlocal first-order strain

gradient elasticity theory is established by introducing the

first-order strain gradient into the classical nonlocal elas-

ticity theory based on thermodynamic framework (Lim

et al. 2015). This theory builds a bridge between the

internal structure (nonlocal elastic model) and external

geometry (strain gradient models) of nanomaterials. It

provides a feasible approach to the theoretical modeling of

nanomechanics. The new dispersion relation between fre-

quency and wave number formulated by the constitutive

model of the nonlocal first-order strain gradient elasticity

theory can be used to study the problems of wave propa-

gating in CNTs (Li et al. 2016a; Tang et al. 2016).

The nonlocal first-order strain gradient elasticity theory

has achieved great success in evaluating size-dependent

mechanical behavior of nanomaterials. Nevertheless, Tre-

acy et al. (1996) found that CNTs share exceptionally

mechanical properties (i.e. high stiffness and axial

strength). The rapid strengthening effect of stiffness of

CNTs noticed from experimental observations may be not

fully presented by using the existing theories of size-de-

pendent elasticity due to the lack of higher-order defor-

mation mechanism. It is strongly necessary to further

perfect nonlocal first-order strain gradient elasticity theory

and make it possible to characterize the feature of rapid

strengthening stiffness of CNTs. It is noted that there exist

numerous applications and extensions of gradient elasticity

theories (Ma et al. 2008; Akgöz and Civalek 2011; Simsek

and Reddy 2013; Dehrouyeh-Semnani and Bahrami 2016).

The most typical one of strain gradient theories is the

second-order strain gradient theory (Mindlin 1965). This

general higher-order stress theory was initially put forward

by introducing second-order deformation gradients (first-

order strain gradients) as additional deformation metrics

into the strain energy density function of classical elasticity

theory. Many related research works have been performed

to investigate the size-dependent mechanical problems of

nanomaterials based on second-order strain gradient theory

and all the results indicate an obvious stiffness enhance-

ment effect with an increase of the gradient coefficients. As

a recent study made reference to the fact that the second

strain gradient theory with higher-order material constants

is highly capable to evaluate small-scale effects (Karpar-

varfard et al. 2015). Furthermore, a modified version of

second-order strain gradient theory can be found in the

work of Lam et al. (2003). It is worth mentioning that

Lazar et al. (2006) developed a more simplified but

straightforward version of second strain gradient theory to

investigate a screw dislocation and an edge dislocation. In

follow-up studies, it has been applied to investigate surface

effects, dislocations and disclinations and so on (Deng

et al. 2007; Polizzotto 2014). A recent work was devoted to

provide analytical formulation of material length scale

parameters associated with second strain gradient theory

for face-centered-cubic materials and evaluate the size-

dependent static behavior of a cantilever beam (Shodja

et al. 2012). It can be concluded that second order strain

gradient theory and its extensions play an important role in

predicting size-dependent effect of nanomaterials.

The existing theories of size-dependent elasticity are

mainly divided into three classes: (i) the non-gradient

nonlocal elastic stress field theory; (ii) the high-order the-

ories (strain gradient theories and couple stress theories)

and (iii) the nonlocal first-order strain gradient elasticity

theory. Although these theories are available to character-

ize the size-dependent mechanical behavior of solids at

micro/nano-scales with additional structural scale param-

eters, they are limited to predicting softening/strengthening

effect of stiffness. The rapid stiffness enhancement effect

noticed from experimental observation may be not fully

presented by them. Enlightened by the superiorities of

second-order strain gradient theory, the main objective of

this paper is to establish the nonlocal second-order strain

gradient elasticity theory by introducing the second-order

strain gradient field into the stored energy function of

nonlocal first-order strain gradient elasticity theory. This

may be significant important in the fabrication and

exploitation of nano-electromechanical devices. The con-

stitutive relations are obtained via the thermodynamic

framework. Hamilton principle is used to derive the gov-

erning equations of equilibrium and boundary conditions.

The proposed model is applied to investigate the wave

propagating in CNTs. The new dispersion relations derived

are presented for evaluating the effects of size-dependent

on the characteristics of wave propagation. Finally, some

conclusions are reached.
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2 Theoretical framework of nonlocal
second-order strain gradient elasticity

The main goal of this section is to establish the theoretical

framework of nonlocal second-order strain gradient elasticity.

2.1 Constitutive relations

Within the non-gradient nonlocal elastic stress field theory,

the authors assume that the nonlocal stress field and local

strain field satisfy the following integral type constitutive

relationship (Eringen and Edelen 1972):

rðxÞ¼
Z
t0
aðx; x0; e0aÞ c : eðx0Þdtðx0Þ ð1Þ

where rðxÞ ¼ frijg is the nonlocal stress tensor at point x,

eðx0Þ ¼ fe0ijg is the strain tensor at point x0, c ¼ fcijklg is

the elastic modulus tensor. The positive distance-decaying

kernel function a0ðx; x0; e0aÞ is used to characterize the

dependence of stress field at each point on the strain field at

all the points of the elastic body at the nanoscale. The

information of the long range forces between atoms is

involved by introducing nonlocal internal energy density

potential UðeðxÞ; eðx0Þ; e0aÞ as:

UðeðxÞ; eðx0Þ; e0aÞ ¼
1

2

Z
t0
a0ðx; x0; e0aÞc : eðxÞ: eðx0Þdtðx0Þ

ð2Þ

where a is the internal characteristic length, e0 is the

nonlocal material constant, eðxÞ ¼ feijg is the strain tensor

at point x0. The nonlocal scale parameter e0a can be treated

as the measurement of the internal structure feature of

nano-sized materials. It has been found that the nonlocal

differential constitutive relation can be used to replace the

specific class of kernel functions in the nonlocal integral

form with the exact same properties (Eringen 1983).

However, its capability of predicting size-dependent stiff-

ness is limited to characterize the softening stiffness

behavior by using the dispersive relation between fre-

quency and wave number. The stiffness enhancement

effect verified from experimental tests is not involved. In

order to deal with the problem, the kernel function

aðx; x0; e1aÞ is introduced to the non-gradient nonlocal

elastic stress field model to describe the nonlocal effect of

first-order strain gradient field (Lim et al. 2015). Never-

theless, numerous experimental studies indicate that the

strength of materials increases rapidly with decreasing

sample size. To better capture the size-dependence feature

of stiffness strengthening effect, the nonlocal internal

energy density potential function in the theoretical frame-

work of nonlocal first-order strain gradient elasticity (Lim

et al. 2015) is further extended as:

U eðxÞ; eðx0Þ; e0a; reðxÞ; reðx0Þ; e1a; rreðxÞ; rreðx0Þ; e2a½ �

¼ 1

2

Z
t0
a0ðx; x0; e0aÞc : eðxÞ: eðx0Þ dtðx0Þ

þ l2

2

Z
t0
a1ðx; x0; e1aÞc :reðxÞ:reðx0Þ dtðx0Þ

þ l4

2

Z
t0
a2ðx; x0; e2aÞc :rreðxÞ:rreðx0Þ dtðx0Þ

ð3Þ

where reðxÞ ¼ feij;kg and reðx0Þ ¼ fe0ij;kg are the first-

order strain gradient at point x and point x0, rreðxÞ ¼
feij;kmg and rreðx0Þ ¼ fe0ij;kmg are the second-order strain

gradient at point x and point x0, e1 and e2 are the related

material constants. The material length scale l is used to

evaluate the influences of higher-order strain gradient fields

and the additional kernel function a2ðx; x0; e2aÞ is intro-

duced to the nonlocal effect of second-order strain gradient

field. With the aids of principles of thermodynamics, the

constitutive relations of nonlocal second-order strain gra-

dient elasticity can be derived. According to the first law of

thermodynamics, one can obtain:
Z
t
q _U dt ¼

Z
t

r : _eþ rð1Þ..
.
r_eþ rð2Þ:: rr_e�r � qþ qs1

� �
dt

ð4Þ

where q is the mass density, s1 is the heat source density, q

is the heat flux vector, rð1Þ ¼ frij;kg is the gradient of stress

tensor, rð2Þ ¼ frij;kmg is the gradient of the gradient of

stress tensor. The superposed dot represents the time rate of

the field quantities. The local (or point-wise) form of

Eq. (4) can be written as:

q _U ¼ r : _eþ rð1Þ..
.
r_eþ rð2Þ:: rr_e�r � qþ Enonlocal

ð5Þ

where the nonlocal energy residual Enonlocal satisfies the

condition:Z
t

Enonlocaldt ¼ 0 ð6Þ

Within the framework of classical continuum mechan-

ics, the second law of thermodynamics states that the time

rate of internal entropy production _sint maintains the non-

negativity at each points within the domain for all thermo-

mechanical deformation processes, i.e.:

q _sint ¼ q _s� qs1

h
�r� q

h

� �h i
� 0 ð7Þ

The global form of relation (7) can be expressed as:
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d

dt

Z
t
qsdt�

Z
t

qs1

h
�r� q

h

� �h i
dt� 0 ð8Þ

where s and h are the entropy density and the absolute

temperature, respectively. By using the Reynolds transport

theorem, the above Eq. (8) can be written as:Z
t

q _s � qs1

h
þr� q

h

� �h i
dt� 0 ð9Þ

and its local form is given as:

q _s � qs1

h
þr� q

h

� �
+ Wnonlocal ð10Þ

where Wnonlocal is nonlocal entropy residual. Through the

Legendre transform, the Helmholtz free energy potential w
can be defined as:

w ¼ U � hs ð11Þ

and then eliminating U from Eqs. (5) and (9) has the form:
Z
t

�q _w � qs _hþr : _eþ rð1Þ..
.
r_eþ rð2Þ:: rr_e� q

h
rh

� �
dt� 0

ð12Þ

which can be further expressed as:
Z
t

r : _eþ rð1Þ..
.
r_eþ rð2Þ:: rr_e� q _w

� �
dt

�
Z
t

qs _hþ q

h
rh

h i
dt� 0

ð13Þ

For a thermo-mechanical deformation process under

uniform temperature, Eq. (13) has the form:Z
t

r : _eþ rð1Þ..
.
r_eþ rð2Þ:: rr_e� q _w

� �
dt� 0 ð14Þ

In terms of the internal energy density potential function

(3), the Helmholtz free energy potential involving nonlocal

effects of non-gradient field, first-order strain gradient and

second-order gradient is given by:

qwðxÞ ¼
Z
t
u eðx0Þ;reðx0Þ;rreðx0Þ; x0; eðxÞ;reðxÞ;rreðxÞ; x½ �dt0

ð15Þ

where u is assumed to be a symmetric function of its

arguments (Eringen 2002):

u eðx0Þ;reðx0Þ;rreðx0Þ; x0; eðxÞ;reðxÞ;rreðxÞ; x½ �
¼ u eðxÞ;reðxÞ;rreðxÞ; x; eðx0Þ;reðx0Þ;rreðx0Þ; x0½ � ¼ uSym

ð16Þ

and its time rate is:

q _w ¼
Z
t

ou
oe

_eþ ou
oe0

_e0 þ ou
ore

r_eþ ou
ore0

r_e0
�

þ ou
orre

rr_eþ ou
orre0

rr_e0
�

dt0
ð17Þ

Based on the symmetric characteristic of u, Eq. (17) is

rearranged as:

q _w ¼
Z
t

ou
oe

þ ou
oe0

� �Sym
" #

_eþ ou
ore

þ ou
ore0

� �Sym
" #

_e

þ ou
orre

þ ou
orre0

� �Sym
" #

_e

8>>>><
>>>>:

9>>>>=
>>>>;

dt0 þ �

ð18Þ

where

� ¼
Z
t

ou
oe0

_e0 � ou
oe0

� �Sym

e
: þ ou

ore0
r_e0 � ou

ore0

� �Sym

e
:

þ ou
orre0

rr_e0 � ou
orre0

� �Sym

e
:

2
6664

3
7775 dt0

ð19Þ

which is not a nonlocal energy. Due to the symmetric

feature of u, it is obtained:Z
t
� dt ¼ 0 ð20Þ

Using the above relation (20) and then substitution of

Eq. (18) into Eq. (14) yields

Z
t

r�
Z
t

ou
oe

þ ou
oe0

� �Sym
" #

dt0
( )

_e dt

þ
Z
t

r 1ð Þ �
Z
t

ou
ore

þ ou
ore0

� �Sym
" #

dt0
( )

r_e dt

þ
Z
t

r 2ð Þ �
Z
t

ou
orre

þ ou
orre0

� �Sym
" #

dt0
( )

rr_edt� 0

ð21Þ

For arbitrary choices of fields _e, r_e and rr_e, the

inequality (21) must hold for all thermo-mechanical pro-

cesses. This implies the following state equations:

r ¼
Z
t

ou
oe

þ ou
oe0

� �Sym
" #

dt0;

r 1ð Þ ¼
Z
t

ou
ore

þ ou
ore0

� �Sym
" #

dt0
ð22Þ

r 2ð Þ ¼
Z
t

ou
orre

þ ou
orre0

� �Sym
" #

dt0 ð23Þ

Thus far, the constitutive relations of nonlocal second-

order strain gradient elasticity are established and

elaborated.
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2.2 Governing equations of equilibrium
and boundary conditions

To derive the governing equations of equilibrium and

boundary conditions of nonlocal second-order strain gra-

dient elasticity theory, Hamilton’s principle is applied.

2.2.1 Hamilton’s principle

Based on Hamilton’s principle, the energy function is given

as:

P ¼ W þ T � U ð24Þ

which can be further represented as:

d
Z t2

t1

Pdt ¼ d
Z t2

t1

ðW þ T � UÞ dt ¼ 0 ð25Þ

The energy conservation law for nonlocal second-order

strain gradient elasticity theory is introduced as:

P ¼ W þ T � U

¼
Z
t
f � udtþ

Z
a

s 0ð Þ � uþ s 1ð Þ � Duþ s 2ð Þ � D2u
h i

da

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
external work W

þ 1

2

Z
t
q _u � _udt

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
kinetic energy T

þ
Z
t
qwdt

|fflfflfflffl{zfflfflfflffl}
nonlocal strain energy U

ð26Þ

where f is the body forces per unit mass, s 0ð Þ and s 1ð Þ (s 2ð Þ)
are the classical traction and couple vector per unit surface

area, respectively. The normal gradient operator D is

defined as:

D ¼ n � r ð27Þ

where n is defined as the unit outward vector normal to the

surface of the body. Noting that the free energy potential

containing nonlocal effects of non-gradient strain field and

first and second order strain gradient fields has the form:

qw ¼ 1

2
e :

Z
t
a0ðx; x0; e0aÞ c : e0dt0

þ l2

2
re..

.
Z
t
a1ðx; x0; e1aÞ c : re0 dt0

þ l4

2
rre ::

Z
t
a2 x; x0; e2að Þ c : rre0dt0

ð28Þ

Substitution of Eq. (28) into Eqs. (22) and (23) yields:

r ¼
Z
t
a0ðx; x0; e0aÞc : e0dt0 ð29Þ

r 1ð Þ ¼ l2
Z
t
a1ðx; x0; e1aÞ c : re0dt0 ð30Þ

r 2ð Þ ¼ l4
Z
t
a2ðx; x0; e2aÞ c : rre0dt0 ð31Þ

The variational statements of the external work, kinetic

energy and nonlocal strain energy in (25) are listed as

follows:

1. The variational form of the external work.

The first variation of the integral of the external work

over a period from t1 to t2 reads as:

d
Z t2

t1

W dt ¼
Z t2

t1

Z
t
f � dudt dt þ

Z t2

t1

Z
a

ðs 0ð Þ � du

þs 1ð Þ � Dduþ s 2ð Þ � D2duÞ da dt

ð32Þ

2. The variational form of the kinetic energy

The first variation of the integral of the kinetic

energy over a period from t1 to t2 reads as:

d
Z t2

t1

Tdt ¼ d
Z t2

t1

Z
t

q
2
ð _u � _uÞ dtdt

¼
Z
t

Z t2

t1

qð _u � d _uÞ dtdt

¼
Z
t
q ð _u � duÞ t2

t1
�
Z t1

t1

ð€u � duÞ dt

				
� �

dt

¼ �
Z
t

Z t2

t1

qð€u � duÞ dtdt

¼ �
Z t2

t1

Z
t
qð€u � duÞ dtdt

ð33Þ

when it is assumed that duðt1Þ ¼ duðt2Þ ¼ 0.

3. The variational form of the nonlocal strain energy

Substituting Eq. (28) into the nonlocal strain energy

and taking the first variation yields:

dU ¼
Z
t

r : rduþ r 1ð Þ..
.
rrduþ r 2ð Þ:: rrrdu

� �
dt

ð34Þ

By means of the corollaries of divergence theorems for

double-dot/triple-dot/quadruple-dot product of two tensors

and higher-dimensional integration by parts, the volume

integral in the right-hand side of Eq. (34) is converted

into the sum of a volume integral and three surface

integrals as:

2220 Microsystem Technologies (2019) 25:2215–2227

123



dU ¼�
Z
t

r�(r�r�r 1ð Þ + rr : r 2ð Þ)
h i

�dudt

þ
Z
a

n�ðr�r�r 1ð Þ + rr : r 2ð ÞÞ�duda

þ
Z
a

n�ðr 1ð Þ�r �r 2ð ÞÞ:rdudaþ
Z
a

n �r 2ð Þ..
.
rrduda

ð35Þ

The second and the third surface integrals in Eq. (35)

are rewritten as (Mindlin 1965):Z
a

n�ðr 1ð Þ�r � r 2ð ÞÞ: rdu da

¼
Z
a

L� n�ðr 1ð Þ�r � r 2ð ÞÞ
h i

�du da

þ
Z
a

nn:ðr 1ð Þ�r � r 2ð ÞÞ�Dduda

ð36Þ

Z
a

n � r 2ð Þ..
.
rrdu da

¼
Z
a

L� L�ðn � r 2ð ÞÞ
h i

�dudaþ
Z
a

n� L�ðn � r 2ð ÞÞ
h i

�Dduda

�
Z
a

L� r
S

n

� �
�ðnn : r 2ð ÞÞ

� �
�duda

þ
Z
a

L�ðnn : r 2ð ÞÞDduda þ
Z
a

nnn..
.
r

2ð Þ
�D2duda

ð37Þ

where the operator L and the surface gradient operator r
S

are respectively defined as (Mindlin 1965):

L ¼ nr
S

�n�r
S

; r
S

¼ ðI� nnÞ�r; I ¼ dijiiij ð38Þ

where the normal gradient operator r and r
S

satisfy the

following relationship:

r ¼ r
S

þnD ð39Þ

where dij is the Kronecker delta, ii and ij are the unit base

vectors. Then, Eq. (35) is further expressed as:

dU ¼
Z
t

�r�ðr�r � r 1ð Þ + rr : r 2ð ÞÞ
h i

�du dt

þ
Z
a

n�ðr�r � r 1ð Þ + rr : r 2ð ÞÞ�du da

þ
Z
a

L� n�ðr 1ð Þ�r � r 2ð ÞÞ þ L�ðn � r 2ð ÞÞ
hn

� r
S

n

� �
�ðnn : r 2ð ÞÞ

�

�du da

þ
Z
a

nn :ðr 1ð Þ�r � r 2ð ÞÞ + n� L�ðn � r 2ð ÞÞ
h in

þL� ðnn : r 2ð ÞÞ
o
�Ddu daþ

Z
a

ðnnnÞ..
.
r

2ð Þ
�D2duda

ð40Þ

The first variation of the integral of the nonlocal strain

energy over a period from t1 to t2 reads as:

d
Z t2

t1

Udt ¼
Z t2

t1

Z
t

�r�ðr�r � r 1ð Þ + rr : r 2ð ÞÞ
h i

�du dtdt

þ
Z t2

t1

Z
a

n�ðr�r � r 1ð Þ + rr : r 2ð ÞÞ�du dadt

þ
Z t2

t1

Z
a

L� n�ðr 1ð Þ�r � r 2ð ÞÞ þ L�ðn � r 2ð ÞÞ
hn

� r
S

n

� �
�ðnn : r 2ð ÞÞ

�

�du dadt

þ
Z t2

t1

Z
a

nn :ðr 1ð Þ�r � r 2ð ÞÞ + n� L�ðn � r 2ð ÞÞ
h in

þL�ðnn : r 2ð ÞÞ
o
�Ddu dadt þ

Z t2

t1

Z
a

ðnnnÞ..
.
r

2ð Þ
�D2dudadt

ð41Þ

Substitution of Eqs. (32), (33) and (41) into Eq. (25)

yields:

d
Z t2

t1

P dt¼
Z t2

t1

Z
t

r�ðr�r�r 1ð Þ +rr :r 2ð ÞÞþ f�q €uu
h i

�dudt

�

�
Z
a

L� n�ðr 1ð Þ�r�r 2ð ÞÞþL�ðn �r 2ð ÞÞ� r
S

n

� �
�ðnn :r 2ð ÞÞ

� ��

+ n�ðr�r�r 1ð Þ +rr :r 2ð ÞÞ�s 0ð Þ
o
�duda

�
Z
a

nn :ðr 1ð Þ�r�r 2ð ÞÞ
n

þn� L�ðn �r 2ð ÞÞ
h i

þL�ðnn :r 2ð ÞÞ�s 1ð Þ
o
�Dduda

�
Z
a

(nnn)..
.
r 2ð Þ �s 2ð Þ

� �

dt

ð42Þ

2.2.2 Derivation of governing equations

Using the Hamilton’s principle (25), the governing equa-

tions of equilibrium and boundary conditions of nonlocal

second-order strain gradient elasticity theory are derived:

Field equilibrium equation:
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r � tþ f ¼ q €uu in t ð43Þ

Surface boundary conditions:

s 0ð Þ ¼ n�ðr�r � r 1ð Þ + rr : r 2ð ÞÞ + L� n�(r 1ð Þ�r � r 2ð ÞÞ
h

þ L�ðn � r 2ð ÞÞ � r
S

n

� �
�ðnn : r 2ð ÞÞ

�
on St

ð44Þ

s 1ð Þ ¼ nn :ðr 1ð Þ�r � r 2ð ÞÞ + n� L�ðn � r 2ð ÞÞ
h i

þ L�ðnn : r 2ð ÞÞ on St ð45Þ

s 2ð Þ = ðnnnÞ..
.
r 2ð Þ on St ð46Þ

Boundary conditions:

u ¼ u on Su ð47Þ

Du ¼ uð1Þ on Su ð48Þ

D2u ¼ uð2Þ on Su ð49Þ

where the constitutive relation of the total stress tensor t is

given by:

t ¼ r�r � r 1ð Þ + rr : r 2ð Þ in t ð50Þ

where Su and St are the surface conditions for geometric

boundary conditions and natural boundary conditions.

3 Application

Using the model proposed in Sect. 2, wave propagation in

CNTs is investigated based on Euler–Bernoulli beam

model. The nonlocal strain energy function of Euler–Ber-

noulli beam is represented as:

u ¼ 1

2
Ea0ðx; x0; e0aÞe0xxðx0ÞexxðxÞ

þ l2

2
Ea1ðx; x0; e1aÞe0xx;xðx0Þexx;xðxÞ

þ l4

2
Ea1ðx; x0; e1aÞe0xx;xxðx0Þexx;xxðxÞ

ð51Þ

where E is the Young’s modulus. The classical stress rxx,

the first-order stress r 1ð Þ
xx , the second-order stress r 2ð Þ

xx and

the total stress txx are:

rxx ¼
Z L

0

Ea0ðx; x0; e0aÞe0xxðx0Þdx0 ð52Þ

r 1ð Þ
xx ¼ l2

Z L

0

Ea1ðx; x0; e1aÞe0xx;xðx0Þdx0 ð53Þ

rð2Þxx ¼ l4
Z L

0

Ea2ðx; x0; e2aÞe0xx;xxðx0Þdx0 ð54Þ

txx ¼ rxx �
dr 1ð Þ

xx

dx
þ d2r 2ð Þ

xx

dx2
ð55Þ

where the first-order strain gradient exx;x and second-order

strain gradient exx;xx denote as dexx=dx and d2exx
�

dx2,

respectively. It is further assumed that the nonlocal atten-

uation functions a0ðx; x0; e0aÞ, a1ðx; x0; e1aÞ and

a2ðx; x0; e2aÞ satisfy the conditions in (Eringen 1983).

Hence, the nonlocal integral constitutive relations (52) to

(54) can be transformed into the nonlocal differential

forms:

1 � ðe0aÞ2r2
h i

rxx ¼ Eexx ð56Þ

1 � ðe1aÞ2r2
h i

r 1ð Þ
xx ¼ El2exx;x ð57Þ

1 � ðe2aÞ2r2
h i

r 2ð Þ
xx ¼ El4exx;xx ð58Þ

By performing the linear nonlocal differential operator:

Li ¼ 1 � ðeiaÞ2r2 ði ¼ 0; 1; 2Þ ð59Þ

to both sides of Eq. (55), it is obtained:

1 � ðe0aÞ2r2
h i

1 � ðe1aÞ2r2
h i

1 � ðe2aÞ2r2
h i

txx

¼ E 1 � ðe1aÞ2r2
h i

1 � ðe2aÞ2r2
h i

exx

� El2 1 � ðe0aÞ2r2
h i

1 � ðe2aÞ2r2
h i

r2exx

þ El4 1 � ðe0aÞ2r2
h i

1 � ðe1aÞ2r2
h i

r4exx

ð60Þ

where r2 ¼ d2
�

dx2 and r4 ¼ d4
�

dx4 are defined as one-

dimensional differential operators. The Eq. (60) presents

the constitutive relation for the Euler–Bernoulli beam

model based on the nonlocal second-order strain gradient

elasticity theory. Noting that four length scale parameters

are involved in relation (60), namely, three of them rep-

resent the nonlocal effect of lower and higher order stress

fields and the fourth one is the nonlocal effect of higher-

order strain gradients. The nonlocal second-order strain

gradient constitutive relation (60) can degenerate into the

limiting cases as follows:

(a) The nonlocal first-order strain gradient model (Lim

et al. 2015):

1 � ðe0aÞ2r2
h i

1 � ðe1aÞ2r2
h i

txx

¼ E 1 � ðe1aÞ2r2
h i

exx � El2 1 � ðe0aÞ2r2
h i

r2exx

ð61Þ

is obtained when the nonlocal effect of second-order

strain gradient is ignored.
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(b) The second-order strain gradient model (Mindlin

1965):

txx ¼ Eð1 � l2r2 þ l4r4Þexx ð62Þ

is obtained when the nonlocal effect of stress field is

ignored.

(c) The non-gradient nonlocal elastic stress field model

(Eringen 1983):

1 � ðe0aÞ2r2
h i

txx ¼ Eexx ð63Þ

is obtained when the nonlocal effects of first and

second order strain gradients are both ignored.

The nonlocal second-order strain gradient model of

Euler–Bernoulli beam can be further simplified as:

1 � ðeaÞ2r2
h i

txx ¼ E 1 � l2r2 þ l4r4

 �

exx ð64Þ

when assuming e0 ¼ e1 ¼ e2 ¼ e by retaining terms of

order Oðr2Þ and Oðr4Þ. For Euler–Bernoulli beam, the

dynamic equilibrium equations are:

oQðx; tÞ
ox

¼ qA
o2wðx; tÞ

ox2
ð65Þ

oMðx; tÞ
ox

¼ Qðx; tÞ ð66Þ

where q is the material mass density, A is the cross-sec-

tional area, x is the lengthwise coordinate, Qðx; tÞ is the

shear force, Mðx; tÞ is the bending moment, wðx; tÞ is the

flexural deflection of the beam. The bending moment and

the strain read as:

Mðx; tÞ ¼
Z
A

ztxxðx; tÞdA ð67Þ

exxðx; tÞ ¼ �z
o2wðx; tÞ

ox2
ð68Þ

where z is the transverse coordinate. By integrating over

the cross-section of the beam on both sides of Eq. (64), it is

obtained:

1�ðeaÞ2 o2

ox2

� �
Mðx; tÞ ¼�EI 1� l2

o2

ox2
þ l4

o4

ox4

� �
o2wðx; tÞ

ox2

ð69Þ

Using the differential operator:

L ¼ 1 � ðeaÞ2 o2

ox2

on both sides of Eq. (65) and substituting Eq. (66) into the

equation, then Eq. (69) is further expressed as:

EI 1 � l2
o2

ox2
þ l4

o4

ox4

� �
o4wðx; tÞ

ox4

¼ �qA 1 � ðeaÞ2 o2

ox2

� �
o2wðx; tÞ

ot2
ð70Þ

where I is the second moment of area of the cross-section

about the y-axis. To investigate the wave propagation in

CNTs, the solution can be assumed as:

wðx; tÞ ¼ Weiðkx�xtÞ ð71Þ

where k is the wave number, x is the wave frequency, W is

the wave amplitude. Substitution of Eq. (71) into Eq. (70)

and applying the dimensionless quantities �x ¼ xT and �k ¼
kL yields:

�c

�c0

¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s2

l
�k2 þ s4

l
�k4

1 þ s2�k2

s
ð72Þ

where sl ¼ l=L, s ¼ ea=L, �c0 ¼ T
�
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=qA

p
,L is the

external length scale parameter, T is the characteristic time,

�c ¼ �x
�
�k is the dimensionless wave phase velocity for Euler–

Bernoulli beam. The relation (72) indicates that the simplified

nonlocal second-order strain gradient model of Euler–Bernoulli

beam can degenerate into the nonlocal stress field model

(Eringen 1983) (sl ! 0) and classical strain gradient model

(Aifantis 1992) (s ! 0). Following the similar approach, the

dispersion relation of nonlocal second-order strain gradient

model based on Euler–Bernoulli beam (60) has the form as:

where s0 ¼ e0a=L, s1 ¼ e1a=L and s2 ¼ e2a=L.

�c

�c0

¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ s2

1
�k2Þð1 þ s2

2
�k2Þ þ s2

l
�k2ð1 þ s2

0
�k2Þð1 þ s2

2
�k2Þ þ s4

l
�k4ð1 þ s2

0
�k2Þð1 þ s2

1
�k2Þ

ð1 þ s2
0
�k2Þð1 þ s2

1
�k2Þð1 þ s2

2
�k2Þ

s
ð73Þ
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4 Numerical results and discussions

In Eq. (73), it is clear that four size-dependent parameters,

i.e., s0, s1, s2 and sl are involved in the dispersion relation

between the dimensionless quantity �c=�c0 and dimension-

less wave number �k. The dimensionless coefficients s0, s1

and s2 can be treated as the nonlocal parameters to char-

acterize the internal feature of nano-sized materials and the

dimensionless coefficient sl represents the influences of

first and second strain gradients on the size-dependent

mechanical behavior. Using the simplified relation (72),

comparison studies are performed for present model, non-

local elastic stress field model (Eringen 1983) and nonlocal

first-order strain gradient elasticity model (Lim et al. 2015).

For numerical calculation, three cases are discussed: (a)

sl ¼ 0:20 and s ¼ 0:05 in the presence of second-order

strain gradient; (b) sl ¼ 0:2 and s ¼ 0:05 in the absence of

second-order strain gradient and (c) sl ¼ 0:00 and

s ¼ 0:05. From Fig. 1, it is observed that the magnitudes of

dimensionless quantity �c=�c0 increases continuously with

increasing dimensionless wave number �k for the three

cases. It is noted that the results of �c=�c0 predicted by the

present model is considerably higher than that from non-

local first-order strain gradient elasticity theory and non-

local elastic stress field theory. For example, when the

dimensionless wave number is fixed (�k ¼ 7), the value of

�c=�c0 calculated from present model is � 51:6% larger than

that from nonlocal first-order strain gradient elasticity

theory and � 161% larger than that form nonlocal elastic

stress field theory. However, the value of �c=�c0 calculated

from nonlocal first-order strain gradient elasticity theory is

only � 72% larger than that form nonlocal elastic stress

field theory. This implies that the dimensionless frequency

of wave propagating in CNTs increases steeply in the

presence of second-order strain gradient. The experimental

measurements of neutron scattering in germanium (Mind-

lin 1964) verified the stiffness strengthening effect for long

wavelength limit for two low frequency approximations.

This enhanced effect of static stiffness was also checked in

the latest work by introducing an additional material length

scale parameter (Lim et al. 2015). The authors concluded

that the enhancement effect of stiffness for very larger

wave length can be predicted by the size-dependent

parameter sl. It means that the larger sl is, the larger the

stiffness. However, the remarkably strengthening effect of

stiffness cannot be well predicted by using nonlocal first-

order strain gradient elasticity model. In a pioneering

experiment work, Treacy et al. (1996) found that the

‘‘bamboo-like’’ Young’s modulus (i.e. the exceptionally

high Young’s modulus) of CNTs and presented this finding

through the bright-field TEM micrographs. As shown in

Fig. 1, the high frequency can be predicted in the presence

of second-order strain gradient field. This indicates that

present model can characterize the rapid strengthening

effect of stiffness of CNTs.

To weigh the influences of size-dependent parameters

on the wave propagating in CNTs, the following two cases

are discussed in detail:

(a) Case 1, the material length scale used to evaluate the

influence of higher-order strain gradient fields is

dominant, i.e., sl [ s0 [ s1 [ s2 (sl [ s0 [ s2 [
s1), sl [ s1 [ s2 [ s0 (sl [ s1 [ s0 [ s2) and

sl [ s2 [ s1 [ s0 (sl [ s2 [ s0 [ s1).

(b) Case 2, the material length scale used to evaluate the

influence of internal structure is dominant, i.e., s0 [
sl [ s1 [ s2 (s0 [ sl [ s2 [ s1),s0 [ s1 [ s2 [ sl
(s0 [ s1 [ sl [ s2),s0 [ s2 [ s1 [ sl
(s0 [ s2 [ sl [ s1).

By using the dispersion relation (73), the numerical

results are obtained. In the calculation, the parameters sl
and s0 are chosen as fixed values for the both two cases.

Figures 2 and 3 display the dispersion relations based on

present model for Case 1 and Case 2, respectively. From

Fig. 2, it is seen that the magnitudes of �c=�c0 in the cases of

sl [ s0 [ s1 [ s2, sl [ s1 [ s2 [ s0 and

sl [ s2 [ s0 [ s1 are significantly greater than that in the

case of classical solutions. This suggests that the influence

of gradient coefficient sl is superior to s0 in determining the

stiffness of CNTs. Although the value of s0 is assumed to

be larger than sl in Case 2, Fig. 3 shows that the magnitude

of �c=�c0 from classical solutions is less than that from the

cases of s0 [ sl [ s1 [ s2, s0 [ s1 [ s2 [ sl and

s0 [ s2 [ s1 [ sl. And again, it is indicated that the gra-

dient coefficient sl plays a leading role in predicting the

size-dependent mechanical behavior of CNTs.

Fig. 1 Dispersion relations based on present model, nonlocal stress

field model and nonlocal first-order strain gradient model (Lim et al.

2015)
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To further explore the effects of size-dependent

parameters on the wave propagating in CNTs, Figs. 4 and 5

illustrate dispersion relations from the proposed model for

different values of sl and s0. The calculation is carried out

when parameters s1 and s2 are assumed to be constants (i.e.

s1 ¼ 0:20 and s2 ¼ 0:30). Figure 4 indicates that the

magnitude of �c=�c0 increases significantly with the increase

of sl. It is clear that the special-scale of the CNTs is even

smaller when sl is larger. Therefore, it can be concluded

that the strengthening effect of stiffness is more apparent

for the smaller CNTs. Figure 5 shows that the curves of

dispersion relations in the cases of sl ¼ 0 and sl ¼ 0:001. It

means that the influence of gradient coefficient can be

ignored when sl approaches to zero. As shown in Fig. 5, it

is observed that the larger the s0 is, the smaller the mag-

nitude of �c=�c0. It can be deduced that the stiffness of CNTs

is decreasing for the smaller CNTs. From above discus-

sions, it is obtained that present model can be used to

predict the rapid strengthening effect and softening effect

of stiffness of CNTs.

5 Conclusions

To compensate for the defect in the existing size-dependent

elasticity theories, this work aims to establish a nonlocal

second-order strain gradient theory by introducing the

second-order strain gradient tensor involving nonlocal

effect into the stored energy function of nonlocal first-order

strain gradient elasticity theory. The theory proposed in this

paper is expected to bridge the gap between experimenta-

tion (i.e. rapid stiffness enhancement effect noticed from

experimental observation) and available computational

size-dependent elasticity models. On the other hand, the

Fig. 2 Dispersion relations based on present model for Case 1

Fig. 3 Dispersion relations based on present model for Case 2

Fig. 4 Dispersion relations based on present model with different

values of sl

Fig. 5 Dispersion relations based on present model with different

values of s0
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new governing equations of equilibrium and boundary

conditions are also obtained via Hamilton principle. The

new dispersion relations between frequency and wave

number are derived from present model and then used to

investigate wave propagating problem in CNTs. Unlike the

prevalent size-dependent elasticity models, the results

indicate that present model can predict the rapid increasing

effect of stiffness of nanobeams. This work may be helpful

for theoretical modeling of nanomechanics.

Acknowledgements This work is supported National Natural Science

Foundation of China (11572237, 11732007) and the Fundamental

Research Funds for the Central Universities.

References

Agrawal PM, Sudalayandi BS, Raff LM, Komanduri R (2006) A

comparison of different methods of Young’s modulus determi-

nation for single-wall carbon nanotubes (SWCNT) using

molecular dynamics (MD) simulations. Comput Mater Sci

38:271–281

Aifantis EC (1992) On the role of gradients in the localization of

deformation and fracture. Int J Eng Sci 30:1279–1299
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