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Abstract
In this research, nanofluid thermal behavior in an energy storage system is illustrated by means of FEM. CuO nanoparticles

have been dispersed into the water to overcome the poor thermal conductivity. Role of Brownian motion is included for

estimating characteristics of nanofluid. Results are shown as solid fraction, isotherm contours, average temperature and

total energy profiles. Results showed that dispersing nanoparticles to pure PCM have important impact on heat transfer

rate. As A and N enhances, total energy and solidification time decrease. Furthermore, in order to reach greatest solidi-

fication rate, nanoparticles with dp = 40 nm should be used.

Abbreviations
NEPCM Nano-enhanced PCM

FEM Finite element method

PCM Phase change material

List of symbols
Cp Heat capacity

Lf Latent heat of fusion

k Thermal conductivity

Greek symbols
a Thermal diffusivity (m2/s)

q Fluid density

/ Concentration of NEPCM

Subscripts
nf NEPCM

f Pure PCM

p Particle

1 Introduction

In recent decade, one of the effective heat storage methods

in which phase change materials is used, has been attracted

various scientists attention. Latent heat thermal energy

storage has various uses because PCMs have great heat

capacity. The disadvantage of PCMs is low thermal con-

ductivity. This limitation can be solved by adding

nanoparticles into pure PCMs (Haq et al. 2017a; Sheik-

holeslami et al. 2018b; Hayat et al. 2016a; Mushtaq et al.

2014). Chamkha et al. (2010) investigated melting influ-

ence on hydrothermal treatment over a vertical plate. They

studied non-Newtonian thermal radiation in a permeable

media. Sheikholeslami and Rokni (2017) published a report

for application of derrofluid. Comprehensive review paper

has been published by Sheikholeslami and Ganji (2016) to

show importance of nanotechnology. Haq et al. (2017b)

investigated carbon nanotubes pulsatile flow due to mag-

netic forces in an annulus. Sheikholeslami and Chamkha

(2016) depicted the nanofluid treatment in presence of

Coulomb force. Hassan et al. (2016) showed the innovative

models for predicting solar radiation. Sobamowo (2016)

utilized semi analytical method to analyze nanofluid slip

boundary conditions.

Hayat et al. (2017) demonstrated slip impact of nano-

fluid in a rotating system. Tao and He (2015) presented the
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NEPCM charging process in an energy storage system.

Ahmed et al. (2017) reported time dependent flow on a

heated surface. Ellahi et al. (2016) demonstrated the roles

of nanoparticles’ size on second law analysis on a wedge.

Darzi et al. (2016) simulated the influence of number of

fins (4, 10, 15, 20), and volume concentration (0, 2, 4%) of

copper nanoparticles as additive on the charging and dis-

charging of PCM. They indicated that dispersing 4%

nanoparticles to the water reduce the melting time by 46%

while the solidification time reduces just by 16%. Garoosi

et al. (2016) employed numerical approach to simulate

nanofluid behavior in a heat exchanger with hot pipes.

Shahzad et al. (2016) examined Buongiorno model for

nanofluid transportation in a sinusoidal duct. Abro and

Khan (2017) studied the Casson fluid MHD transportation

in a porous media. They did not consider singular kernel in

their equations. Selecting effective working fluid becomes

hot topics in recent years (Hayat et al. 2016b; Raju et al.

2016; Ahmad and Mustafa 2016; Sheikholeslami and

Ellahi 2015; Li et al. 2016; Sheikholeslami et al. 2018a).

In current paper, impacts of utilizing NEPCM on tran-

sient heat transfer rate were studied. This transient process

was simulated by FEM. Results demonstrate the effects of

nanofluid volume fraction, dp, N and A.

2 Problem explanation

Figure 1a shows the thermal storage shape. The enclosure

is filled with NEPCM. Table 1 shows the nanoparticles and

pure PCM properties. Complex shape of inner cylinder

helps solidification rate. Boundary conditions are shown in

Fig. 1b.

Fig. 1 a Three-dimensional view of LHTESS; b two dimensional

solution domain

Table 1 The physical properties of water as PCM, CuO as nanopar-

ticles and aluminum fin

Property PCM Nanoparticles

q (kg/m3) 997 6500

Cp (j/kg K) 4179 540

k (w/mK) 0.6 18

dp (nm) – 29

Lf (j/kg) 335,000 –

Table 2 The coefficient values of CuO–water nanofluids

Coefficient values CuO–water

a1 - 26.593310846

a2 - 0.403818333

a3 - 33.3516805

a4 - 1.915825591

a5 6.42185846658E-02

a6 48.40336955

a7 - 9.787756683

a8 190.245610009

a9 10.9285386565

a10 - 0.72009983664
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Fig. 2 Adaptive mesh

refinement procedure when

A = 0.5, / = 0.04, dp = 30 nm
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3 Formulation of problem

Transient heat conduction within solidification can be

presented by these formulas:

ðqCpÞnf
dT

dt
¼ rðknfrTÞ þ Lnf

dS

dt
ð1Þ

S ¼ 0

S ¼ 1

S ¼ ð0:5T0 � T þ TmÞ=T0

8
<

:

T [ Tm þ T0ð Þ
T\ �T0 þ Tmð Þ

� T0 þ Tmð Þ\T\ Tm þ T0ð Þ
ð2Þ

(qCp)nf, qnf and (qL)nf of NEPCM are:

ðqCpÞnf ¼ /ðqCpÞp þ ðqCpÞf ð1� /Þ ð3Þ

qnf ¼ qp/þ ð1� /Þqf ð4Þ

ðqLÞnf ¼ ðqLÞf ð1� /Þ ð5Þ

knf can be predicted by below formulas (Sheikholeslami

2018):

Rf ¼ 4� 10�8 km2=W ; Rf ¼ � dp=kp þ dp=kp;eff ;

g0ðdp; T ;/Þ ¼ LnðTÞ a2LnðdpÞ þ a5LnðdpÞ2
�

þa1 þ a3Lnð/Þ þ a4LnðdpÞLnð/Þ
�

þ a6 þ a8Lnð/Þ þ a10LnðdpÞ2 þ a7LnðdpÞ þ a9 lnðdpÞLnð/Þ
� �

knf

kf
¼ 1þ 5� 104qf/

ffiffiffiffiffiffiffiffiffi
jbT
qpdp

s

cp;f g
0ðdp; T ;/Þ

� 3
1� kp=kf
� �

/

kp=kf þ 2
� �

þ / 1� kp=kf
� � :

ð6Þ

Table 2 demonstrates the needed constant parameters.

Etotal and Tave should be obtained as:

Etotal ¼ r sðqLÞnf þ ðqCpÞnf T
� �

dV ð7Þ

Tave ¼
r TdA

r dA
: ð8Þ

4 FEM and validation

Galerkin finite element method with grid refinement was

applied to solve this unsteady process. Unsteady terms are

estimated by implicit backward difference method. New-

ton–Raphson method was employed to solve final equa-

tions. This code is validated by comparing the result with

previous experimental approach. Figures 2 and 3 represent

the adaptive mesh and verification, respectively.

5 Results and discussion

In current research, the effect of using NEPCM on dis-

charging process is simulated by means of FEM. Sinu-

soidal shape inner cylinder and NEPCM are utilized to

accelerate solidification process. Outputs present the

effects of nanofluid volume fraction (/ = 0–0.04), size of

nanoparticles (dp = 30–50 nm), number of undulations

(N = 5, 4, 3) and amplitude (A = 0.1, 0.3, 0.5).

Figure 4 depicts the influence of adding CuO into pure

fluid on phase change front. This figure proves that dis-

persing CuO to pure PCM have important influence on

discharging rate. This is because of domination of con-

duction mechanism in solidification. As shown in this fig-

ure, adding CuO nanoparticles helps solidification process.

For instance, solidification is done 1.36 times faster than

pure PCM when dp = 30 nm, A = 0.5, N = 5. Furthermore,

as time progresses the influence of / become more

sensible.

Solid fraction and isotherms contours in various time

steps are illustrated in Figs. 5, 6 and 7. Just half of

geometry can be shown because the geometry is symmet-

ric. As amplitude and number of undulations augments,

solidification process takes shorter time. Solidification

front progress sooner by using higher A and N. So, this

process becomes completed in lower times.

According to obtained data, increasing A, makes this

process faster than before. So, it can be concluded that

influence of amplitude is more sensible in higher values of

N. Similar behavior is obtained for number of undulations.

It means that influence of N has higher effect for greater

values of A. In A = 0.5, N = 5, the best performance of

Fig. 3 Comparison between solidification front in fin-assisted

LHTESS in present study and experimental work by Ismail et al.

(2001)
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LHTESS is obtained and solidification of NEPCM is

completed after 1334.3 s. This case depicts the fast solid-

ification process.

Average temperature variations and Save are demon-

strated in the Figs. 8 and 9. Maximum values of average

temperature and minimum values of solid fraction obtain at

beginning of process. As A and N enhance, the cold wall

(a) (b)

(c)

Fig. 4 Effect of adding

nanoparticles into PCM on

Phase change front [red (/ = 0),

green (/ = 0.04)] at various

times [time = 300 s (solid line),

time = 700 s (broken line),

time = 1300 s (dotted broken

line)] when A = 0.5,

dp = 30 nm (color figure online)
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has more significant impact on NEPCM. Outputs prove that

the lowest full solidification time can be obtained for

highest values of /, A, N. This observation is clear from

related diagrams and contour.

Figure 10 demonstrates total energy of solidification in

LHTESS. This parameter can be calculated as sum of latent

and sensible heat. As A and N enhances, total energy

decreases. This means that increasing these parameters can

improve solidification process. This figure shows that

maximum of Etotal exists at the beginning of solidification.

Effect of dp on discharging rate is presented in Fig. 11.

As demonstrated in this figure, increasing dp, at first

increases the discharging rate but after 40 nm, opposite

observation is observed. Effects of dp, N on Save, Etotal and

Tave are depicted in the Figs. 12, 13 and 14. Maximum

value of Save and minimum values of Tave are obtained for

dp = 40 nm.

Influences of N, dp, A on full discharging time have been

shown in Fig. 15. The related formula is:

Time ¼ 8021:7� 224:72 dp þ 52:67N þ 580:58A

� 1:67 ðNÞðdpÞ þ 0:16ðAÞðdpÞ � 367:73ðAÞðNÞ
þ 4:45ðd2pÞ þ 2:04ðN2Þ � 327:9ðA2Þ:

ð9Þ

Using NEPCM instead of PCM makes solidification rate

to improve due to augment of thermal properties. As A and

N augments, the full solidification time decreases. Pene-

tration depth increases with augment of A and N. So phase

change front reach to outer wall in lower time. By using

higher values of A, N, the area influenced by cold wall will

be broader and heat transfer improves more sensible. Also

this figure indicates that dp = 40 nm has the lowest Time.

Fig. 5 Solid fraction (right side) and temperature (left side) contour plots at three different time steps during solidification process of LHTESS

when A = 0.1, dp = 30 nm
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6 Conclusion

In this paper, unsteady problem of solidification in a

LHTES based on NEPCM is studied by means of FEM.

Various shapes of inner cylinder, size of nanoparticles and

CuO-water volume fraction are utilized to investigate the

solidification process. Results reveal that using nanoparti-

cles can accelerate the discharging rate. Using higher

amplitude leads to expedite the solidification rate. A, N and

/ have direct relationship with solidification rate.

Fig. 6 Solid fraction (right side) and temperature (left side) contour plots at three different time steps during solidification process of LHTESS

when A = 0.3, dp = 30 nm
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Fig. 7 Solid fraction (right side) and temperature (left side) contour plots at three different time steps during solidification process of LHTESS

when A = 0.5, dp = 30 nm
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Fig. 8 Effects of A, N on average temperature variations over computational domain during solidification process when / = 0.04, dp = 30 nm
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Fig. 9 Effects of A, N on solid fraction during solidification process when / = 0.04, dp = 30 nm
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Fig. 10 Effects of A, N on total energy released during the discharging process in LHTESS when / = 0.04, dp = 30 nm
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(a) (b)

(c)

Fig. 11 Effect of diameter of

nanoparticles on Phase change

front [green (dp = 30 nm),

orange (dp = 40 nm), blue

(dp = 50 nm)] at various times

(time = 300 s (solid line),

time = 700 s (broken line),

time = 1300 s (dotted broken

line)] when A = 0.5, / = 0.04

(color figure online)
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Fig. 12 Effects of dp, N on average temperature variations over computational domain during solidification process when / = 0.04, A = 0.5
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Fig. 13 Effects of dp, N on solid fraction during solidification process when / = 0.04, A = 0.5
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Fig. 14 Effects of dp, N on total energy released during the discharging process in LHTESS when / = 0.04, A = 0.5
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0.04, 0.3Aφ = = 0.04, 4Nφ = =

0.04, 40pd nmφ = =

0.04, 0.3Aφ = = 0.04, 4Nφ = =

0.04, 40pd nmφ = =
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