
TECHNICAL PAPER

Functional perspective-based probabilistic fault detection
and diagnostic algorithm for autonomous vehicle using longitudinal
kinematic model

Kwangseok Oh1 • Sungyoul Park2 • Jongmin Lee2 • Kyongsu Yi2

Received: 31 October 2017 / Accepted: 14 May 2018 / Published online: 17 May 2018
� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
This paper describes a functional perspective-based probabilistic fault detection and diagnostic algorithm of an autono-

mous vehicle using a longitudinal kinematic model. The relative displacement and velocity between the subject vehicle and

a preceding vehicle was obtained by a radar installed in front of the autonomous vehicle. The obtained relative values were

used to control the longitudinal behavior of the autonomous vehicle, the longitudinal acceleration of which was obtained

from an internal sensor. In order to detect and diagnose actual faults in the obtained values, such as relative displacement,

velocity, and acceleration, a fault detection and diagnostic algorithm for the longitudinal control of the autonomous vehicle

was developed using a sliding mode observer and predictive function. The probabilistic analysis of fault signals was

conducted using the constructed sliding mode observer and predictive function. The actual driving data of the vehicle

preceding the subject vehicle was used for the rational performance evaluation of the proposed algorithm. The performance

evaluation was conducted in the MATLAB/SIMULINK environment. The evaluation results showed that the proposed

fault detection and diagnostic algorithm can stochastically detect and diagnose applied fault signals.

1 Introduction

Generally, autonomous vehicles use various environment

and internal sensors, such as radar, lidar, camera, GPS, and

IMU to obtain information concerning obstacles, pedes-

trians, and surrounding vehicles, including motorcycles, for

their behavior control. However, if the measured signals of

the sensors are faulty, such as those pertaining to relative

displacement, velocity, and acceleration, fatal road acci-

dents can occur. Therefore, a fault detection and diagnostic

algorithm that can be used to avoid fatal accidents needs to

be developed and validated for the commercialization of

autonomous vehicles. To solve this problem, various

studies on the development of such a fail-safe algorithm

have been conducted by different research institutions in

universities and automobile companies.

Tan et al. (Tan and Edwards 2002) proposed two methods

for sensor fault detection and reconstruction using the slid-

ing mode observer and a number of simulation results. Jeong

et al. (2015) designed and validated a sensor and actuator

fault diagnostic algorithm according to the Kalman filter-

based observer using various combinations of sensors, such

as steering, yaw rate, and wheel speed. Loureiro et al. (2014)

proposed a bond graph model-based fault diagnosis and fault

tolerant control algorithm for heavy autonomous vehicles

that carry containers. Kim et al. (2016) proposed a model-

based fault detection and isolation algorithm for current and

position sensors of the individual in-wheel motors of electric

vehicles. Garoudja et al. (2017) developed a fault detection

and diagnostic algorithm for a photovoltaic system based on

a statistical approach. Wang et al. (2017) reviewed and

summarized recent research developments on the spectral

kurtosis (SK), kurtogram, adaptive SK, and protrugram, as

well as corresponding applications in the fault detection and

diagnosis of rotating machines. Behere and Torngren (2016)

developed a functional reference for autonomous driving.

The proposed functionality was described at the logical level

and the architectural components are divided into three
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parts: perception, decision, and control. Jo et al. (2015)

proposed a development methodology that enables the

design and development of an autonomous car by showing

the implementation process intuitively. Sargolzaei et al.

(2016) developed a neural network-based fault detection

technique that can detect and track fault injection on adap-

tive cruise control in real time. Zinoune et al. (2015) pro-

posed fault detection, isolation, and adaptation (FDIA) in

navigation systems on board passenger vehicles for pre-

venting malfunctions in advanced driving assistance and

autonomous driving systems. Stavrou et al. (2016) devel-

oped a model-based algorithm for detecting and identifying

actuator faults on differential-drive mobile robots in an

indoor environment. Davoodi et al. (2017) developed an

algorithm for a simultaneous fault detection, isolation, and

tracking control scheme using a single dynamic observer.

Furthermore, Li et al. (2017) proposed phase space recon-

struction and an extreme learning machine based sensor

fault diagnosis algorithm for an autonomous underwater

vehicle. The performance was evaluated by predicting the

sensor output to achieve fault diagnosis.

This paper proposes a probabilistic fault detection and

diagnostic algorithm for an acceleration sensor and radar, in

order to ensure the safety of the longitudinal control for

autonomous vehicles. The algorithm is designed based on

measurements such as relative displacement, velocity, and

acceleration values. The upper and lower boundaries for the

fault detection of the acceleration sensor were derived using

the sliding mode observer, based on the longitudinal kine-

matic model. A driver’s probabilistic longitudinal accelera-

tion distribution derived from actual test data was used for to

derive the acceleration limits. Based on the longitudinal

kinematic model, the predictive fault diagnostic algorithm

was developed to detect and diagnose fault signals in radar

sensors. The proposed algorithm was designed to detect and

diagnose fault signals, such as an offset fault. This is because

fault signals, such as those that hold and turn off the power,

can be autonomously detected by the sensor. The stochastic-

based quantitative analysis for the fault diagnosis was con-

ducted using the fault index for driving-healthmonitoring and

fault level determination. An overall fail-safe architecture for

autonomous vehicles was also proposed in this paper for

future research. The performance evaluation of the proposed

probabilistic fault detection and diagnostic algorithm was

conducted on the MATLAB/SIMULINK environment using

the actual driving data of the preceding and subject vehicles.

The datawas obtained from a radar installed in the front of the

subject vehicle. The radar used in this study for front vehicle

recognition is the Delphi ESR radar. The scanning rate of the

radar is 20 Hz (50 ms). The radar signal is received through

the Controller Area Network (CAN) (100 Hz sampling rate)

of the test vehicle. In order to obtain relative displacement and

velocity between the preceding vehicle and the subject

vehicle, the raw data of the radar’s output was converted from

polar coordinate values to Cartesian coordinate values since

the raw data of the output includes the distance range, angle,

and range rate of 64 tracks.

The remaining paper is organized as follows. Section 2

describes the overall fail-safe architecture for autonomous

vehicles. Section 3 explains the probabilistic fault diag-

nostic algorithm and Sect. 4 describes the actual data-based

performance evaluation. Finally, concluding remarks are

provided in Sect. 5.

2 Overall fail-safe architecture
for autonomous vehicles

The proposed fail-safe architecture for autonomous vehi-

cles in this study consists of three components, from a

functional perspective: perception, decision, and control.

The overall architecture of the fail-safe system for auton-

omous vehicles is described in Fig. 1.

Faults are classified into four types: sensor, internal,

algorithm, and actuator. Because the algorithm fault is not

related to the external fault signal, fault detection and

diagnosis cannot be applied to the algorithm fault. In the

perception component, unpredictable fault signals in the

sensors used were detected and diagnosed by the detection

and diagnostic algorithm. Based on the diagnosed fault

signals, the fault level was determined in the decision part

for the appropriate control action. In the control part,

proper control actions, such as emergency braking, ceding

control, and emergency stop, were activated based on the

determined fault level in order to avoid fatal accidents. In

this paper, the fault detection and diagnostic algorithm for

perception was proposed as the first stage of the research

on the functional perspective fail-safe system for autono-

mous vehicles. The following section, Sect. 3, describes

the fault detection and diagnostic algorithm.

3 Fault detection and diagnostic algorithm
for longitudinal safety control

In this study, the driving condition encountered by an

autonomous vehicle when following another vehicle (pre-

ceding vehicle) was considered because driving while

following a vehicle is more dangerous than driving without

Fig. 1 Overall architecture of the functional perspective-based fail-

safe system for autonomous vehicles
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a preceding vehicle. The driving condition considered in

this study is illustrated in Fig. 2.

The sliding mode observer was used for the probabilistic

fault detection by reconstructing the relative acceleration

using a longitudinal kinematic model. This model, used for

fault detection, is shown in the following equation:

d

dt

x1
x2

� �
¼ 0 1

0 0

� �
x1
x2

� �
þ 0

1

� �
ap � as
� �

: ð1Þ

where x1 and x2 are the states, such as relative dis-

placement (indicated as clearance in Fig. 2) and relative

Fig. 2 Driving condition of an autonomous vehicle with a preceding

vehicle

(a)

(b)

(c)

Fig. 3 Evaluation results for relative acceleration reconstruction

based on actual driving data (case 1)

(a)

(b)

(c)

Fig. 4 Evaluation results for relative acceleration reconstruction

based on the actual driving data (case 2)

Table 1 Driving data used for acceleration distribution

Division Number of obtained data Summary

Driver-1 2 7 drivers and 16 driving data

Driver-2 2

Driver-3 2

Driver-4 2

Driver-5 2

Driver-6 2

Driver-7 4
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velocity, obtained by the front radar, respectively. ap and as
represent the accelerations of the preceding vehicle and

subject vehicle, respectively. In order to formulate the

sliding mode observer, the output (y) is defined as follows,

using the observation matrix, C ¼ 1 1½ �.

y ¼ C
x1
x2

� �
ð2Þ

The observer equation, as defined below, is used for the

reconstruction of the relative acceleration in order to derive

the upper and lower limits that were used for the acceler-

ation fault detection and diagnosis.

Fig. 7 Acceleration limits: normal driving (case 2, with 3r)

Fig. 5 Probability distribution of the longitudinal acceleration

derived from actual driving data

Fig. 6 Acceleration limits: normal driving (case 1, with 3r)

Fig. 8 Predicted and stored states for comparison with the measured

states

Fig. 9 Fault detection concepts for relative values

Fig. 10 Fault ratio concept
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_̂x ¼ Ax̂þ Gv ð3Þ

where x represents the state vector, and matrices A and G

are identical to the matrices in Eq. (1). x̂ represents the

estimated states, and v is the discontinuous injection term

for relative acceleration reconstruction. In order to secure

the convergence stability of the sliding mode observer,

coordinate transformation was conducted. The equation of

the coordinate transformation is as follows.

xc ¼ Tcx ð4Þ

In the sliding mode observer, the transformation matrix

is basically defined using the observation matrix and its

null space matrix, as follows.

Tc ¼ nullðCÞ C½ �T ð5Þ

The transformed state space equation of Eq. (1), using

Tc and the partitioned error dynamics, can be derived as

follows.

_xc ¼ TcAT
�1
c xc þ TcB ap � as

� �
ð6Þ

_e1 ¼ Ac;11e1 þ Ac;12ey þ Gc;1v

_ey ¼ Ac;21e1 þ Ac;22ey þ Gc;2v
ð7Þ

where xc represents the transformed state. The output error,

ey, can be placed on the sliding surface, S ¼ ey : ey ¼ 0
� �

,

by defining the discontinuous injection term.

v ¼ qsignðeyÞ ð8Þ

In the above, q represents the magnitude of the injection

term. Using the defined injection term based on the

appropriate q, the output error can be converged along the

sliding surface by the eta-reachability condition (Shtessel

2014). Because the output error can converge to zero, the

Fig. 11 Model schematics for performance evaluation

cFig. 12 Fault diagnosis results in the case of faults in relative values:

case 1, offset fault signal

(a)

(b)

(c)

(d)

(e)
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equivalent output injection term can be derived using

Eq. (7) as follows.

veq ¼ �G�1
c;2Ac;21e1 ð9Þ

In order to check the stability of the error term, e1, the

eigen value of the element (1,1) of the partitioned system

matrix TcAT
�1
c in Eq. (6) is computed as shown below.

Ac;11 � Gc;1Gc;2Ac;21 ¼ �1 ð10Þ

The quantity of the element (1,1) of the system matrix

TcAT
�1
c always has a value of - 1, indicating that the error

dynamics for the state estimation are definitely stable.

Based on the designed sliding mode observer, the perfor-

mance evaluation for the reconstruction of the relative

acceleration was conducted using actual driving data Li

et al. (2017). Figures 3 and 4 show the evaluation results of

the relative acceleration reconstruction using actual driving

data. It can be seen that the errors for the state and output

estimations have converged to zero in finite time.

The sliding mode observer algorithm constructed in this

study uses the final output data of the radar for recon-

struction because the effect of the radar’s sensing delay is

negligible. Although the effect of the radar’s sensing delay

is not considered at this research stage, optimization of the

algorithm by considering the sensing delay is considered as

a future work. In order to derive the upper and lower limits

of acceleration for fault detection, the longitudinal accel-

eration of the subject vehicle was computed using the

following equation.

as ¼ ap � arel;r ð11Þ

where arel;r is the acceleration value, reconstructed based

on the designed sliding mode observer. In this study, the

probabilistic longitudinal acceleration distribution was

derived from the actual driving data of the acceleration of

the preceding vehicle because this acceleration cannot be

obtained without a vehicle-to-vehicle (V2 V) communica-

tion system or estimation algorithm. However, the pre-

ceding vehicle’s longitudinal acceleration can be estimated

using relative velocity and displacement with the assump-

tion that there are no fault signals in relative values.

Therefore, the actual driving data is based on urban driving

conditions, and 16 sets of driving data were used for the

derivation of the distribution at this research stage. The

experiments for data measurement were conducted under a

relatively low traffic congestion condition and various

speed conditions (0–25 m/s). Table 1 summarizes these

actual driving data.

bFig. 13 Fault diagnosis results in the case of faults in acceleration:

case 1, offset fault signal

(a)

(b)

(c)

(d)

(e)
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Based on the analyzed acceleration data, it was found

that the average and standard deviations of the entire

acceleration data are 0.0728 and 0.6698 m/s2, respectively.

Using Eq. (11) and the derived information from the

acceleration distribution, the upper and lower limits for

fault detection can be computed using the following

equations.

as;upper ¼ ap;þ3r � arel;r ð12Þ

as;lower ¼ ap;�3r � arel;r ð13Þ

The upper and lower limits were computed using three

standard deviations (r) that represent 99.7% of the sample

population. If the longitudinal acceleration measured by

the internal sensor of the autonomous vehicle is a value

between the upper and lower limits, the algorithm decides

that there is no fault in the acceleration sensor. However, if

the measured value is outside the bounds of the computed

limits, the algorithm decides that there is a fault in the

acceleration sensor. Figures 6 and 7 describe the fault

detection results based on the actual driving data.

As can be observed in Figs. 5 and 6, the measured

vehicle acceleration always has a value between the upper

and lower limits because there are no fault signals in the

acceleration sensor. In this study, the predictive fault

detection and diagnostic algorithm for measurements of the

relative displacement and velocity were proposed based on

the longitudinal kinematic model and measured vehicle

acceleration. The proposed algorithm is based on the rel-

ative displacement and velocity, both of which can be

predicted using the measured acceleration. Moreover, the

equation for prediction can be derived from the longitudi-

nal kinematic model, as follows.

x1 k þ 1ð Þ
x2 k þ 1ð Þ

� �
¼ 1 Dt

0 1

� �
x1 kð Þ
x2 kð Þ

� �
þ 0

Dt

� �
ap � as
� �

ð14Þ

where Dt is the discretization time for the state prediction.

Because the longitudinal acceleration of the preceding

vehicle cannot be obtained exactly without V2 V com-

munication, the statistically derived acceleration distribu-

tion was used for the computation of the predicted state of

the upper and lower limits. Using the state vector, the

predicted state can be written as follows (x).

xðNÞ ¼ ANxð0Þ þ
XN
i¼1

AN�iBuði� 1Þ ð15Þ

where N represents the prediction step; A and B represent

the system and input matrices in Eq. (14), respectively;

bFig. 14 Fault diagnosis results in the case of faults in relative values:

case 2, offset fault signal

(a)

(b)

(c)

(d)

(e)
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xð0Þ and u represent the current state vector and input,

defined as ap � as, respectively. The fault detection and

diagnosis were conducted by comparing the measured

displacement with the relative displacement, and the rela-

tive velocity with the predicted states, based on Eq. (15).

The measured data were compared with the predicted

states, which represent the current state in the stored data.

Figure 8 shows the predicted and stored states for com-

parison with the measured states.

The limits of the states for fault detection were com-

puted using the derived acceleration distribution. When the

measured states have values between the predicted upper

and lower limits, the detection algorithm decides that there

is no fault. However, if one or more results of the measured

states have values outside the predicted limits, the detec-

tion algorithm decides that there are unexpected fault sig-

nals in the measured states. Figure 9 describes the concept

of the fault detection for relative displacement and relative

velocity.

In order to diagnose the fault in the radar, an index that

represents the fault ratio was proposed in this study. The

proposed fault ratio is a ratio with respect to the stored and

predicted states. Specifically, the fault ratio can be com-

puted using the following equation.

Rf ¼
Nf

N
ð16Þ

where Nf represents the number of faults diagnosed by the

predictive algorithm. Figure 10 describes the concept of

the fault ratio proposed in this study.

Based on the proposed fault detection and diagnostic

algorithms, the following section describes the actual

human driving data-based performance evaluation with

rational fault signals.

4 Actual data-based performance
evaluation

In order to conduct a rational performance evaluation,

actual driving data were used. The actual data were

obtained by the long range radar installed in front of the

automated vehicle and acceleration sensor. Additionally,

reasonable fault signals, such as step, hold, and zero, were

applied to the data for performance evaluation. All of the

simulations were conducted using the actual driving data.

Figure 11 describes the model schematics for the perfor-

mance evaluation.

bFig. 15 Fault diagnosis results in the case of faults in acceleration:

case 2, offset fault signal

(a)

(b)

(c)

(d)

(e)
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It was found that the sliding mode observer can recon-

struct the relative acceleration well despite the unpre-

dictable fault signals for the upper and lower limits of the

acceleration. Moreover, the applied faults, such as the

offset signal, can be detected and diagnosed using the

proposed detection and diagnostic algorithm. Figures 12–

17 show the results of the performance evaluation. x1 and

x2 represent the state variables used in Eq. (14) such as

relative displacement and velocity between preceding

vehicle and subject vehicle. The abscissa (predicted state)

and the ordinate (t [s]) in (d) and (e) of Figs. 12, 13, 14, 15,

16, 17 represent the predicted time state (20 steps) and

actual time flow, respectively.

The evaluation results of the proposed algorithm

demonstrated its positive performance in fault detection

and diagnosis under various driving conditions. Three

actual driving data were used for the performance evalua-

tion, and offset fault signals were applied to the states (x1
and x2) and acceleration values. The applied fault was

detected based on the predictive algorithm, and the fault

index was computed for fault diagnosis. The computed

fault indices showed reasonable fault diagnosis results. In

the case of state x2, the applied fault was not well detected

because the 3r-value was used for the state prediction.

However, it was shown that state x1 was relatively well

detected because x1 represents the integral result of state

x1. Additionally, the acceleration faults were well detected

based on the reconstructed upper and lower limits of the

acceleration. As can be seen in Figs. 13, 15, and 17, the

acceleration can be detected only if the magnitude of the

applied fault is larger than the magnitude of 3r. The fol-

lowing section provides the conclusion derived from this

study and a discussion on future studies.

5 Conclusion

This paper described the proposed functional perspective-

based probabilistic fault detection and diagnostic algorithm

using a longitudinal kinematic model. The sliding mode

observer was used to reconstruct the relative acceleration

based on the relative displacement and relative velocity

measured by radar. The reconstructed relative acceleration

was used to compute the upper and lower limits of the

longitudinal acceleration with the probabilistic distribution

of the acceleration. In order to derive the acceleration

distribution, 16 sets of actual driving data were analyzed

and used to evaluate the performance of the proposed fault

bFig. 16 Fault diagnosis results in the case of faults in relative values:

case 3, offset fault signal

(a)

(b)

(c)

(d)

(e)

Microsystem Technologies (2018) 24:4527–4537 4535

123



diagnostic algorithm. Moreover, the stochastic predictive

algorithm for fault diagnosis was developed for the relative

values obtained by radar. Based on the predictive diag-

nostic algorithm, an index that can represent the fault ratio

quantitatively was proposed for the quantitative evaluation

of the fault diagnosis. A rational performance evaluation

under various driving conditions using actual driving data

was conducted in the MATLAB/SIMULINK environment.

The results showed that the proposed fault detection and

diagnostic algorithm can detect and diagnose the applied

fault reasonably and quantitatively. Accordingly, it is

expected that the developed fault detection and diagnostic

algorithm in this study can be used for the perception

function in the fail-safe system of autonomous vehicles.

However, because the longitudinal acceleration of the

preceding vehicle used for detection and diagnosis is based

on a probabilistic distribution from actual driving data, the

proposed fault detection algorithm in this study is not

optimized. Therefore, the application of the V2 V com-

munication for optimizing fault detection and diagnosis is

considered as a future work. Other future work considered

is the optimization of the developed fault detection and

diagnostic algorithm by considering the effect of sensing

delay of radar used in the study.
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