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Abstract
Cable-driven parallel robots (CDPRs) have been widely used in various industrial applications requiring high sensitivity.

These CDPRs mainly use high strength polymer ropes with light weight and low inertia. However, the polymer cable used

in CDPR has the complicated dynamic characteristics such as nonlinear elongation, hysteresis, creep and short and long-

term recovery. As CDPR cables are loaded and unloaded under various forces and velocities, dynamic creep and recovery

due to loading and unloading strain rate occurs in real time. We proposed the integrated nonlinear dynamic model of

polymer cable for the low tensile rate. All of dynamic behaviors were described with only integrated nonlinear dynamic

model based on the visco-elastic model. Since the total time when the tension is applied to the system is an important factor

in the dynamic creep characteristics, we calculated the loading and unloading time using the concept of equivalent force

and the Newton–Raphson method. The constructed model was verified by comparing with experimental results for the

hardening effect, dynamic creep, hysteresis and short- and long-term recovery. The proposed model had a good agreement

with experimental result.

1 Introduction

Cable-driven parallel robots (CDPRs) find many applica-

tions in disaster prevention, construction, testing, and rig-

ging (Williams II et al. 2008; Merlet and Daney 2010;

Gobbi et al. 2011). In recent years, such robots have

become used in situations requiring high sensitivity (e.g.,

surgery, and pick-and-place) (Miermeister et al. 2010;

Hannaford et al. 2013). Such CDPRs have mainly used

lightweight, high-strength polymer ropes with low inertia

(Schmidt and Pott 2017). However, unlike steel cables,

polymer cables are susceptible to elongation (Chattopad-

hyay 1997; Cai and Aref 2015), causing positional errors if

the nonlinear dynamics of the cables are not considered.

Thus, accurate cable modeling is very important in terms of

CDPR precision.

Polymer cables used to control CDPRs feature compli-

cated dynamics including nonlinear elongation, hysteresis,

creep, and short- and long-term recovery. Many previous

studies have explored cable elongation characteristics.

Schmidt and Pott (2017) and Merlet (2009) developed

compensation and control algorithms using a modified

version of Hooke’s law to control the elongation of poly-

mer cables. Miyasaka et al. (2016) developed a hysteresis

model. However, previous authors focused on only single

simplified characteristics because it is difficult to dynami-

cally model a polymer cable. Such models may be suit-

able for high-speed systems because the time-dependent

effect is small, but are unsuitable for low-speed systems

exerting force over a long time, such as the FAST (500 m

Aperture Spherical Telescope) with an operating speed of

10 mm/s (Deng et al. 2017). In addition, the hysteresis

model of Miyasaka et al. (2016) ignores the creep effect

even though that effect dominates cable length deforma-

tion. In order that the creep behavior is to be ignored, prior

warm-up was required. However, cyclic loading and

unloading cause cable cracking, and warm-up process

requires a long time to prepare for operation. In real CDPR

systems, eight cables are loaded and unloaded under vari-

ous forces at different velocities. Therefore, dynamic creep

and recovery from loading and unloading occurs in real

time (Falcone and Ruggles-Wrenn 2009). Dynamic creep is

a creep that occurs under a variable force condition rather

than a static force condition. For example, when a cable is
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slowly elongated by variable force condition, time-depen-

dent creep may develop because a pseudo-static equivalent

force is continuously applied. The time and force-depen-

dence in this situation means dynamic creep. Despite many

of these problems, no integrated dynamic model of a

polymer cable has yet been established, seriously com-

promising accuracy.

The existing creep-and-recovery models essentially

feature two components: Maxwell model with Hookean

spring and Newtonian damper connected in series, and

Kelvin Voigt model connected in parallel (Findley and

Davis 2013; Augusto et al. 2013). However, the Kelvin–

Voigt model does not consider the structural elongation

that occurs when loads are applied, and the Maxwell model

does not represent the time-dependence of the creep and

recovery. To solve these problems, Burger’s model (based

on the Maxwell and Kelvin–Voigt models; Li et al. 2000;

Chen et al. 2011) has been used in many studies to deal

with static creep and recovery characteristics. However, as

Burger’s model is a static model, it describes creep and

recovery behavior when only static force (not dynamic

force) is applied. Therefore, it is necessary to derive the

dynamic creep and recovery model dependent on too low

tensile rate condition such as FAST. Furthermore, CDPRs

have recently been used to manufacture large objects such

as three-dimensional printers. The system has the mixed

concrete in the end-effector. The mass of mixed concrete is

gradually reduced. A continuous slow change in the mass

rate can trigger dynamic creep and recovery.

In this paper, we develop an integrated and nonlinear

dynamic model of a polymer cable operating at various

tensile rates. The model considers dynamic creep, elonga-

tion (including the hardening effect), hysteresis, and short-

and long-term recoveries. All are introduced via integrated

and nonlinear dynamic modeling based on a visco-elastic

system. In addition, the Newton–Raphson method is used

to obtain loading times under constant tensile rate condi-

tions, and a solution of the dynamic cable model, which is a

nonlinear equation, is derived. In the first section, experi-

mental and nonlinear cable dynamics are described. Next,

we derive an accurate, theoretical dynamic model for

polymer cable. In this section, the static creep (considering

the hardening effect) is first derived. Then, dynamic creep

and short-term recovery are considered. As loading time is

important in terms of dynamic creep, we derive the loading

time using the concept of equivalent force and the Newton–

Raphson method. Dynamic behavior is predicted using the

derived loading time. Next, short- and long-term recoveries

are investigated. Long-term recovery is modeled using the

Kelvin–Voigt component. Using an integrated dynamics

model, we identified the hysteresis behavior. The final

model is verified by comparison with experimental data

obtained using a tensile test machine and various cable

samples differing in length, tensile strain rate, and applied

force.

2 Nonlinear cable dynamics

2.1 Experimental setup

We performed cyclic tensile loading to investigate the

creep and hysteresis characteristics of the polymer cable; a

Shimadzu AGS-X Plus tensile tester, capable of sustaining

forces of up to 20 kN (Fig. 1), was employed. The

Dyneema SK78 polyethylene cable used in CDPR systems

(that can withstand 2000 N; Weis et al. 2013) was also

evaluated. The cable diameter was 3 mm. However, due to

the internal configuration of the cable, the diameter chan-

ges in a complex manner as force is applied. These changes

are too small; thus, in our simulations, we assumed that the

cable diameter remained constant. As the system is oper-

ated, the cable length changes continuously as the winches

wind or unwind the cable. Therefore, we conducted

experiments using two cable lengths (100 and 300 mm).

Loads of 100–150 N (generally used in CDPR systems)

were applied, based on the FALCON cable force (Kawa-

mura et al. 1995). The tensile rates were set at 3 mm/min

(Miyasaka et al. 2016) or 50 mm/min to investigate the

effects of varying rates. To assess short-term recovery, one

loading/unloading cycle was performed. To evaluate long-

term recovery, a cyclic loading test using new cable was

first performed; then, the tensile test was repeated using the

same cable after 24, 48, or 72 h of rest. When measuring

long-term recovery, we assumed that the elongation would

Dyneema cable
Material
Polyethylene
Young’s modulus
- 109~132 Gpa
Diameter
- Ø 3.0mm

Fig. 1 Experimental setup and cable properties
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be the same as the recovery when the same force was

applied to the cable in the second tensile test. Finally,

recovery was assessed by measuring elongation in the

second tensile test. Each experiment was performed three

times, and the average values were used in the analysis.

2.2 Nonlinear cable dynamics

Figure 2 shows the qualitative characteristics of the cable

during cyclic loading and unloading; the arrows indicate

the deformation directions. The red line of left side is the

simplest evaluation using a Hooke’s law-based model

(static elongation). The green line reflects dynamic

behavior when the dynamic creep effect occurs during the

red line. It can dominantly occur for case of too low strain

rate. In the blue area containing arrow �, as the cable is

slowly elongated, time-dependent dynamic creep occurs

because a force equivalent to the constant force is contin-

uously applied. The blue line represents unloading

dynamics with consideration of recovery. When 100 N

were applied and the load was then returned to 0 N, the

length of the cable increased (compared with the initial

length). This is because dynamic creep occurred when the

cable was stretched. In the yellow area, the cable slowly

returns to its original length via short- and long-term

recoveries (arrow `). Note that both creep and recovery

are in play during unloading. This means that cable elon-

gation is nonlinear, reflecting both creep and recovery as

the cable is unloaded. Also, as loading is repeated, the

cable becomes gradually elongated due to dynamic creep

and the hardening effect of strain (arrow ´). In contrary,

when unloading is maintained, long-term recovery occurs

in the cable. Such interactions among creep, recovery, and

hardening cause hysteresis. In the Bouc–Wen hysteresis

model, not only does hysteresis lack any physical meaning

but also constitutes a closed loop (Miyasaka et al. 2016).

Thus, the cable length profiles assume discrete values

during cyclic loads. This is why the Bouc–Wen hysteresis

model cannot be used to model CDPR cable dynamics. In

contrary, the integrated model can be reflect the hysteresis

because contains the dynamic behavior for hysteresis. If

cyclic loading is repeated, the hysteresis cycles converge

because there is no residual dynamic creep. Also, harden-

ing is dependent on strain because hardening reflects

physical entanglements of the polymer network that are

intensified by deformation (Myung et al. 2007). Thus,

hardening also converges as cyclic loading is repeated.

3 A cable model considering the dynamic
characteristics

3.1 Static creep and hardening effects

As mentioned above, cable length errors cause control

errors; accurate cable modeling is essential. Cable

dynamics are affected by cable creep/recovery at all times

in CDPR systems. Creep and recovery can be divided into

static terms (instantaneous values) and a dynamic term that

predominates over time (Lurzhenko et al. 2014). Prior to

deriving the dynamic creep, we investigated static effects

on the polymer cable. Many previous studies have modeled

static creep simply by using the Hookean spring model

(Schmidt and Pott 2017; Merlet 2009). However, as load-

ing progresses, hardening caused by develops as modeled

below:

ec;s ¼
F

E1;cA

� �hðei�1Þ
ð1Þ

hðei�1Þ ¼ 1 þ beci�1; ð2Þ

where ec,s is static creep, E1,c is the elastic parameter of

static elongation as for the elongation is proportional to the

force F. cross-sectional area of the cable is denoted as A,

h(ei-1) is the hardening factor the function of total strain at

previous step ei-1. b and c are model parameters. The
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Fig. 2 The qualitative

characteristics of cable

elongation
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hardening factor is proportional to residual stress and it

corresponds to stretched strain. As a result, it is dependent

on the previous strain ei-1 because of the internal structure

and polymer network of cable (Myung et al. 2007).

3.2 Time-dependent behavior of cable

In the conventional Burger’s model, the time-dependent

creep and recovery are considered only for static forces

(i.e. constant forces). The following equations reflect the

time-dependent creep and recovery terms of Burger’s

model:

ec ¼
F

E2;cA
1 � e�t=tc

� �
þ Ft

g0A
ð3Þ

er ¼
F

E2;rA
1 � e�t=tr

� �
; ð4Þ

where E2,c and E2,r are the elastic parameters for time-

dependent creep ec and recovery er, g0 is the Newtonian

damping parameter following viscous behavior, and tc and

tr are the creep and recovery retardation times, respec-

tively. The model is dependent on loading and unloading

times. During recovery, the damping term connected in

series is removed. For static applied tension, Burger’s

model as described by Eqs. (3) and (4), has often been used

to model polymer creep and recovery properties due to its

simplicity. However, this is the static condition based

model (Skinner and Rao 1986), which is not suitable for

systems where various forces are applied to the cable with

too low strain rate. Therefore, the dynamic creep is defined

as time-dependent elongation induced by too low strain

rate and variable applied tension in this research. First, to

derive the loading time, we use a dynamics model based on

a visco-elastic model, as follows:

eðtÞ ¼ Ff

E1;cA

� �hðei�1Þ
� Ff

E1;rA

þ
R ttotal

0
FðtÞdt

ttotal

1

E2;cA
1 � e�ttotal=tc

� ��

þ 1

g0A
� 1

E2;rA
1 � e�ttotal=tr;1

� ��
ð5Þ

eðtÞ ¼
Z t

0

_eðtÞdt � _ettotal ðFor constant strain rateÞ ð6Þ

where e is the total strain of cable, _e means the tensile rate

of cable, ttotal means the total time of loading, and Ff is

finally applied force. The equation contains creep, recov-

ery, and hardening factors. The integral in the third term of

Eq. (5) incorporates the dynamic effect. If the tensile rate is

considerably slow, it is regarded as equivalent force at

pseudo-static state. Thus, the integral term reflects the

equivalent force, and also can be regarded as Eq. (5) equal

to Eq. (6) in constant strain rate. Because proposed visco-

elastic model has non-linear characteristics with respect to

the loading time ttotal, the actual time was solved using the

Newton–Raphson method. The predicted loading and

unloading time from the solutions using Eqs. (5) and (6) is

for the dynamics behavior.

3.3 Long-term recovery and hysteresis

Another characteristic of cable dynamics is long-term

recovery. Piao et al. (2018) solved the long-term recovery

problem by adding a Kelvin–Voigt component to Burger’s

model. The long-term recovery component is described

below:

er; long ¼
DF
E3;rA

1 � e�t=tr;2
� �

ð7Þ

tr;2 ¼ k1ð
1

_e
Þ2 � k2; ð8Þ

where er,long is the long-term recovery strain, is dominant at

variation of force DF from last load Ff, E3,r means the

elastic parameter of long time recovery, tr,2 means the

retardation time of the long-term recovery. It is dependent

on the strain rate _e, the model parameter of tr,2 denoted as

k1, k2. The polymer cable returns to its original length by

long-term recovery as shown in Eq. (7). Such cable prop-

erties have been reported by many authors (Van der Werff

and Pennings 1991; Hammad et al. 2015). Finally, the

dynamics model can be derived by combining previously

modeled equations:

ei ¼

Ff

E1;cA

� �hðei�1Þ
�
R ttotal

0
FðtÞdt

ttotal

1

E2;cA
1 � e�ttotal=tc

� �
þ 1

g0A

� �
ðLoadingÞ

Ff

E1;cA

� �hðei�1Þ
� Ff

E1;rA
þ
R ttotal

0
FðtÞdt

ttotal

1

E2;cA
1 � e�ttotal=tc

� �
þ 1

g0A
� 1

E2;rA
1 � e�ttotal=tr;1

� �� �
ðUnloadingÞ

8>>><
>>>:

� DF
E3;rA

1 � e�ttotal=tr;2
� �

ð9Þ
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where the derived loading time ttotal is again substituted

into the proposed visco-elastic model for dynamic behavior

[Eq. (9)] to obtain a solution for the dynamic strain. The

dynamic creep and recovery effects are modeled using the

concept of equivalent force. The first and second terms are

instantaneous effects of cable, thus not time-dependent.

However, as the hardening effect h(ei-1) is a function of the

strain of the previous step, this should always be modeled

together with dynamic creep to derive the strain. Hysteresis

is an important dynamic characteristic, caused by a com-

bination of dynamic creep, hardening, and short- and long-

term recoveries. Hysteresis develops due to differences in

the extent of creep during recovery and changes in stiffness

caused by the hardening effect. Our proposed model basi-

cally reflects the dynamic behavior of hysteresis, which is

why hysteresis was not modeled separately.

4 Verification of the integrated model

To evaluate the proposed model, we performed experi-

ments under linearly increasing stretch and cyclic tensile

loads. In cyclic loading tests, 10 loading cycles were

applied. Each elongation measured with the 2000 mea-

suring point per cycle (data sampling). Experiments were

performed using cables 100 mm and 300 mm in length l,

and tensile rates of 3 mm/min and 50 mm/min. The

applied forces were 100 N and 150 N. Simulation of short-

term recovery featured single-cycle loading at each force

for each length of cable. To explore long- term recovery,

we performed two tests. The first was a cyclic loading test

using new cable under 100 N of force. Then, the tensile test

was repeated under the same force after 24, 48, and 72 h of

rest. We assumed that if the cable was re-stretched using

the same force as in the first experiment, the cable would

elongate to the full extent of the recovery. The measured

cable elongations were compared with those predicted by

the model. Each experiment was performed three times,

and the average values calculated. To compare the inte-

grated dynamic model, we used the concept of hysteresis

energy dissipation because hysteresis reflects overall

dynamic behavior. Each parameter is summarized in

Table 1 based on the progressed experiment.

Figure 3 shows the force–elongation profiles at different

elongation speed conditions. The tests were performed at

constant tensile rates. The force exerted ranged from 0 to

100 N and the cable length was 300 mm. The red and blue

lines are the profiles at tensile rates of 50 and 3 mm/min,

respectively, and the black dotted lines represent the sim-

ulated result by the integrated nonlinear dynamic model of

dyneema cable. The errors are measured using the average

of the RMS errors by comparing the strain for force. For

each condition, the average error was 0.20 mm (3.5%) at

50 mm/min and 0.06 mm (0.72%) at 3 mm/min. The lower

tensile rate (3 mm/min) was associated with more elon-

gation over time, as shown in Fig. 3. In other word, as the

cable stretches slowly, a time-dependent creep occurs

continuously, and the amount of creep is 4 times larger

than the static elongation at a tensile rate of 3 mm/min.

Because of them, the consideration of tensile rate is

essential for the polymer cable. On the other hand, it is less

affected by dynamic creep if the cable is tensioned by high

tensile rate (50 mm/min). This is because the force is

applied for less time than is the case for the lower tensile

rate.

Figure 4 shows cyclic loading test result (experimental

and simulated). In the simulation, Eqs. (5) and (6) is used

to obtain the loading, unloading time, Eq. (9) is used to

obtain the elongation history. Since the experiment is not

related to long-term recovery, the long-term recovery

model is ignored in Eq. (9). The green and red lines are

experimental result for a cable under maximum forces of

150 and 100 N, respectively, and the black lines represent

the simulations. The experiments were performed at a

tensile rate of 3 mm/min. As shown in the graphs, the

stiffness increased and converged to one cycle as loading

progressed (Schmidt and Pott 2017), due to time-dependent

Table 1 Parameters of the creep-and-recovery model

Parameter Value Parameter Value

E1,c 1.8 Gpa E1,r 3 Gpa

E2,c 8.2 Mpa E2,r 8.0 9 102 Mpa

g0 5.0 9 103 Gpa E3,r 6.0 9 102 Mpa

tc 62.5 s tr,1 1 s

b 0.0035 k1 8.65 9 105

c 3.83 k2 1.0 9 103

_e 3 mm/min, 50 mm/min A 7.06 mm2

l 100 mm, 300 mm Ff 100 N, 150 N

0 1 2 3 4 5 6 7 8 9
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Fig. 3 The effect of tensile rate (tensile rate of 50 and 3 mm/min)

Microsystem Technologies (2018) 24:4677–4687 4681

123



dynamic creep and hardening as strain is applied to the

cable. To measure the error, the difference of average

strains for applied force between simulation and experi-

ment result are used. For the two loading conditions, the

average errors were 0.03 mm at 100 N and 0.09 mm at

150 N. Each errors are under the 1.6%.

Figure 5 shows cyclic loading test result (experimental

and simulated) by cable length. The elongation history was

obtained in the same way as in the previous experiment.

The green and red lines are the experimental profiles. The

maximum applied force was 100 N. The errors are also

measured using the average strain for applied force. In the

simulations, the average error in the 100 mm cable length

tests was 0.027 mm. The error was thus within 0.9%.

However, notably, if the cable length changed under the

same loading conditions, elongation was not proportional

to cable length. For example, during the time of application

of 0 N of force in the first unloading, the 300 mm cable

elongated by 6.1 and the 100 mm cable by 1.85 mm. This

is explained by the tensile rate. With the 300 mm cable,

3 mm/min is 1%/min but, with the 100 mm cable, 3 mm/

min is 3%/min. This affects the cable loading time.

Therefore, the time-dependent creep differs. Based on the

data of Figs. 4 and 5, when exploring the accuracy of the

hardening effect, the averaged gradient was calculated

linearly by using the initial force (0 N) and the end force

(100 or 150 N). And errors were compared using the each

gradients (Fig. 6). Also, cable lengths of 100 mm and

300 mm were used when evaluating the hardening effect

(Fig. 7). As the cycles progressed, the stiffness increased

via the hardening effect and, then, the increasing rate

thereof fell. This is because no residual stress remained as

the loading cycle progressed. The errors are in 7.5%

compared with experiment.

Figure 8 shows the short-term recovery data for cables

of different lengths under various maximum forces. The

force trajectory featured a single cycle of loading and

unloading. We explored two cable lengths and two
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Fig. 4 The cyclic loading test: a maximum force of 150 N, b maximum force of 100 N
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maximum forces. The colored lines are experimental data.

The red lines are data obtained when the cable length was

300 mm and the maximum force 150 N. The green and

blue lines are data obtained under a maximum force of

100 N with cables 300 mm and 100 mm in length,

respectively. The black dotted lines are the simulated data

without short-term recovery, and the black bolded lines

correspond to those with short-term recovery. If such

recovery is not considered, the lines are straight at

unloading time. However, when short-term recovery is

considered, elongation is nonlinear when unloading and

tends to follow the experimental curves because unloading

is initially most affected by short-term recovery. The errors

(measured at 0 N) are listed in Table 2, and are very low. If

short-term recovery is not considered, the errors increase as

cyclic loading progresses.

Figure 9 is graph for investigate the long-term recovery

of cable. We first used new cable and then repeated the test

using the same cable after 24, 48, and 72 h. It is essential

that the cable is tested under the same force, because we

Table 2 Each error of the case

without short-term recovery and

the case of considering the

short-term recovery

100 N (100 mm) 100 N (300 mm) 150 N (300 mm)

Experimental [mm] 1.99 6.07 6.96

w/o short term recovery [mm] 2.69 7.92 9.28

Error [%] 35.13 30.48 33.33

w/short term recovery [mm] 2.05 6.05 6.90

Error [%] 3.02 3.30 0.86
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Fig. 9 The cyclic loading test

for long-term recovery: a cable
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assumed that when the same force was applied, the elon-

gation would be the same as the recovery. In the both of

graph in Fig. 9, the green lines represent cyclic tensile test

data using new cable. The blue, brown, and red lines are

tensile test data obtained after 24, 48, and 72 h, respec-

tively. Due to the assumption mentioned above, the black

marks reflect long-term recovery. The retardation time of

the shorter cable was faster. Compared with the 300 mm

cable, the strain rate was relatively high, and, thus, the

dynamic creep occurred over less time. Thus, recovery was

relatively faster (less dynamic creep). The errors are listed

in Table 3.

As mentioned above, hysteresis reflects a combination

of cable dynamics. Thus, use of an accurate hysteresis loop

Table 3 Each error of the case long-term recovery

24 h 48 h 72 h

100 mm

Exp. [mm] 2.33 2.33 2.36

Sim. [mm] 2.26 2.26 2.26

Errors [%] 2.74 2.95 3.90

300 mm

Exp. [mm] 5.05 5.99 7.12

Sim. [mm] 5.09 6.23 6.92

Errors [%] 0.65 3.90 2.86

Table 4 Energy dissipation of

the hysteresis (Maximum force

of 100 and 150 N)

Cycles 1 2 3 4 5

Hysteresis energy dissipation 100 N

Exp. [J] 0.776 0.233 0.192 0.176 0.157

Sim [J] 0.777 0.226 0.184 0.170 0.150

150 N

Exp. [J] 1.331 0.478 0.395 0.372 0.355

Sim [J] 1.360 0.450 0.375 0.345 0.340

Cycle 6 7 8 9 10

Hysteresis energy dissipation 100 N

Exp. [J] 0.158 0.154 0.147 0.147 0.144

Sim [J] 0.149 0.141 0.138 0.138 0.138

150 N

Exp. [J] 0.339 0.327 0.320 0.316 0.305

Sim [J] 0.331 0.327 0.322 0.322 0.320

Table 5 Energy dissipation of

the hysteresis (Cable length of

100 and 300 mm)

Cycle 1 2 3 4 5

Hysteresis energy dissipation 100 mm

Exp. [J] 0.258 0.094 0.084 0.078 0.073

Sim [J] 0.250 0.092 0.084 0.076 0.070

300 mm

Exp. [J] 0.776 0.233 0.192 0.176 0.157

Sim [J] 0.777 0.226 0.184 0.170 0.150

Cycle 6 7 8 9 10

Hysteresis energy dissipation 100 mm

Exp. [J] 0.071 0.068 0.065 0.065 0.064

Sim [J] 0.067 0.063 0.061 0.060 0.059

300 mm

Exp. [J] 0.158 0.154 0.147 0.147 0.144

Sim [J] 0.149 0.141 0.138 0.138 0.138
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controls the accuracy of the integrated model when cyclic

loading tests are performed. When comparing hysteresis

response, energy dissipations (i.e., the areas of hysteresis)

are generally used (Wolons et al. 1998; Amini et al. 2015).

Tables 4 and 5 compare hysteresis energy dissipation with

respect to the maximum force applied and the cable length.

Nonlinear decreasing trends are evident in all cases as the

cycles progress. This is because dynamic creep decreases

over subsequent cycles. In all simulations, the average and

hysteresis errors of the cable dynamics were\ 5%. Such

results further emphasize that our proposed approach based

on visco-elastic model affords reasonably accurate mod-

eling of cable dynamics.

5 Conclusions

Here, we develop an integrated dynamics cable model

using creep, short- and long-term recoveries, the hardening

effect, and hysteresis to accurately predict CDPR cable

lengths. However, Burger’s model, which has often been

used previously, is not suitable for modeling dynamic

CDPR operations, as the model considers only the static

state. Therefore, we created an advanced model integrating

dynamic behavior using a modified visco-elastic model. In

addition, based on force history, the Newton–Raphson

method was used to predict the loading time. Simulations

were performed under different maximum forces, with

different cable lengths, and applying various tensile rates.

The simulations were compared with experimental data.

During verification, we focused on hardening effects,

dynamic creep, short- and long-term recoveries, and hys-

teresis. We first tested the effect of constant tensile rate;

this affected dynamic creep. In the test, a high tensile rate

was associated with less dynamic creep than a low tensile

rate. We also performed cyclic loading to evaluate dynamic

cable behavior and hardening. We found that hardening

and dynamic creep changed as cyclic loading progressed.

Because of hardening and dynamic creep, the stiffness was

increased and then converged as the loading cycle was

progressed. Also, the hysteresis loops converged. All

simulation errors were\ 5%. In contrary to creep, the

recovery was occurred when the cable was unloaded. The

recovery was divided to short- and long-term recovery.

Each recovery occurred in real time and interacted with

creep. In particular, consideration of short-term recovery

when the cable was unloaded remarkably reduced length

errors. For long-term recovery, the retardation time

decreased as the cable length was reduced. The new model

was highly accurate under various resting conditions and

when using cables of different lengths. Finally, we

explored hysteresis, which integrates dynamic features

including creep, hardening, and long- and short-term

recoveries. The simulated hysteresis and experimental

hysteresis were in good agreement. Errors in cable length

were remarkably reduced using the proposed model. Thus,

some features of the model are essential to improve the

accuracy of cable positioning in CDPRs, and the kine-

matics of CDPR systems depend on cable length.
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