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Abstract
This paper is validated the multi inputs (two inputs) fuzzy PID (MIFPID) controller as automatic generation control (AGC)

over two disparate consolidation of single input FPID (SIFPID-1 and SIFPID-2) controller for a two area interconnected

power system. The objective function is formulated by concerning undershoot, overshoot, and settling time of frequency

and tie-line power deviation of the power system by implementing two different SIFPID and MIFPID controllers indi-

vidually as AGC in each area. Modification of Group Hunting Search optimization (MGHS) is proposed to optimize the

gain parameters of controllers to minimize the multi-objective problem with constraint. All the performances of these

controllers as AGC are examined by implementing a load disturbance of 1% (0.01 p.u.) in area-1. Finally, MIFPID

controller optimized by MGHS algorithm contributes better performance in the proposed system.

1 Introduction

In complex power system, interconnection between two

areas enhances the quality of the supply power, stability of

the system and capability to utilize the generating plant.

Load deviation arises numerously which affects the power

and system frequency deviation all over the power system.

Primary controllers (rotating mass of such as governor and

turbine of the system) may not overcome the large

deviations (Kundur 1994). These enormous load deviations

may be taken care by secondary controller like proportional

(P), integral (I), derivative (D), PID, fuzzy, and etc. pro-

portional (P), integral (I), derivative (D), PID, fuzzy, and

etc. are used as secondary controller to enhance the capa-

bility to handle the load fluctuations in the power system.

The primary purposes of the AGC are to:

1. Achieve the system frequency equal to its scheduled

frequency (i.e. Df = 0).

2. Achieve the power through tie-line equal to its

scheduled value (i.e. DPtie = 0).

3. Achieve a superior control to minimize the objectives

(settling time, undershoot, and overshoot) of the

system after any load fluctuation.

To enhance the ability of the AGC to achieve better

regulation over these specifications, fuzzy PID is one of the

superior controller. In this work two different consolida-

tions of FLC and PID are implemented in each area of the

power system. Transfer function model of thermal with

GRC and hydro power plant are used as generation units in

area-1 and area-2 respectively. Controller’s gain parame-

ters are another decisive aspect also to enhance the tran-

sient performance of the system. So selection of

optimization technique is a significant aspect to grab the

optimal solution of the gain parameters to lessen objective

function (ITAE).
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AGC is the most indispensable strategy in the power

system which concerns the economic and stable power

generation. To enhance the power quality many ideas have

implemented to enhance the secondary controller as AGC.

Some researchers (Ibrahim and Kothari 2005) have por-

trayed a relative analysis of various schemes implemented

as AGC. The adequacy of superconducting magnetic

energy storage (SMES) over integral controller used as

AGC in a two area interconnected hydro-thermal system is

distinguished by (Abraham et al. 2007). GA optimized PID

controller has successfully implemented in an intercon-

nected power system with thermal units (Singh and Sen

2004). Cascade controller titled as PI-PD controller opti-

mized by FPA is introduced in four area interconnected

reheat thermal power plants (Dash et al. 2016). Fuzzy logic

controller (FLC) has convinced as a very robust and

intelligent controller used as AGC (Indulkar and Raj 1995;

Cam and Kocaarslan 2005; Oftadeh et al. 2010). The

robustness of FPID controller is enhanced with the

assemblage of advantages from both PID and FLC con-

troller. FPID controller (Pande and Kansal 2015) optimized

by different powerful algorithms have depicted (Sahu et al.

2016; Nayak et al. 2015; Pati et al. 2014, 2015). PSO

(Kennedy and Eberhart 1995) is applied to optimize PID

controller as AGC (Ghoshal 2004). Application of various

novel metaheuristic techniques and hybridization among

them like BF (Nanda et al. 2009), BFOA-PSO (Panda et al.

2013), DE (Rout et al. 2013), FA-PS (Sahu et al. 2015a, b),

FPA (Madasu et al. 2016), TLBO (Sahu et al. 2015a, b),

ALO (Satheeshkumar and Shivakumar 2016) and CS

(Sikander et al. 2017) to optimize the parameters of dif-

ferent controllers adequately.

In this paper, the GHS algorithm is modified by

replacing the worst candidates by randomly generated

candidate. The probability to hunt optimum solution is

enhanced by this process. The multi inputs fuzzy PID

controller is validated over two distinct combinations of

single input fuzzy PID controllers. The two different

combinations of SIFPID controllers are SIFPID-1 and

SIFPID-2. In SIFPID-1, ACE is the only input of the

controller and in SIFPID-2, ACE and DACE are the inputs

to two FLCs. The novelties of this paper are:

1. The MIFPID controller is validated over two distinct

combinations of SIFPID controller in AGC.

2. The GHS algorithm is modified to enhance the

capability to hunt optimum pair of controller gains.

3. The effect of non-linearity in power system.

Finally, MGHS technique optimized MIFPID controller

is validated over other combinations of SIFPID controllers.

2 Power system modelling

The proposed system is a two area interconnected hydro-

thermal power system. Area-1 consists of thermal power

plant with generation rate constraints (GRC) and area-2

consists of a hydro power plant as delineated in Fig. 1. The

transfer function parameters are mentioned in Appendix 1.

Implementation of a load disturbance of 1% (0.01) in

Fig. 1 Power system model (Nayak et al. 2017)
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thermal area propagates error in each area titled as area

control errors (ACE1 and ACE2). ACEs concerning devi-

ations of frequency and tie-line power has to be minimized

and may be defined as:

ACE1 ¼ B1Df1 þ DPtie; ð1Þ
ACE2 ¼ B2Df2 þ DPtie; ð2Þ

where B1 and B2 are the bias factors of frequency. The

deviations of frequency with respect to nominal value in

area-1 and area-2 are Df1 and Df2 respectively. The devi-

ation of power in tie-line is DPtie and is characterized as:

DPtie ¼
2pT12
s

ðDf1 � Df2Þ: ð3Þ

SIFPID-1, SIFPID-2 and MIFPID controllers are exe-

cuted in both the areas individually to examine the con-

troller effectiveness to enhance the system performance.

Intelligent MIFPID controller is observed as superior

controller over SIFPID-1 and SIFPID-2 controllers. Com-

pilation of advantages of both PID and FLC causes the

FPID controller more precious and novel. The objective

function for this system by concerning tie-line power

deviation and frequency deviation is characterized in

Eq. (4):

ITAE ¼
ZT

0

tðDf1 þ Df2 þ DPtieÞ

Subject to 0:01�Ki � 2;

ð4Þ

where i = 1, 2, 3, …, n. ‘n’ is the numbers of design

parameters.

3 Controller structure

The performance of the power system is primarily rely

upon the controller design. Fuzzy logic controller (FLC) is

adopted by many researchers as controllers from last few

decades. In this purposed system, three distinct combina-

tions of PID and FLC (SIFPID-1, SIFPID-2 and MIFPID)

are adopted as controllers as portrayed in Fig. 2. The

membership functions of all FLCs portrayed in Fig. 3 are

adopted for all the controllers. Five MFs titled as negative

high (NH), negative low (NL), zero (Z), positive low (PL),

and positive high (PH) as delineated in Fig. 3 are adopted

for all the controllers.

In SIFPID-1 controller, ACE is adopted as the only input

of the controller as portrayed in Fig. 2a. In SIFPID-2

controller, two FLC are adopted in which ACE and DACE
are the corresponding inputs of the two FLCs as shown in

Fig. 2b. The rules for both SIFPID-1 and SIFPID-2 are as

follows.

If input is NH then output is NH.

If input is NL then output is NL.

If input is Z then output is Z.

If input is PL then output is PL.

If input is PH then output is PH.

In MIFPID controller, ACE and DACE are adopted as

two inputs to the FLC as illustrated in Fig. 2c. Table 1

encloses the rules of MIFPID controller.

(a)

(c)

(b)

Fig. 2 a SIFPID-1 controller

structure, b SIFPID-2 controller

structure, c MIFPID controller

structure
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4 Modified Group Hunting Search (MGHS)
algorithm

The relation between predator (group hunters i.e. lions,

wolves etc.) and prey is beautifully expressed as opti-

mization technique (Oftadeh et al. 2010). GHS algorithm is

derived from the strategy of hunting a prey by concerning

the group hunting technique. Unity of group members

adopt an approach to trap the prey by circumscribing it.

The member of the group near to the prey is adopted as

leader and all other member follows leader to move

towards the prey (optimum solution). If any of the group

member amends by a better position compared to the recent

leader then it becomes leader in the next generation. The

hunters in each generation follows the leader by concerning

maximum moments towards the leader (MML). MML

affects the algorithm to maintain the balance between

exploration and exploitation. If the MML value is large

then the algorithm may skip over the optimum point and

small value of MML may reduce the diversity factor of

algorithm. In MGHS, the MML value is decaying con-

stantly with iteration. The worst hunters in the group are

replaced by other random numbers to enhance the proba-

bility to get optimum point. The stride of the MGHS are as:

1. Initialize the population randomly of size X[NP9D]

within the limit 0.01–2.

2. The best fitted hunters among the group is adopted as

leader.

3. The hunter’s positions are refurbished towards the

leader. The mathematical expression is defined in

Eq. (5):

Xkþ1
i ¼ Xk

i þ rand �MML� ðXL
i � Xk

i Þ: ð5Þ

MML ¼ 0:6� it � 0:6

itermax

� �� �
;

where ‘it’ is the current iteration, itermax is the max-

imum iterations and XL
i is the position of leader.

4. The position of hunters are corrected as in Eq. (6) by

concerning hunter’s group consideration rate (HGCR)

and distance radius (Ra):

Xkþ1
i ¼

Xkþ1
i 2fX1

i ;X
2
i ;...;X

HGS
i gwithprobabilityHGCR

Xkþ1
i �Rawithprobabilityð1�HGCRÞ

(
;

ð6Þ

RaðitÞ ¼ RaminðmaxðXiÞ

�minðXiÞÞ exp
ln Ramin

Ramax

� �
� it

itermax

0
@

1
A; ð7Þ

Ra is an exponential decay function expressed inEq. (7).

5. Identify the group to avoid the algorithm to be trapped

into local optima. It may be defined as in Eq. (8):

Xkþ1
i ¼ XL

i � randðmaxðXiÞ �minðXiÞÞ � a expð�b
� ENÞ;

ð8Þ

1

0.5

0
-1 -0.8 -0.4 0 0.4 0.8 1

NH NL Z PL PH

Fig. 3 Membership function structure of FLC

Table 1 Rule base

e _e

NH NL Z PL PH

NH NH NH NL NL Z

NL NH NL NL Z PL

Z NL NL Z PL PL

PL NL Z PL PL PH

PH Z PL PL PH PH

Table 2 GHS and MGHS optimized gain parameters of different

controllers

Controllers Gains Optimum values of gains

GHS MGHS

Area 1 Area 2 Area 1 Area 2

SIFPID-1 K1 0.7465 1.0939 1.4733 0.7399

K2 1.0064 0.3884 0.6076 0.3168

K3 1.4768 0.2902 0.9599 0.266

K4 1.6133 1.0696 0.3545 1.4670

SIFPID-2 K1 1.3000 0.0100 2.0000 2.0000

K2 1.1254 2.0000 0.0128 2.0000

K3 1.7562 0.0100 1.5233 0.0100

K4 1.3943 0.0100 2.0000 0.0100

K5 1.0444 0.4349 0.8099 0.2395

MIFPID K1 0.9243 0.1936 1.6675 0.0865

K2 0.8923 1.1021 0.5047 1.7871

K3 0.4925 0.9031 1.4966 0.6354

K4 1.3338 0.1388 1.5032 0.1055

The best values are shown in bold
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where EN is the numbers of epochs. EN is estimated

by matching the difference of leader and worst hunter

with a small value.

6. The worst hunters are replaced by the random numbers

to enhance the probability to extract optimum point as

expressed in Eq. (9):

count ¼ findððf ðXL
i Þ þMÞ\f ðXiÞÞ

XiðcountÞ ¼ minðXiÞ þ rand � ðmaxðXiÞ �minðXiÞÞ:
ð9Þ

7. Repeat steps 3–6.

In Appendix 2 all the specifications of MGHS are

portrayed.

5 Results and discussion

GHS and MGHS algorithms are executed for 100 iterations

to resolve the steps to discover the optimal gain parameters

of SIFPID-1, SIFPID-2 and MIFPID controllers. Variables

K1, K2, K3, and K4 are adopted as the design variables for

SIFPID-1 and MIFPID as portrayed in Fig. 2a, c. K1, K2,

K3, K4 and K5 are the design variables of SIFPID-2 con-

troller. The values of the above mentioned parameters are

characterized within the perimeter 0.01–2. Table 2 repre-

sents the gain parameters of the different controllers opti-

mized by GHS and MGHS algorithm. The GHS and

MGHS algorithm is validated by comparing with PSO and

CRPSO described in Nayak et al. (2017).

The deviation of frequency in area-2 of interconnected

hydro-thermal power system without GRC is illustrated in

Fig. 4 to contrast the proposed algorithm over PSO,

CRPSO and DECRPSO algorithm to optimize FPID con-

troller. The controller gain parameters of the system

without GRC is tabulated in Table 3.

The convergence plot to validate the GHS and MGHS

algorithms optimized different controllers is illustrated in

Fig. 5. The power deviation in tie-line and frequency

deviations of both areas by implementing different con-

trollers optimized by different algorithms are portrayed in

Figs. 6, 7 and 8.

The settling time (Ts), peak overshoot (Osh), and peak

undershoot (Ush) are the objectives which are used to dis-

criminate the performances of the controllers. Settling time

is evaluated by considering a dimension of ± 0.002%

(2 9 10-5) of final value. Ts, Ush, and Osh of the system

are minimum with MIFPID controller optimized by MGHS

algorithm as reported in Table 4.

MIFPID controller optimized by MGHS algorithm is

validated as the better controller over SIFPID controller.
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Fig. 4 Frequency deviation in area-2 of hydro-thermal power system

without GRC

Table 3 Optimal values of

gains of MIFPID controller to

validate the GHS and MGHS

over (Nayak et al. 2017) without

GRC

Algorithms Optimum values of gain

K1 K2 K3 K4 K5 K6 K7 K8

PSO (Nayak et al. 2017) 1.3665 1.5616 1.0616 1.7623 0.8316 1.8389 0.3828 0.0100

CRPSO (Nayak et al. 2017) 2.0000 1.1263 1.8302 1.3248 0.2496 1.0202 1.1404 0.0926

GHS 1.8268 1.5945 1.5136 1.8595 0.0948 1.5565 0.6945 0.0100

MGHS 1.9984 1.6230 1.7350 1.9969 0.0227 1.5579 0.7426 0.0100
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Fig. 5 Convergence plot
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6 Conclusion

The purpose of this paper is to validate the MIFPID con-

troller optimized by hybrid DECRPSO algorithm as an

improved secondary controller of the interconnected

hydro-thermal power system. For this purpose MIFPID,

and SIFPID controllers are applied separately in each area

as AGC optimized by GHS, and MGHS algorithm. With

1% load disturbance in area-1, MIFPID controller is vali-

dated better than SIFPID controller to enhance the ability

to get better control over tie-line power deviation and

frequency deviation by considering their settling time,

undershoot, and overshoot. The supremacy of MGHS

algorithm over GHS is validated by optimizing both

MIFPID and SIFPID controllers.

Appendix 1 (power system parameters)

Kp1 = Kp2 = 120 HZ/p.u. MW,

TP1 = TP2 = 20 s, B1 = B2 = 0.4249;

R1 = R2 = 2.4 HZ/p.u. MW; Tg = 0.08 s;

Tt = 0.3 s; T1 = 41.6 s; T2 = 0.513 s;

TR = 5 s; TW = 1 s; T12 = 0.0866;

D1 = D2 = 8.333 9 10-3 p.u. MW/Hz.
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Table 4 peak undershoots (ush), peak overshoots (osh) and settling

time (ts) ofDf1, Df2 and DPtie

Controllers Transient

responses

Df1 (Hz) Df2 (Hz) DPtie

(pu)

GHS

SIFPID-1

Ush (9 10-3) - 11.6654 - 13.7369 - 1.1218

Osh (9 10-3) 3.1219 9.7464 0.2435

Ts 36.6754 24.7560 50.4008

MGHS

SIFPID-1

Ush (9 10-3) - 11.2111 - 7.8495 - 0.7102

Osh (9 10-3) 0.9336 5.0159 0.1496

Ts 21.6668 30.6251 44.3766

GHS

SIFPID-2

Ush (9 10-3) - 10.0352 - 9.0095 - 8.1835

Osh (9 10-3) 6.5032 3.1812 0.2429

Ts 21.3658 24.5251 42.3666

MGHS

SIFPID-2

Ush (9 10-3) - 10.1854 - 6.9670 - 6.5764

Osh (9 10-3) 4.0665 3.3191 0.2708

Ts 20.8658 22.4254 42.0245

GHS

MIFPID

Ush (9 10-3) - 11.5519 - 6.9102 - 0.6189

Osh (9 10-3) 0.3963 2.4027 0.0821

Ts 20.4387 29.5224 41.0284

MGHS

MIFPID

Ush (9 10-3) - 10.7164 - 5.2701 - 0.4785

Osh (9 10-3) 0.2833 1.7515 0.0720

Ts 20.1545 18.5962 37.9825

The best values are shown in bold
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Appendix 2 (assumptions of algorithms)

HGCR = 0.3; Ramax = 0.0001; Ramin = 1910-6.
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