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Abstract
In the current study, torsional vibration analysis of carbon nano tubes with general elastic boundary conditions is presented

via modified couple stress theory. The model developed based on modified couple stress theory gives us opportunity to

interpret small size effect. Two torsional springs are attached to a single-walled carbon nanotube at both ends. The idea of

the proposed work is to obtain a coefficient matrix for eigen-value analysis involving the torsional spring coefficients.

Stoke transformation is employed to work out the Fourier sine series for the carbon nanotube with general elastic boundary

conditions. The direct expressions of the vibrational responses with torsional spring coefficients are obtained by using the

non classical boundary conditions. In order to demonstrate the validity of the proposed method, results obtained for rigid

boundary cases are presented for a comparison with those given in the literature and the results agree with each other

exactly. The influences of torsional spring coefficients and small scale parameter on torsional frequencies are investigated

in terms of the numerical results for both rigid and restrained boundary conditions.

1 Introduction

The mechanical behaviors of structures and materials at

nano or microscale are different from their behaviors at

macroscale due to the influence of size effects and surfaces

stress which are not present at larger scales. Therefore, a

thorough understanding of the dynamical and mechanical

behaviors of nano-sized structures is of importance in the

analysis and design of nano or micro structures such as

micro- and nano-electromechanical systems (MEMS and

NEMS).

The accurate mathematical modeling of the torsional

dynamic and static behavior of nano/micro bars seems to

be crucial to study the different mechanical behaviors of

these type of structures. Since the classical elasticity the-

ories are proved to fail at micro and nanoscale, some

molecular/atomic dynamic simulations and new higher

order elasticity theories are necessary. During past years,

some higher order elasticity theories such as the strain

gradient, nonlocal, couple stress, modified couple stress

theories have been developed, introduced, and employed to

study the nano and micro-scaled materials. These higher

order elasticity theories such as micro-polar elasticity

theory (Eringen and Suhubi 1964; Chen et al. 2004;

Ramezani et al. 2009), strain gradient elastic theory (Yayli

2011), couple stress approach (Toupin 1962), the modified

couple stress theory (Ma et al. 2008; Park and Gao 2006)

and nonlocal elasticity theory (Eringen 1983; Eringen and

Edelen 1972; Yang et al. 2010), have been receiving much

attention in studying nano/micro structures. In these higher

order elasticity theories, some length scale parameters are

considered in addition to the Poisson ratio and elastic

modulus, which enable these higher order elasticity theo-

ries to capture the small size effect.

Potential applications of carbon nanotube have been

made to many different areas on account of its specially

properties (Bachtold et al. 2001; Kim and Lieber 1999),

such as field-effect transistor, graphene transistors, chem-

ical sensors, solar cells, logic circuits with filed-effect

transistor, gas detection, diagnosis devices, transparent and

conductive films, ultracapacitors and ultrastrength com-

posite materials. Since classical elasticity theories cannot

predict the characteristic behaviors of the carbon nan-

otubes, some higher order elasticity theories have been

proposed managing to predict mechanical properties of

carbon nanotubes in recent years (Wang et al. 2008;

Schadler et al. 1998; Ru 2001; Wagner et al. 1998; Qian
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et al. 2000; Danesh et al. 2012; Bower et al. 1999; Chang

2012; Simsek 2012; Akgoz and Civalek 2014; Murmu

et al. 2014; Huang 2012). Buckling, bending and vibration

of nonhomogeneous nanotubes have been studied by

Pradhan and Phadikar (2009) using differential quadrature

method. Wave propagation in carbon nanotubes has been

investigated by Lu et al. (2007) and Wang (2005). Tor-

sional buckling analysis of carbon nanotubes has been

examined by Khademolhosseini et al. (2010). Reddy and

Pang (2008) have presented different beam theories

(Euler–Bernoulli–Timoshenko) using the nonlocal elastic-

ity theory proposed by Eringen and Edelen (1972). Several

researchers (Murmu et al. 2011; Lim et al. 2012; Kiani

2013; Li 2014) have studied torsional vibration of single

walled carbon nanotubes based on the nonlocal theory.

Free longitudinal vibrations of carbon nanotubes has been

explored by Aydogdu (2009). Aydogdu and Elishakoff

(2014) have investigated the vibration of nanorods

restrained by a linear spring in-span. Roostai and Hagh-

panahi (2014), Loya et al. (2014) have studied the vibra-

tion behavior of cracked nanorods using nonlocal elasticity

theory. A compact analytical method for vibration analysis

of single-walled carbon nanotubes and beams with

deformable boundary conditions has been proposed by

Yayli (2016; 2017).

The nano/micro hollow/solid bars subjected to torsional

displacements and torsional moments are widely used in

various kinds of nano/micro electro mechanical systems

(NEMS/MEMS) such as micro-gyroscopes. In this paper,

an attempt is made to propose a new analytic approach for

free torsional vibration analysis of a carbon nanotube with

torsional springs at both ends. The governing differential

equations of motion and boundary conditions are deduced

by considering the small scale effects and the torsional

springs due to the end restraints, but the warping effect of

the cross-section is neglected because the cross-section is

assumed to be circular. Present analytical model bridges

the gap between classical and the deformable boundary

conditions, which is of great significance for the applica-

tion of the modified couple stress theory to micro and

nanostructures. Some numerical examples for rigid and

deformable boundary conditions are given to valid the

proposed method in this study and investigate the effects of

several parameters, such as the spring coefficients, length

and small scale parameter on the torsional dynamic

responses of the carbon nanotube.

2 Modified couple stress theory

Classical elasticity theory is not capable of capturing the

size dependency of materials; consequently, many higher

order elasticity theories are introduced to improve the

results obtained for micro or nano sized structures. These

higher order theories, mainly, try to improve the method by

introducing small scale parameters to capture the so-called

size effects (Guo et al. 2016; Delfani 2017; Swadener et al.

2002; Lam et al. 2003; Liebold and Mller 2016; Lei et al.

2016). In order to derive the equation of motion for tor-

sional vibration of carbon nanotube in term of angular

rotation based on the modified couple stress theory,

Hamiltons’ principle will be employed. The use of modi-

fied couple stress theory with torsional vibration developed

by Lam et al. (2003) will be briefly reviewed first. Con-

sider a straight uniform carbon nanotube with length L and

a circular cross section as shown in Fig. 1. According to

the size dependent modified couple stress theory, isotropic

linear elastic strain energy U can be written as follows

(Gheshlaghi and Hasheminejad 2010):

U ¼ 1

2

Z
V

ðr�þ mvÞdV ; ð1Þ

where r is the stress, � is strain and m is the deviatoric part

of the couple stress. v denotes the curvature,

r ¼ ktrð�ÞI þ 2l�; ð2Þ

� ¼ 1

2
rvþ ðrvÞT
� �

; ð3Þ

m ¼ 2l2lv; ð4Þ

v ¼ 1

2
rhþ ðrhÞT
� �

; ð5Þ

where k and l are the Lame’s constants, trð�Þ denotes the
sum of diagonal elements of the strain tensor. I denotes the

third order identity matrix. l is a material scale parameter

and v is the displacement vector. h is the rotation vector as

follows:

h ¼ 1

2
curlðvÞ: ð6Þ

The displacement components of the carbon nanotube can

be written as:

vxðx; tÞ ¼ 0; ð7Þ

L

So SL

Fig. 1 A single walled carbon nanotube with torsional springs at both

ends
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vyðx; tÞ ¼ �z/ðx; tÞ; ð8Þ

vzðx; tÞ ¼ y/ðx; tÞ; ð9Þ

in which vx, vy and vz are the x, y and z components of the

displacement vector. /ðx; tÞ is angular rotation about the

center of twist. Following equations can be derived from

Eqs. (3), (7), (8) and (9)

�xy ¼ � z

2

o/ðx; tÞ
ox

; ð10Þ

�xz ¼ � y

2

o/ðx; tÞ
ox

; ð11Þ

�xx ¼ �yy ¼ �zz ¼ �yz ¼ 0; ð12Þ

Similarly, following equations are obtained from Eqs. (6),

(7), (8) and (9)

hx ¼ /ðx; tÞ; ð13Þ

hy ¼ � y

2

o/ðx; tÞ
ox

; ð14Þ

hz ¼ � z

2

o/ðx; tÞ
ox

; ð15Þ

By using Eqs. (2), (10), (11) and (12), the stress tensor can

be calculated as follows (Gheshlaghi and Hasheminejad

2010):

r ¼ l

0 � z
o/ðx; tÞ

ox
y
o/ðx; tÞ

ox

�z
o/ðx; tÞ

ox
0 0

y
o/ðx; tÞ

ox
0 0

2
6666664

3
7777775
; ð16Þ

In a similar way by using Eqs. (5), (13), (14) and (15),

deviatoric part of couple stress tensor read as (Gheshlaghi

and Hasheminejad 2010):

m ¼ ll2

2
o/ðx; tÞ

ox
� y

2

o2/ðx; tÞ
ox2

� z

2

o2/ðx; tÞ
ox2

� y

2

o2/ðx; tÞ
ox2

� o/ðx; tÞ
ox

0

� z

2

o2/ðx; tÞ
ox2

0 � o/ðx; tÞ
ox

2
66666664

3
77777775
:

ð17Þ

Generally, Hamilton’s principle could be written as
Z t2

t1

U � T �Wf gdt ¼ 0; ð18Þ

where U, T, W denote strain, kinetic energies and work

done by external force, respectively.

U ¼ 1

2

Z
V

lðy2 þ z2 þ 3l2Þ o/ðx; tÞ
ox

� �2
(

þ 1

4
ll2ðy2 þ z2Þ o2/ðx; tÞ

ox2

� �2
)
dV;

ð19Þ

above equation can be written by using Ip ¼
R
A
ðy2 þ z2ÞdA,

U¼1

2

Z L

0

l
o/ðx;tÞ

ox

� �2

ðIpþ3l2AÞþ1

4
ll2

o2/ðx;tÞ
ox2

� �2

Ip

( )
dx:

ð20Þ

The kinetic energy of carbon nanotube can be written as:

T ¼ 1

2

Z L

0

qIp
o2/ðx; tÞ

ox2

� �2
( )

dx ð21Þ

and the work done by the twisting moment (mt) can be

expressed as:

W ¼
Z L

0

mt/ðx; tÞdx: ð22Þ

Substituting the work done by the twisting moment (22),

the kinetic energy of carbon nanotube (21) and the strain

energy (20) into the Hamiltons principle (18) and using

integrations by parts, the equation of motion considering

the effects of small scale will be derived. Taking the first

variation of total potential energy (d
R t2
t1
fU � T �Wgdt):

d
Z t2

t1

Z L

0

1

4

o2

ox2
ll2Ip

o2/ðx; tÞ
ox2

� �� ��

� o

ox
lðIp þ 3l2AÞ o/ðx; tÞ

ox

� �
þ o

ot
qIp

o/ðx; tÞ
ot

� �� �
� mt

#
d/dxdt

þ
Z t2

t1

ðlIp þ 3l2AÞ o/ðx; tÞ
ox

� �
� 1

4

o

ox
l2Ipl

o2/ðx; tÞ
ox2

� �� �
d/

� �

þ 1

4
l2Ipl

o2/ðx; tÞ
ox2

� �
d

o/
ox

� �L1

0

dt

þ
Z t2

t1

qIpð
o/ðx; tÞ

ot
d/Þ

� 	t1

t2

dx:

ð23Þ

Governing equation (Euler Lagrange equation) read as

C1

o4/ðx; tÞ
ox4

� C2

o2/ðx; tÞ
ox2

þ C3

o2/ðx; tÞ
ot2

¼ mt; ð24Þ

where,

C1 ¼
l2lIp
4

; ð25Þ

C2 ¼ lIp þ 3ll2A; ð26Þ

C3 ¼ qIp: ð27Þ

The initial conditions can be obtained from Eq. (23);
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o/ðx; t2Þ
ot

� �
d/ðx; t2Þ �

o/ðx; t1Þ
ot

� �
d/ðx; t1Þ ¼ 0; ð28Þ

C2

o/ðx; tÞ
ox

� �
� C1

o3/ðx; tÞ
ox3

� �
¼ 0 or / ¼ 0; ð29Þ

o2/ðx; tÞ
ox2

¼ 0 or
o/ðx; tÞ

ox
: ð30Þ

Note that Eq. (24) represents the equation of motion tor-

sional vibrating carbon nanotube related to angular rotation

based on the modified couple stress theory (Gheshlaghi and

Hasheminejad 2010). Provided that the cross-section of the

carbon nanotube is circular, the above equation of motion

is independent of the geometry of the section.

3 Method of solution

In this section, the carbon nanotube with elastic torsional

restraints (see Fig. 1) for a torsional vibration is examined

based on modified couple stress theory. The idea of the

present model is to obtain a coefficient matrix for eigen-

value analysis involving the torsional spring coefficients.

3.1 Modal displacement function

In order to obtain the explicit expressions of the Fourier

sine series, the unknown constants (Fourier coefficients)

need to be determined with the equation of motion. In this

study, Fourier sine series is utilized to calculate the tor-

sional vibration frequencies. With the aid of method sep-

aration of variables, /ðx; tÞ can be rewritten as the

following form:

/ðx; tÞ ¼ wðxÞeixt; ð31Þ

where wðxÞ is the angular rotation function and x is the

natural frequency. By substituting the above equation into

equation Eq. (24) yields

C1

d4wðxÞ
dx4

� C2

d2wðxÞ
dx2

� C3x
2wðxÞ ¼ mt; ð32Þ

Adequate knowledge of the torsional vibration of such

carbon nanotubes with deformable boundary conditions is

necessary to properly design certain nanostructures, par-

ticularly when those structures are subjected to dynamic

loads caused by an blast waves and other sources. The

angular rotation about the center of twist wðxÞ is described
here as follows:

wðxÞ ¼
w0 x ¼ 0

wL x ¼ LP1
n¼1 Cn sinðanxÞ 0\x\L

2
64

3
75; ð33Þ

where

an ¼
npx
L

: ð34Þ

3.2 Stokes’ transformation

Although torsional vibration analysis of carbon nanotube is

a widely studied topic, there are only few works that exist

in the literature pertaining to the torsional vibration anal-

ysis of single walled carbon nanotubes with torsional

restraints. In this study, in order to assess the effects of

torsional spring coefficients, Stokes’ transformation is

applied to the governing equation and boundary conditions.

The Fourier coefficients (Cn) in Eq. (33) may be expressed

as

Cn ¼
2

L

Z L

0

wðxÞ sinðanxÞdx: ð35Þ

First derivative of Eq. (33) can be computed as follows:

w0ðxÞ ¼
X1
n¼1

anCn cosðanxÞ: ð36Þ

Equation (36) may be written by a cosine series as follows:

w0ðxÞ ¼ f0

L
þ
X1
n¼1

fn cosðanxÞ: ð37Þ

The explicit expressions of two Fourier constants are given

as follows

f0 ¼
2

L

Z L

0

w0ðxÞdx ¼ 2

L
wðLÞ � wð0Þ½ �; ð38Þ

fn ¼
2

L

Z L

0

w0ðxÞ cosðanxÞdx ðn ¼ 1; 2. . .Þ; ð39Þ

the fn coefficient is obtained by integrating by parts of

using Eq. (39)

fn ¼
2

L
wðxÞ cosðanxÞ½ �L0

þ 2

L
an

Z L

0

wðxÞ sinðanxÞdx
� �

;

ð40Þ

fn ¼
2

L
ð�1ÞnwðLÞ � wð0Þ½ � þ anCn: ð41Þ

The present analytical solution method (Stokes’ transfor-

mation and Fourier series) will be helpful when dealing

with carbon nanotubes with torsional elastic boundary
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conditions. The first-fourth derivatives of wðxÞ can be

obtained as:

dwðxÞ
dx

¼ wL � w0

L
þ
X1
n¼1

cos anxð Þ 2 ð�1ÞnwL � w0ð Þ
L

þ anCn

� �
;

ð42Þ

d2wðxÞ
dx2

¼ �
X1
n¼1

an sin anxð Þ 2 ð�1ÞnwL � w0ð Þ
L

þ anCn

� �
:

ð43Þ

d3wðxÞ
dx3

¼ w00
L � w00

0

L

þ
X1
n¼1

cosðanxÞ
2ðð�1Þnw00

L � w00
0Þ

L

�

�a2n
2ðð�1ÞnwL � w0Þ

L
þ anCn

� ��
;

ð44Þ

d4wðxÞ
dx4

¼ �
X1
n¼1

an sinðanxÞ
2ðð�1Þnw00

L � w00
0Þ

L

�

�a2n
2ðð�1ÞnwL � w0Þ

L
þ anCn

� ��
:

ð45Þ

Fourier coefficients which simultaneously satisfy the gov-

erning equation need to be determined. Therefore, substi-

tuting Eqs. (33), (43) and (45) into Eqs. (32), the Fourier

coefficients Cn and the angular rotation about the center of

twist could be written in terms of w0, wL, w
00
0 and w00

Las

follows:

Cn ¼
2pn C2L

2 ð�1Þnþ1wL þ w0


 �
 �

C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

þ
2pn C1 p2n2 ð�1Þnþ1wL þ w0


 �
� L2 ð�1Þnþ1w00

L þ w00
0


 �
 �
 �

C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4
;

ð46Þ

wðxÞ¼
X1
n¼1

2pn C2L
2 ð�1Þnþ1wLþw0


 �
 �

C3L4 �x2ð Þþp2C2L2n2þp4C1n4

þ
2pn C1 p2n2 ð�1Þnþ1wLþw0


 �
�L2 ð�1Þnþ1w00

Lþw00
0


 �
 �
 �

C3L4 �x2ð Þþp2C2L2n2þp4C1n4
�sinðanxÞ:

ð47Þ

Fourier coefficients are derived for modified couple stress

theory here, which can be reduced to those for the classical

elasticity theory. In fact, the Fourier coefficients of clas-

sical elasticity theory can be derived with l ¼ 0 .

3.3 Boundary conditions

In this work, a carbon nanotube with torsional springs

attached to ends is considered (see Fig 1). In order to

achieve a general solution to this problem, we have to use

following force boundary conditions.

C2

dw
dx

� C1

d3w
ox3

jx¼0 ¼ S0w0; ð48Þ

C2

dw
dx

� C1

d3w
ox3

jx¼L ¼ SLwL; ð49Þ

w00
0jx¼0 ¼ 0; ð50Þ

w00
Ljx¼L ¼ 0: ð51Þ

where S0 and SL are the torsional stiffnesses of the springs

at the ends of the carbon nanotube. The substitution of

Eqs. (42), (44) and (46) into Eqs. (48)–(51) leads to the two

simultaneous homogeneous equations

�C2

L
� S0 þ

X1
n¼1

2C3Lx2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

 !
w0

þ C2

L
þ
X1
n¼1

2C3Lð�1Þnþ1x2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

 !
wL

ð52aÞ

C2

L
þ
X1
n¼1

2C3Lð�1Þnþ1x2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

 !
w0

þ �C2

L
� SL þ

X1
n¼1

2C3Lx2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

 !
wL

ð52bÞ

An eigenvalue problem involving the torsional spring

constants can be constructed according to above equations:

W11 W12

W21 W22

� �
w0

wL

� �
¼ 0: ð53Þ

In this work, angular rotation about the center of twist is

sought as the superposition of a Fourier series and Stokes’

transformation that is used to take care of the torsional

restraints. The classical rigid boundary conditions can be

given by setting the values of torsional stiffness parame-

ters. For example, the free-free boundary conditions at x ¼
0 and x ¼ L are achieved by letting S0 ¼ 0 and SL ¼ 0. The

fixed-fixed boundary conditions at x ¼ 0 and x ¼ L can be

obtained with S0 ¼ 1 and SL ¼ 1. And the fixed-free

boundary conditions at x ¼ 0 and x ¼ L can be computed

with S0 ¼ 1 and SL ¼ 0. The torsional vibration fre-

quencies can be obtained by requiring the determinant of

the coefficient matrix to zero;

Wij

�� �� ¼ 0ði; j ¼ 1; 2; 3; 4Þ; ð54Þ

where

W11 ¼ �C2

L
� S0 þ

X1
n¼1

2C3Lx2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

;

ð55Þ
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W12 ¼
C2

L
þ
X1
n¼1

2C3Lð�1Þnþ1x2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

;

ð56Þ

W21 ¼
C2

L
þ
X1
n¼1

2C3Lð�1Þnþ1x2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

;

ð57Þ

W22 ¼�C2

L
� SL þ

X1
n¼1

2C3Lx2 C2L
2 þ p2C1n

2ð Þ
C3L4 �x2ð Þ þ p2C2L2n2 þ p4C1n4

;

ð58Þ

Before closing this section, it should be mentioned that the

theoretical model given in this subsection accounts for both

rigid and restrained boundary conditions. Therefore, this

model can be utilized to analyze the free torsional vibration

of carbon nanotubes for various boundary conditions. It is

remarkable that if the length scale coefficient is neglected,

namely l ¼ 0, then a coefficient matrix for circular bars

based on classical elasticity theory is deduced.

4 Applications and verifications

On the basis of the theoretical formulation and solution

procedure presented in the previous section, a computer

code has been written and representative eigen value

examples have been solved to demonstrate the efficiency of

the developed method. Free torsional frequencies of the

carbon nanotube can be achieved by solving Eq. (54).

Firstly, accuracy and the validity of the present method is

checked. Then, the effects of small scale parameter and

torsional springs on the free torsional vibration character-

istics of the carbon nanotube are investigated.

4.1 Comparison with existing results

The validity and accuracy of the present analytical solution

method is examined by comparing their results with

examples chosen from the literature (Tabassian 2013;

Gorman 1975). Theoretically, there are infinite terms in

Eq. (54). However, in the practical applications the infinite

series should be truncated and only finite terms are taken

into consideration. To validate the analytical method

employed in this study, free torsional frequencies are

compared predicted by the current method for modified

couple stress theory with those predicted by prismatic bar

theory. The free torsional frequencies according to the

classical elasticity theory can be calculated from following

formulation for fixed-fixed boundary conditions (Gorman

1975):

-k ¼
pn
L

ffiffiffiffi
G

q

s
; ð59Þ

where -k are the torsional frequencies in classical elasticity

theory. In order to compare the results available in the

literature material properties are taken as G ¼ 79:3 GPa

and q ¼ 7800 kg=m3
. Geometrical properties are assumed

as: inner radius R1 ¼ 0:0 nm and outer radius is

R2 ¼ 50:0 mm. and the length is L ¼ 1000 mm (Tabassian

2013). The length scale parameter l2 is assumed to be zero.

Area and polar moment of inertia of the cross section could

be written as.

A ¼ pðR2
2 � R2

1Þ Jp ¼
p
2
ðR4

2 � R4
1Þ; ð60Þ

Clamped-clamped boundary conditions are special case of

a bar with torsional springs of infinite stiffness. In this

work, to demonstrate the solution of clamped-clamped

boundary conditions, torsional spring coefficients are

assumed as S0 ¼ 10� 1010 N/mm and SL ¼ 10� 1010 N/

mm. For validation purpose torsional vibration frequencies

obtained by using different truncated number of terms are

compared with those predicted by prismatic bar theory

(- ¼ pn
L

ffiffiffi
G
q

q
). The results computed by using exact for-

mulation given in Eq. (59) are also mentioned in the last

row of Table 1 to be compared with results obtained by the

Fourier sine series with Stokes’ transformation. As tabu-

lated in Table 1 by choosing n ¼ 10–200 terms infinite

series, the first five non-dimensional free torsional fre-

quencies of the present problem with high order of accu-

racy are achieved.

4.2 Effects of the small scale parameter

The free torsional frequencies in classical continuum the-

ory can be obtained from equation (59). Similarly, the free

torsional frequencies in modified couple stress theory may

be calculated from the following equation (Gheshlaghi and

Hasheminejad 2010):

x̂k ¼
pn
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

ll2p2

4qL2
þ 3All2

qIp
þ l
q

s
; ð61Þ

Herein, the normalized free torsional vibration frequencies

are defined as the form of Xk ¼ xk=-k, (k ¼ 1; 2; 3; 4; . . .).

The index k indicates the mode number. The parameter Xk

is used to give a better illustration of the small scale effects

in torsional vibration response of single walled carbon

nanotubes. It can be observe from Eq. (54) that small scale

effects are neglected (l ¼ 0), we get the similar results

whether using traditional equation given in (59) or

Eq. (54). For higher values of torsional spring parameters,
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similarly, small scale effects are not neglected (l 6¼ 0), we

get the similar results whether using traditional equation

given in (61) or Eq. (54). For numerical illustration, the

material and geometric properties of nanotube utilized in

this paper are: Young’s modulus E ¼ 0:72 TPa, Poisson

ratio m ¼ 0:25, density ¼ 2:3 g=cm3 (Wang 2005), diam-

eter d ¼ 5 nm, the length L = 10 nm. and the thickness of

the carbon nanotube t ¼ 0:34 nm (Wang 2005). It should

be pointed out that small scale parameter l must be smaller

than 2 nm for carbon nanotubes (Wang and Wang 2007).

Consequently, the small scale parameter l is selected in the

range 0–2 nm (Lim et al. 2015).

It can be seen in Tables 2 and 3 that the first seven

normalized torsional frequencies with various length scale

parameter (l) are tabulated for different spring parameters.

It is investigated that the normalized frequencies increase

with increasing length scale parameter, that is the small

scale effect strengthens the torsional rigidity. Small scale

parameter has also greater influence on higher order modes

than that on lower-modes. As tabulated in Tables 2 and 3,

torsional spring coefficients at the ends has obvious effects

on dynamic treatment of carbon nanotubes.

In Figs. 2, 3, 4, 5, comparisons of the first seven nor-

malized frequencies based on present analytical method

with those of classical theories are revealed. It can be

concluded that the normalized frequencies predicted by

modified couple stress theory exhibit larger than those of

classical elasticity theory, showing ‘‘small size effect’’. It is

remarkable that the difference of normalized frequencies

between modified couple stress theory and the classical

elasticity theory decreases with spring coefficient

decreased.

Figure 2 shows the variation of the first seven dimen-

sionless frequencies (Xk) versus the small scale parameter

(l) for various values of the torsional spring parameters.

The mathematical results in each figure are calculated for a

given symmetrical torsional spring coefficients

(S0 ¼ SL ¼ 100, 5, 1 nN/nm). As can be observed, with

increasing length scale parameter (l) the normalized fre-

quencies increase for all values of the mode number and

the spring parameters. In addition, for a given torsional

spring coefficients, the effect of the length scale parameter

in increasing the normalized frequencies for the higher

vibration modes is larger than those of the lower ones.

Figure 3 shows the variation of normalized frequencies

with normalized length change for frequencies computed

from classical elasticity theory and the modified couple

stress theory: as the increase in length of carbon nanotube

decreases the normalized frequencies. As found earlier the

modified couple stress theory-frequencies are always larger

than the classical elasticity theory-frequencies.

One of the chief contributions of present study is the

derivation of a coefficient matrix including the both small

scale and torsional spring parameter for calculating the

torsional vibration frequencies. In Fig. 4, it is again noted

that the small scale effects increases with increasing mode

number, or stronger small scale effects result in higher

order vibration modes. It is also observed from the Fig. 4,

Table 1 Five non-dimensional

torsional frequencies of the

fixed-fixed boundary conditions

n x1 � L ffiffi
G
q

p x2 � L ffiffi
G
q

p x3 � L ffiffi
G
q

p x4 � L ffiffi
G
q

p x5 � L ffiffi
G
q

p

5 3.141587

10 3.141587 6.283175 9.424763 12.566351 15.707938

100 3.141587 6.283175 9.424763 12.566351 15.707938

180 3.141587 6.283175 9.424763 12.566351 15.707938

200 3.141587 6.283175 9.424763 12.566351 15.707938

Tabassian (2013) 3.141592 6.283185 9.424777 12.566370 15.707963

Gorman (1975) 3.141592 6.283185 9.424777 12.566370 15.707963

Table 2 Seven non-dimensional

torsional frequencies Xk of for

different small scale parameter

with S0 ¼ 5 nN/nm SL ¼ 5 nN/

nm

l(nm) X1 X2 X3 X4 X5 X6 X7

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.3 1.01401 1.01935 1.02501 1.03219 1.04046 1.05024 1.06166

0.5 1.03738 1.05065 1.06659 1.08505 1.10610 1.13048 1.15836

0.8 1.08644 1.11838 1.15710 1.19855 1.24449 1.29612 1.35451

1.0 1.12266 1.17302 1.23068 1.29031 1.35479 1.42678 1.50738

1.3 1.17640 1.26294 1.35504 1.44486 1.53931 1.64317 1.75868

1.5 1.20911 1.32669 1.44481 1.55647 1.67183 1.79766 1.93717

1.8 1.25233 1.42629 1.58830 1.73383 1.88110 2.04063 2.21641

2.0 1.27803 1.49459 1.68837 1.85752 2.02642 2.20833 2.40836
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the torsional frequencies of the modified couple stress

theory are larger than those of classical elasticity theory.

4.3 Effects of the torsional spring coefficients

By employing modified couple stress theory with the

material properties of nanotube: Young’s modulus

E ¼ 0:72 TPa, Poisson ratio m ¼ 0:25, density

¼ 2:3 g=cm3 (Wang 2005), diameter d ¼ 5 nm, the length

Table 3 Seven non-dimensional

torsional frequencies Xk of for

different small scale parameter

with S0 ¼ 1 nN/nm SL ¼ 1 nN/

nm

l(nm) X1 X2 X3 X4 X5 X6 X7

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

0.3 1.00585 1.01934 1.02667 1.03289 1.04064 1.04975 1.06089

0.5 1.01367 1.05208 1.07154 1.08791 1.10713 1.13006 1.15743

0.8 1.02734 1.12648 1.17188 1.20844 1.25027 1.29957 1.35689

1.0 1.03710 1.19047 1.25656 1.30829 1.36690 1.43532 1.51358

1.3 1.04882 1.30208 1.40262 1.47889 1.56372 1.66204 1.77484

1.5 1.05664 1.38541 1.51058 1.60349 1.70576 1.82444 1.95989

1.8 1.06640 1.52008 1.68374 1.80174 1.93085 2.07977 2.24936

2.0 1.07226 1.61607 1.80482 1.93973 2.08681 2.25586 2.44809
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Fig. 2 The effect of small scale parameter (l) on the first seven

normalized frequencies with different symmetrical spring parameters
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Fig. 3 The effect of normalized length (L / l) on the first seven

normalized frequencies with different symmetrical spring parameters
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L = 10 nm. and the thickness of the carbon nanotube

t ¼ 0:34 nm (Wang 2005). The first three normalized fre-

quencies are calculated and the solutions are shown in

Fig. 5, where both the modified couple stress theory and

classical elastic theory solutions are calculated for different

spring coefficients and plotted for direct comparison. It

could be seen that with increasing symmetrical spring

coefficients (S0 ¼ SL) the first normalized frequency

increases for all values of the spring parameters. It is

interesting the note that higher order modes are sensitive to

the torsional spring coefficient variations, while the first

mode of the torsional vibration depend essentially on

increasing values of spring coefficient.

5 Conclusions

Torsional vibrations of single walled carbon nanotubes

with torsional springs have been studied using the Fourier

sine series. This new analytical method is virtually

different from all previous methods where, instead of rigid

boundary conditions (fixed-free), restrained boundary

conditions with the higher-order boundary conditions are

used by considering the torsional spring coefficients. Such

theoretical analysis has not been reported in previous

studies. Angular rotation about the center of twist is sought

as the superposition of a Fourier sine series and Stokes’

transformation that is used to take care of the elastic
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Fig. 4 The effect of mode number on the first seven normalized

frequencies with different symmetrical spring parameters
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Fig. 5 The effect of symmetrical spring coefficient on the first three

normalized frequencies with different small scale parameter
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torsional restraints. Analytical results are calculated with

deformable boundary conditions of the carbon nanotubes.

The validity of the solutions is discussed in numerical

ways. The theoretical analysis in this study show that the

free torsional frequency results from the present method

are very close to those calculated from references. It is

remarkable that the procedure proposed in this study gives

more flexibility in boundary conditions.

Rigid (idealized) boundary conditions (fixed-fixed,

fixed-free) are nothing but special cases of elastic

deformable boundary conditions. For instance, a fixed bar

is a special case of a bar with torsional springs of infinite

stiffness. The main objective of this paper is to propose a

general analytical method for the free torsional vibration of

carbon nanotubes with general elastic boundary conditions.

Although these theoretical analysis have been confined to

single walled carbon nanotubes with circular cross-sections

for simplicity, they can be extended to double walled

carbon nanotubes.
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