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Abstract
The temperature change and size scale dependent effects on the dynamical behaviors of the Carbon nanotube (CNT)-based

nano-resonator are investigated in this work. The equation of motion of the CNT-based nano-resonator incorporating the

higher-order strain gradient deformation, the geometric nonlinearity due to von Karman nonlinear strain, and the thermal

effects is derived. A Galerkin based modal decomposition is used to investigate both the free vibration and forced vibration

of the nano-resonator. The temperature variation effect is analyzed by assuming both low and high temperature envi-

ronments. The results show that when assuming a high temperature in the post buckling regime, the nano-resonator natural

frequencies dispersion graph shows possibilities of modes-veering and modes-crossing variation due to the initial buckling

of the nano-resonator. From the forced-vibration analysis, the results demonstrate that taking into consideration the higher-

order strain gradient deformation in modeling the CNT based nano-resonator completely changes the frequency response of

the CNT-based nanoresonator.

1 Introduction

Carbon nanotube (CNT) represent one of the most

promising material extensively used in various nanoelec-

tromechanical systems (NEMS) based applications. This is

mainly due to its distinguished mechanical properties such

its remarkably high Young’s modulus, high aspect ratio,

and low material density. Therefore, an extensive experi-

mental and numerical research wave in the nanoscale level

has been conducted aiming to investigate CNT-based

nanostructure structural and dynamical behaviors.

Nevertheless, conducting an experimental investigation

to examine the mechanical behaviors of the CNT is

somehow difficult, expensive and requires fancy equipment

an experimental set-ups. Therefore, and in order to over-

come the above mentioned difficulty, people developed

some methodical theoretical modes, through utilizing

continuum theory to investigate the mechanical behaviors

of the CNT-based nanostructure. Many groups (Wang et al.

2008; Lee and Chang 2009; Ouakad and Younis

2010, 2011a, b; Ouakad 2010; Ansari et al. 2011; Kang

et al. 2015; Wang and Hu 2016) had reported on using the

classical continuum mechanics to simulate the structural

response of CNT based NEMS devices. Later, some

researchers carried out few modifications to the classical

continuum mechanics for the sake of demonstrating the

small scale effect in such tiny structures. To cite few of

these attempts: the nonlocal Eringen (Ansari and

Ramezannezhad 2011; Wang and Wang 2016; Sudak 2003;

Zhang et al. 2005; Wang and Varadan 2006; Lu et al. 2007;

Kumar et al. 2008; Reddy and Pang 2008; Hu et al. 2008;

Benzair et al. 2008; Murmu and Pradhan 2009, 2010;

Ansari and Sahmani 2012; Arash and Wang 2012; Seyyed

Fakhrabadi et al. 2014, 2015; Ansari et al. 2017; Shaat and

Abdelkefi 2017) and the strain gradient (SGT) (Mindlin

1965; Akgöz and Civalek 2012; Fakhrabadi et al.

2013, 2014; Xu and Deng 2015; Pradiptya and Ouakad

2016) theories were among the most used non-classical

models capable of apprehending the small size effects in

micro, nano and even sub-nano scale structures. These

effects were reported to be indispensable to accurately

model the nonlinear structural behaviors of microstructure

as well (Arash and Wang 2012; Yang et al. 2002; Lam

et al. 2003). For example, in the strain gradient theory, and

instead of using one length scale dependent parameter, the

model uses three different and dependent size scale
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parameters in order to capture the micro/nano structure 3D

size dependent effects. These three higher-order strain

gradient parameters are associated with the dilatation, the

deviatoric stretch, and the rotation gradients and therefore

allowing to model any 3D size dependent effect in sub-

micro scale (Lam et al. 2003). In addition, surface effect

has been reported as an important factor in the small scale

modeling under certain circumstance. Wang and Wang

(2014, 2015) and Wang et al. (2015) reported that the

surface effect is significantly change the pull-in instability

and free vibration behaviors for the cantilever switch

modeling with large gap-length ratio and short length of

fixed electrode. Wang et al. (2015, 2017a, b) also stressed

that the surface effect is significant for beam with the

square profile and becoming more indispensable for thinner

plate while imposed a large amplitude of vibration

scenario.

Another fundamental effect that had been reported to be

imperative in the CNT-based NEMS modeling is the

thermal effect. Ansari et al. (2011) studied CNT-based

nanobeam with several boundary conditions. The limitation

of this study is the absent of any external or even actuating

load which is mostly used in almost all CNT-based NEMS

devices. Another work qualitatively similar to the work of

Ansari et al. (2011) was reported by Kang et al. (2015). In

this work, the group solved nonlinear classical continuum

beam equations to model the nonlinear structural behavior

of CNT nanobeam under the effect of a simple harmonic

thermal load. Another group (Lee and Chang 2009) pro-

posed an analytic solution to predict the critical buckling

temperature of single-walled carbon nanotube (SWCNT).

They reported that SWCNT may buckle for very minor

temperature load. This buckling instability may lead the

CNT into deflected state which maybe behave like a

curved/slacked CNT.

To the best of the authors knowledge, and after a thor-

ough survey of the literature, it is concluded that a very

limited number of investigations considered the nonlinear

structural problem of CNT based nanobeams, using the

strain gradient elasticity theory Along with the thermal

effect are both taken into consideration. Furthermore, there

is some deficiency in the current literature on investigating

the effect of higher order strain gradient parameters on the

possibility of structural instabilities. To fill this gap in the

literature, the present study propose to investigate the

thermal effect on the free and forced vibration of a doubly-

clamped single-walled carbon nanotube and while assum-

ing a non-classical nanobeam continuum model. In this

regards, a higher-order strain gradient deformation model

is taken into account in the framework of the Euler–Ber-

noulli nonlinear beam theory. The numerical approaches

and methodologies to predict the natural frequency dis-

persion of the SWCNT when subjected by AC and DC load

under certain thermal excitations will be thoroughly pre-

sented. In the presence of a temperature variation, we will

also discuss the possibility of the fundamental CNT modal

frequencies veering and crossing which usually occur on an

initially deflected/curved fixed–fixed structure due to a

thermal load. The effect of size scale dependent effect on

the resonant frequency of SWCNT will also be presented.

The contribution of the paper is as follows. First, based

on few of our previous works (Pradiptya and Ouakad

2016, 2017), a reduced order model (ROM) using the

Galerkin’s decomposition procedure is adopted to solve the

above nonlinear problem. Second, the nonlinear free-vi-

bration problem of doubly clamped CNT under parallel

plate electrostatic actuation is solved using a reduced-order

model Jacobian matrix process. Then, the effect of a tem-

perature variation to possibility initiate modes veering and

modes crossing of the CNT when operated in the post

buckling temperature regime will be carried out. Finally,

the nonlinear response of the doubly-clamped CNT when

driven by DC superimposed by AC load is examined using

one mode in the ROM procedure.

This paper is arranged as follows. Following this

introduction, a nonlinear partial differential Euler–Ber-

noulli beam equation employing a modified strain gradient

theory while taking into consideration the von Karman

nonlinear strain deformations, the nonlinear electric par-

allel-plates actuating force, and the thermal effect is pre-

sented in Sect. 2. Then, a Galerkin based reduced-order

discretization technique to convert the nonlinear partial

differential equation into ordinary differential equations is

described in Sect. 3. Section 4 summarizes the outcomes of

the size scale dependent parameters effect on the critical

buckling temperature of the investigated CNT based nano-

resonator. In Sect. 5, the free vibration analysis is con-

ducted by considering two thermal conditions: a low tem-

perature regime and then a high temperature situation. An

analytical/numerical technique called the Jacobian-Galer-

kin method to predict the fundamental frequencies of the

CNT-based nano-resonator is also presented in Sect. 5. The

forced vibration analysis under low gate voltage regimes to

investigate the effect of geometrical size of the resonator

while assuming higher-order strain gradient deformation is

carried out in Sect. 6. Finally, the main contributions and

conclusions of this study are summarized in Sect. 7.

2 Problem formulation

In this section, the problem formulation of the static and

dynamic behaviors of a doubly-clamped CNT-based res-

onator under both electric actuation and thermal loading is

presented. Accordingly, we consider a straight CNT-based

nano-resonator operating in a thermally fluctuating
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environment. We adopt the same non-classical nonlinear

continuum beam model, incorporating the nonlinear von-

Karman strain demonstrating the mid-plane stretching

effect, the size scale dependent effect through the strain

gradient theory, a nonlinear actuating parallel-plates elec-

trostatic actuating force, and a temperature effect as pre-

sented in one of our previous work (Pradiptya and Ouakad

2016, 2017). It is worth mentioning here that, for simplicity,

both the van der Waals and Casimir effects were not con-

sidered in this current investigation. This is mainly because

we have assumed gap sizes between the CNT and its lower

actuating electrode larger enough to make their effect

somehow negligible. In reality these effects are only sig-

nificant when the gap width is too small in ten range of only

few nanometers (Dequesnes et al. 2002; Marc et al. 2002).

The CNT-based nano-resonator is modeled in the

framework of a nonlinear Euler–Bernoulli beam theory,

with a radius r, a shell thickness h, an effective length L, a

mass density q, a Young’s modulus E, a cross-sectional

area A, and a cross-sectional moment of inertia I. The

schematic is presented in Fig. 1. We should note here that

the slack effect in this current model is also neglected as

we only considered the case of straight SWCNT-based

nano-resonators. Consequently, the equation of motion

along with its respective boundary conditions governing

the transverse displacement of the straight CNT-based

nanoresonator, while considering both the size dependent

parameters as well as the thermal effects are given by

(Pradiptya and Ouakad 2016):

qA
o2w

ot2
þ ~Cv

ow

ot
� Q

o6w

ox6
þ P

o4w

ox4

þ EAaTDT � EA

2L

ZL

0

ow

ox

� �2

dx

0
@

1
A o2w

ox2
¼ Feðx; tÞ;

ð1Þ

wð0; tÞ ¼ wðL; tÞ ¼ 0;
ow

ox

����
x¼0

¼ ow

ox

����
x¼L

¼ 0;

o2w

ox2

����
x¼0

¼ o2w

ox2

����
x¼L

¼ 0;

ð2Þ

where the constants P and Q are defined as P ¼
EIy þ GA 2l20 þ 8

15
l21 þ l22

� �� �
and Q ¼ GIy 2l20 þ 4

5
l21

� �
. The

size scale parameters noted above as l0, l1, and l2 are the

dilatation, the deviatoric stretch, and the rotation gradients,

respectively (Pradiptya and Ouakad 2016, 2017; Lam et al.

2003)

Note that in Eq. (2), the first four boundary conditions

are the classical one. w and ow=ox represent the deflection

and slope boundary conditions for both end-clamped con-

figuration, respectively. The last two boundary conditions

which are appeared to be second derivative of the deflec-

tion represent the bending moment term obtained from the

equation of motion derivation using Hamilton’s principle.

The detail of this derivation can be found in Pradiptya and

Ouakad (2017). This is also consistent with few other

published works in which they all assumed that the non-

classical moment equation can be written as combination

of the second and fourth derivative of the beam transverse

deflection (Yang et al. 2002; Pradiptya and Ouakad 2017;

Kong et al. 2009; Belardinelli et al. 2014; Ghayesh 2014).

The electrostatic force function for a CNT-based

nanoresonator under a parallel-plates electric field

assumption can be written as (Ouakad and Younis

2010, 2011a, b; Ouakad 2010):

Feðx; tÞ ¼
pe0ðVDC þ VAC cosðXtÞÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd � wÞðd � wþ 2rÞ

p
ðcosh�1 1 þ ðd � wÞ=rð ÞÞ2

;

ð3Þ

For convenience and in order to avoid some numerical

problems that may occur when computing small numbers

mainly in the nano-scale, the below nondimensional vari-

ables will be used to acquire normalized equations of motion:

ŵ ¼ w

d
; b ¼ b0

d
; ŵ0 ¼ w0

d
; x̂ ¼ x

L
; t̂ ¼ t

T
;

T ¼
ffiffiffiffiffiffiffiffiffiffiffi
qAL4

P

r
; r̂ ¼ r

d
;

ð4Þ

Substituting the above expressions into Eqs. (1)–(3),

then dropping the hat, we are therefore left with the fol-

lowing normalized equation of motion and its respective

boundary conditions:

b0w
vi þ wiv þ €wþ Cv _w

¼ �b2aTDThigh=low þ b1

Z1

0

ðw0Þ2
dx

0
@

1
A

2
4

3
5ðw00Þ þ b3Feðx; tÞ;

ð5Þ

wð0Þ ¼ 0; wð1Þ ¼ 0;
owð0Þ
ox

¼ 0;
owð1Þ
ox

¼ 0;

o2wð0Þ
ox2

¼ 0;
o2wð1Þ
ox2

¼ 0;

ð6Þ

where:

Fe ¼
ðVDC þ VAC cosðXtÞÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � wÞð1 � wþ 2rÞ

p
cos�1 1 þ 1�w

r

� �� �2
; ð7Þ

Fig. 1 Schematic of a doubly-clamped CNT-based nano-resonator

under parallel plate electrostatic actuation arrangement
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and:

b0 ¼ � Q

PL2
; b1 ¼ EAd2

2P
; b2 ¼ EAL2

P
;

Cv ¼
~CvL

2ffiffiffiffiffiffiffiffiffi
qAP

p ; X ¼ ~X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqAL4Þ=P

p
; b3 ¼ pe0L

4

Pd2
;

ð8Þ

3 Galerkin’s modal decomposition
technique

In this work, the Galerkin’s modal decomposition proce-

dure is used to discretize the above nonlinear partial dif-

ferential equation (PDE), Eq. (5), into finite number of

ordinary differential equations (ODEs) which are easier to

be numerically solved. This model decomposition proce-

dure is first assuming the solution of the PDE as two sep-

arated independent functions, i.e. one space and one time

varying functions. Next, assuming that the solution of

Eq. (5) can be approximated as modal coordinates and

modes shape representing the transverse deflection of the

CNT-based nanoresonator, we can approximate the solu-

tion of the PDE as follow:

wðx; tÞ ¼
Xn
i¼1

qiðtÞ/iðxÞ; ð9Þ

where, qi� i� nðtÞ are the modal coordinates, and /i� i� nðxÞ
are the admissible modes shape function of the doubly-

clamped CNT. The modes shape functions should satisfy the

nonclassical boundary conditions, Eq. (8), and therefore the

classical modes shape functions are no longer valid to be

considered in these type of ROM calculations. Hence, we

decided to develop a model to acquire the nonclassical modes

shape functions that satisfy all the classical and the non-

classical boundary conditions (Pradiptya and Ouakad

2016, 2017). Henceforth, the nonclassical mode shape func-

tion can be expressed as Pradiptya and Ouakad (2016, 2017):

/ðxÞ ¼ C1 coshðk1xÞ þ C2 sinhðk1xÞ þ C3 cosðk3xÞ

þ C4 sinhðk3xÞ þ C5

e�k2x

k2
2

þ C6

e�k2x�k2

k2
2

; ð10Þ

where Ci- and ki are the constant coefficients and roots of

the characteristic equation of the characteristic nonlinear

frequency equation obtained through considering the lin-

earized undamped eigenvalue problem of Eq. (5). We

should note here that all the mode shape parameters will

depend on the geometrical dimensions of the CNT and its

assumed size scale dependent parameters.

Next, by substituting Eq. (9) into Eq. (5), then multi-

plying the whole equation with the mode-shape function

/1� i� nðxÞ, then integrating numerically from 0 to 1, we

get the ROM governing the dynamic behavior of the CNT-

based nano-resonator in term of its modal coordinates

functions q1� i� nðtÞ. The numerical solutions representing

the dynamic behavior of the nano-resonator can be

obtained using long time integration while assuming a

Runge–Kutta method. To designate the obtained ROM

coupled ODE nonlinear equations, the following is the

equation describing the ODE when assuming only one

modal coordinate, qi¼1ðtÞ in the Galerkin decomposition

procedure:

€q1ðtÞ þ Cv _q1ðtÞ þ ðb0C1 þ C2Þq1ðtÞ

¼ b1P1P2ðq1ðtÞÞ3 þ b3

Z1

0

ðFeðx; tÞ/1Þdx; ð11Þ

where,

C1 ¼
Z1

0

ð/vi
1 ðxÞ/1ðxÞÞdx; C2 ¼

Z1

0

ð/iv
1 ðxÞ/1ðxÞÞdx;

P1 ¼
Z1

0

ð/0
1ðxÞÞ

2
dx; P2 ¼

Z1

0

/00
1ðxÞ/1ðxÞdx;

ð12Þ

and,

Fe ¼
ðVDC þ VAC cosðXtÞÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � q1ðtÞ/1ðxÞÞð1 � q1ðtÞ/1ðxÞ þ 2rÞ

p
cos�1 1 þ 1�q1ðtÞ/1ðxÞ

r

� 	� 	2
:

ð13Þ

We propose next to validate the constructed reduced-

order model with results available in Fakhrabadi et al.

(2014). Figure 2 shows the comparison while assuming

strain gradient theory with the length scales are all equal to

0.2 nm. The results show an acceptable agreement with

Fakhrabadi et al. (2014).

Fig. 2 ROM validation with literature (Fakhrabadi et al. 2014)

assuming SGT
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4 Buckling analysis under thermal load

This section is organized mainly to investigate the critical

(threshold) temperature value that would trigger a thermal

expansion sufficient for the buckling initiation of the

clamped–clamped CNT based nano-resonator. We calcu-

late this onset value thermal expansion of the CNT by

neglecting all the time dependent functions as well as the

electrostatic force in the nonlinear beam equation of

motion, Eq. (12), while conserving the mid-plane stretch-

ing term and the temperature changing DThigh=low. To this

end, the time-dependent modal coordinate functions

q1� i� nðtÞ are all replaced by time-independent coefficients

a1� i� n. Consequently, we are left with the following

nonlinear algebraic equations all function of the constant

parameters a1� i� n, and governing the CNT static deflec-

tion under the effect of any thermal load DT:

Xn
i¼1

b0ai

Z1

0

/VI
i ðxÞ/jðxÞdxþ

Xn
i¼1

ai

Z1

0

/IV
i ðxÞ/jðxÞdx� b3

Z1

0

FeðxÞ/jdx

þ
Z1

0

b2aTDT � b1

Z1

0

Xn
i¼1

ai/
0
iðxÞ

 !2

dx

0
@

1
A

2
4

3
5

8<
:

�
Xn
i¼1

ai/
00
i ðxÞ

 !
/jðxÞ

)
dx ¼ 0; j ¼ 1; 2; 3; . . .; n:

ð14Þ

As a numerical case, we consider a CNT with tube shell

thickness h = 0.34 nm, length L = 3000 nm, and Young’s

modulus of 1.2 GPa. Table 1 summarize several CNT

parameters which are considered toward this study. Fig-

ure 3 displays the CNT static deflection versus an assumed

temperature changing DThigh=low using one mode shape in

the ROM process for case 3 of Table 1. In the same figure,

we assume all size scale dependent parameters equal to

l0 ¼ l1 ¼ l2 ¼ l ¼ 1 nm.

The figure shows that for this case study, a critical buck-

ling thermal threshold is occurring at around DT & 9.4 K.

Increasing the temperature changing value DThigh=low above

this critical thermal threshold will initiate a post-buckling

state. The same figure is demonstrating that the CNT exhibits

in a nonlinear manner the post-buckling regime when the

change of the temperature is furtherly increased.

To compliment the above numerical results, we propose

next to compute the CNT critical buckling temperatures

while considering different SGT parameters, Fig. 4.

Additionally and in the same figure, the SGT results will be

compared with those obtained while assuming classical

continuum theory. The classical results show that the

critical buckling while considering one mode in the cal-

culation is very small. This finding is in agreement with

what was previously reported in Lee and Chang (2009). In

fact, they have investigated in their work the critical

buckling temperatures of single wall carbon nanotube

(SWCNT) using the classical continuum theory, and they

have concluded that these critical temperatures are rela-

tively small values for the fundamental mode (the first

mode of vibration).

Figure 4 shows that taking into account the nonlinear

geometric terms due to the assumed thermal load along

Table 1 The CNT parameters for dynamic analysis

Case d (nm) L (nm) r (nm)

1 100 3000 30

2 100 3000 10

3 500 3000 1

Fig. 3 Variation of CNT static deflection with the thermal load and

while assuming a SGT with l ¼ 1 nm for the case study number 3 of

Table 1

Fig. 4 Variation of the CNT static deflection with an assumed high

temperature regimes while varying the strain gradient parameters as

follows: l = 0 nm (the classical continuum theory case); l = 1.0 nm;

l = 1.25 nm and l = 1.5 nm for the case number 3 of Table 1

Microsystem Technologies (2018) 24:2585–2598 2589
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with the mid-plane stretching are affecting significantly the

computation of the critical thermal buckling thresholds.

Similarly, it is clearly shown that increasing the SGT

parameters, i.e. decreasing the CNT radius to the size scale

dependent parameters ratio, tends to increase the critical

buckling temperature thresholds, as compared to the clas-

sical continuum theory. This is mainly due to the stiffening

effect of the CNT-based nanobeam in the presence of

higher-order strain gradient deformations. That to say that

the strain gradient effects are considerably related to the

stiffness of any considered nanostructure (Lam et al. 2003).

5 Free vibration analysis

In this section, we propose to examine the thermal effects

on the natural frequencies dispersion of the doubly-

clamped carbon nanotube when varying its actuating DC

load. To this end, we consider a linear eigenvalue problem

through linearizing all nonlinear terms in the CNT equation

of motion, i.e.: the geometric stretching nonlinearity, the

actuating electric force, the size-dependent terms, and the

thermal load. We then plan to use a combined method

called Jacobian-Galerkin matrix method to calculate all the

eigenvalues of the eigenvalue problem, i.e. the CNT nat-

ural frequencies of the CNT-based nanoresonator. All the

computed results will be then compared with those while

assuming the CNT operating with a room temperature

condition.

5.1 The Jacobian-Galerkin procedure

We start here by deriving the linearized eigenvalue prob-

lem (LEVP) to investigate the thermal effects on the nat-

ural frequencies of CNT-based nanobeam. Through

assuming the Galerkin decomposition, the normalized

equation of motion with its respective boundary conditions

of the doubly clamped straight CNT, Eqs. (5)–(8), can be

re-written as:

The above Eq. (15) can be re-written in the following

state-space representation form:

_� ¼ Kð� Þ; ð16Þ

where,

� ¼ ½ x1 x2 � � � xn �T
¼ ½ q1 _q1 q2 _q2 � � � qn _qn �T ; ð17Þ

Here, the vector� represents the modal coordinate vector.

The vector Kð� Þ symbolizes the right-hand side vector

comprising all the stiffness coefficients as well as the non-

linear terms that are in Eq. (15). One can note here that vector

Kð� Þ is a nonlinear function in the term modal coordinates

q1� i� nðtÞ. Next, by splitting � into a static part denoted by

� static, representing the equilibrium position due to the DC

actuation, and a dynamic part denoted by � dynamicðtÞ repre-

senting the perturbed oscillations around the equilibrium

position, the vector � can be re-written as:

� ¼ � static þ � dynamicðtÞ; ð18Þ

Then, substituting Eq. (18) into Eq. (17), using a Taylor

series expansion for small variation of � dynamicðtÞ, neglecting

the higher-order terms (h:o:t), and knowing thatKð� staticÞ ¼ 0;

we are left with the below Taylor’s series simplified expression:

_� dynamic � Jð� staticÞ� dynamic þ h:o:t|ffl{zffl}
!0

; ð19Þ

where Jð� staticÞ is the Jacobian matrix estimated at the CNT

perturbed points (Ouakad and Younis 2011a; Nayfeh and

Balachandran 1995). If one considers n-modes shape in the

Galerkin decomposition ROM process, the Jacobian matrix

will be an n 9 n matrix and can then be written as follows:

Jðx1; x2; � � � ; xnÞ

¼

of1ðx1; x2; � � � ; xnÞ
ox1

� � � of1ðx1; x2; � � � ; xnÞ
oxn

..

. . .
. ..

.

ofnðx1; x2; � � � ; xnÞ
ox1

� � � ofnðx1; x2; � � � ; xnÞ
oxn

2
666664

3
777775
;

ð20Þ

o

ot

o

ot

Xn

i¼1
qiðtÞ/iðxÞ

� �
¼ �b0

o6

ox6

Xn

i¼1
qiðtÞ/iðxÞ

h i
� o4

ox4

Xn

i¼1
qiðtÞ/iðxÞ

h i
þ

þ b3

VDCð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

Pn
i¼1 qiðtÞ/iðxÞ

� �
1 �

Pn
i¼1 qiðtÞ/iðxÞ þ 2r

� �q
cos�1 1 þ 1�

Pn

i¼1
qiðtÞ/iðxÞ
r

� �� �2

þ �b2aTDT þ b1

Z 1

0

o

ox

Xn
i¼1

uiðtÞ/iðxÞ
" # !2

dx

2
4

3
5 o2

ox2

Xn
i¼1

uiðtÞ/iðxÞ
" #

:

ð15Þ

2590 Microsystem Technologies (2018) 24:2585–2598

123



where fn are the state space form of the EOM, corre-

spondingly for all the assumed nth mode-shapes. Then, to

estimate the natural frequencies of the CNT for any pre-

sumed DC electrostatic voltage, one should substitute the

fixed stable static solution � static into the matrix J and then

calculate its corresponding eigenvalues, using the below

equation:

Jð� staticÞ � kIj j ¼ 0; ð21Þ

where I is the identity matrix. Finally, the natural fre-

quencies of the system can be obtained by taking the square

roots of the Jacobian matrix eigenvalues.

5.2 Thermal effect

In order to examine the thermal effect on the natural fre-

quencies dispersion of the doubly clamped straight carbon

nanotube, we adopted the following steps: we first examine

the variation of the CNT fundamental natural frequency

with the DC voltage and for various thermal loads (low and

high regimes). Next, we propose to study the effect of the

thermal load on the natural frequencies with zero gate

voltage in order to predict any possibilities of modes

crossing and modes veering in the case of higher temper-

ature regimes. In the last part of this sub-section, the dis-

persion curves for the straight CNT first five natural

frequencies are computed through varying the DC actuat-

ing amplitude in the low gate voltage regime. It is worth

noting here that we propose to analyze all of the above case

studies while assuming the strain gradient theory where all

size scale dependent parameters are equal to

l0 ¼ l1 ¼ l2 ¼ l ¼ 1 nm. In addition, the geometric mid-

plane stretching nonlinearity, post-buckling deflection, the

actuating force nonlinearity, and the temperature changing

are all taken into account in the below simulations.

In the below simulations, we first consider the linearized

EVP with only considering one mode in the ROM and with

including the thermal term. We examine the both cases of

low and high temperature regimes then we display both

outcomes using two separates figures: Fig. 5a, b respec-

tively. In these figures, we display the variation of the first

fundamental natural frequency of the CNT with the DC

load and while assuming a gap width of d = 300 nm for

the CNT of case 3 in Table 1.

For the fundamental frequency dispersion in the low

temperature regime, Fig. 5a, the results indicate a signifi-

cant deviation especially around the low gate voltage

domain. This is attributed to the dominance of the mid-

plane stretching stiffening effect mainly governed by the

low temperature regime in the low DC gate voltage regime.

In fact, one can realize that considering low actuating

voltage regime (DC voltage below 3 V), a low temperature

tends to increase the natural frequency of the CNT. How-

ever this phenomenon is in contrast changing when the DC

load increases beyond 3 V until reaching the pull-in

instability, where the frequency drops to zero. This can be

attributed to the decrease of the effective CNT length due

to a tensile like thermal load. Therefore, the effective mid-

plane stretching effect, which principally stiffen the CNT,

is then decreased by a tensile load in this low thermal

regime. In addition, we can understand from the same plot

that for high gate DC voltages, the fundamental frequency

values are slightly lower as compared to the room tem-

perature case where DT � 0. This is mainly due to the

dominance of the electrostatic force nonlinearity, at high

DC load amplitudes, which is essentially of quadratic

(softening) type.

Fig. 5 Variation of the first (fundamental) natural frequency of the CNT for the case number 3 of Table 1 while assuming a low temperature

regime, and b high temperature regime
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Next, Fig. 5b depicts the same dispersion of the CNT

first natural frequency with the DC load but while assum-

ing high temperature regime. The obtained results are

significantly different as compared to the low temperature

results of Fig. 4a. We can visibly comprehend that, in this

case, the fundamental frequency increases with the increase

of temperature changing. This is recognized as the post

buckling structural behavior which contributes more than

the temperature changing effect which tends to increase the

frequency of the CNT for all assumed values of the DC

actuating load. As was previously discussed in Sect. 4,

doubly-clamped CNT subjected to high thermal loading

tends to expand the length of the CNT. This expansion

contributes mostly to curve the straight CNT due to the

both clamping boundary conditions right after exhibiting

the critical buckling temperature instability. This structural

behavior tends to let the cubic geometric nonlinearity to be

more dominant, therefore increasing the natural frequency

of the CNT based nanobeam. It also can be inferred from

Fig. 5b that the natural frequencies of CNT when assuming

high temperature changing drop earlier to zero (near pull-

in) than the case of the room temperature where DT � 0.

Afterward, we propose to assess the high temperature

changing effect of the doubly clamped CNT-based nano-

beam while assuming zero gate voltage. We assume here

zero actuation load in order to investigate the CNT mid-

plane stretching effect which will be here mainly ruled by

any assumed thermal load. As was formerly argued in

Sect. 4, doubly clamped CNT based nanobeam behaves

like slacked CNT when operated above a critical buckling

temperature threshold. To this end, we propose to investi-

gate any possibility of crossing and veering between the

first few lower CNT natural frequencies. First, to more

understand the above pronounced results of Fig. 5b, we

consider the first five modes of vibration in the linearized

eigenvalue problem while varying the higher temperature

regime from 0 to 500 K and while assuming the SGT size

scale dependent parameters all equal to l = 1 nm. The

results are displayed in Fig. 6. It can be observed from the

figure that the first natural frequency is increasing nonlin-

early with the thermal effect to finally saturate for

DT � 50 K. It also can be observed that the third and fifth

frequencies are also sensitive to the temperature variations.

They both increase nonlinearly as we increase the tem-

perature variations. The second and fourth frequencies are

completely unaffected by the temperature changes, as

indicated with the first and second straight dashed lines.

Two mode crossings are observed here (labeled by red

arrows in Fig. 6): the first is occurring for a temperature

changes around 25 K between the first mode and the sec-

ond one, the second is happening at around 100 K tem-

perature changes involving the third mode and the fourth

mode. Hence, the results of Fig. 6 show that when the

temperature variations is varied from zero to a value

greater that 100 K, two modes crossing will possibly occur.

These results also indicate that the mid-plane stretching

effect due to the buckling deflection is more prevailing in

the post-buckling regime.

Subsequently, to more clarify the above discussed mode

veering and mode crossing issues when assuming high

temperature changes with zero gate voltage, we propose next

to investigate these mode interactions options with including

the DC electrostatic actuating load. To this end, we consider

three different temperature cases: DThigh ¼ 0 K (room tem-

perature condition), DThigh ¼ 200 K and DThigh ¼ 400 K,

Fig. 7a, b, c, respectively. Figure 7a shows the variation of

normalized first five natural frequencies with the applied DC

voltage for the room temperature condition. We can observe

from the figure that for the case of straight CNT in a room

temperature condition, the frequencies dispersion is showing

not a single potential of modes crossing or modes veering.

These results are in perfect agreement with the outcomes of

Ouakad and Younis (2011a) which reported on the straight

CNTs natural frequencies dispersion without considering

any thermal effect.

Increasing further the thermal amplitude to higher val-

ues as compared to the room temperature situation, Fig. 7b,

c display the straight CNT normalized first five in-plane

natural frequencies dispersion with the applied DC load

and for two different temperature values of DThigh ¼ 200 K

and DThigh ¼ 400 K, respectively. We can initially observe

from Fig. 7b, that assuming temperature DThigh = 200 K,

one modes veering (indicated in the figure by a red dashed

square) and two modes crossing (designated by two red

arrows) were introduced at low gate voltages, i.e.

0 V\VDC\ 10 V. A veering between the first mode and

the third one is occurring around a gate voltage of 2.5 V,

Fig. 6 Variation of the first five normalized in-plane natural frequen-

cies of the CNT of case number 3 of Table 1 with the higher

temperature changes, for zero DC load, and while assuming a SGT

parameters of l0 ¼ l1 ¼ l2 ¼ l ¼ 1 nm
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however this was not predicted in the case of room tem-

perature condition, Fig. 7a. In addition, when we increased

the temperature to DThigh ¼ 400 K, Fig. 7c, we observed

that the extra thermal load resulted into an extra thermal

expansion and therefore an addition deflection in new post-

buckling state of the CNT. We can also see that the addi-

tional thermal loads resulted into altering the modes

veering and modes crossing locations.

It is clearly shown in Fig. 7c that the first-third modes

veering location is shifted to a higher gate voltage around

4 V, as compared to 2.5 V in the case of DThigh ¼ 200 K.

The modes crossing positions are also moved to higher gate

voltages as we increased of the higher temperature regime.

Moreover, one can observe that the third and fifth natural

frequencies are slightly decreasing in low gate voltage

regime to then increase with the increase of the DC load.

This indicate that the CNT is of softening effect governed

by its initial post-buckling deflection state in the low gate

voltage regime, to the become less dominant as compared

to geometric cubic nonlinearity with tends to stiffen the

nano-structure when increasing the gate voltage amplitude.

Lastly, we consider next studying the low temperature

changing effect with assuming two different cases,

DTlow ¼ �200 K, Fig. 8a, and DTlow ¼ �400 K, Fig. 8b,

for the sake of verifying the integrity of the static buckling

analysis of Sect. 4, where we indicated that the CNT length

reduction effect is dominant in the low gate voltage regime.

We can clearly see from both figures the dominance of the

stiffening effect (increase of all natural frequencies) in the

CNT structural behavior for all considered DC amplitudes

and in the low temperature conditions. It can similarly be

observed that there are no possibilities of modes veering

and modes crossing occurrences. This is mainly attributed

to the reason that assuming low thermal loads would

Fig. 7 Variation of the first five normalized in-plane natural frequencies of the straight CNT of case number 3 of Table 1 with the DC load, while

assuming a SGT parameters of l ¼ 1 nm, and for a DThigh ¼ 0 K (room temperature condition), b DThigh ¼ 200 K, and c DThigh ¼ 400 K
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always result into straight CNT based nanobeam configu-

ration. In addition, the natural frequencies dispersion in this

case of CNT operating under very low ambient temperature

values indicate exactly the same trend as for the case of

straight CNT with ambient temperature condition. The

straight CNT with low thermal values will remain straight

due to the reduction in its effective length. Indeed,

decreasing the temperature will increase the natural fre-

quency in the low gate voltage, therefore the hardening

mid-plane stretching effect convert to be more dominant

than the softening electrostatic actuation term in these

loading conditions.

6 Forced vibration analysis

In this section, we plan to investigate the dynamic response

of the doubly clamped straight CNT-based nano-resonator

under DC static and AC harmonic loads. A one mode in the

ROM, Eq. (11), is used in this regards to investigate the CNT

dynamic response near its fundamental mode. The one mode

nonlinear differential equation of motion, Eq. (11) is to be

numerically integrated in the time domain. Through using a

long time integration technique, we consider small gate

voltages to investigate the dynamic responses of the CNT in

order to ensure converged results without much hysteretic

behavior. The effects of the size scale dependent parameters

will be then presented and discussed.

6.1 The size scale dependent parameter effects

Next, we use the Galerkin based reduced-order model cou-

pled differential equations developed in Sect. 3 and integrate

them with time using a fourth Runge–Kutta method to get the

dynamic response of the straight CNT under static DC and

harmonic AC harmonic load. Figure 9 shows the dynamic

response of case number 1 of Table 1 subjected to a static

2 V DC load superimposed to a dynamic 2 V AC harmonic

load with forcing frequency near the CNT-based nanobeam

fundamental frequency (X & 22). In the same figure, we are

assuming a nanoresonator quality factor of QNR = 100, and

zero initial conditions for the modal coordinates. The

damping coefficient in these simulations is related to the

quality factor QNR as follows:

~C ¼ qAxn=QNR; C ¼ ~C
L4

EIT
; X ¼

~X
xn

: ð22Þ

One can observe that the CNT time history dynamic

response at its mid-point is reaching the steady-state

response for values of normalized time greater than 50.

Fig. 8 Variation of the first five normalized in-plane natural frequencies of the straight CNT of case number 1 of Table 1 with the DC load, while

assuming a SGT parameters of l ¼ 1 nm, and for a DTlow ¼ �200 K, and b DTlow ¼ �400 K

Fig. 9 Time history curve of the CNT of case number 1 of Table 1 at

X & 22 and for l ¼ 1 nm, VDC = VAC = 2 V, and a quality factor of

QNR = 100
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Then, we develop an algorithm to compute the fre-

quency response curves displaying the CNT based nano-

beam converged dynamical solutions while varying the AC

harmonic input excitation frequency denoted by X. The

values of the normalizing frequency xn are obtained from

the results of the linear eigenvalue problem which mainly

depend on the value of static DC load. Figure 10 shows the

variation of the CNT of case 1 of Table 1 mid-point

maximum dynamic values for various AC load frequency

ranging from 20 to 30, and for various size scale dependent

parameters. The figure demonstrates that in all cases, the

CNT dynamic response exhibit a hardening behavior where

the resonant frequency is greater that the natural frequency

of the excited structure. Moreover, as the strain gradient

parameters tend to increase, the resonance frequency of the

CNT increase as well. In fact, these results infer a con-

sistent consequence of the previously discussed conclusion

of the linearized eigenvalue problem that the strain gradient

theory is by all means altering the rigidity of the CNT-

based nanobeam by making it stiffer.

As previously identified from the linearized eigenvalue

problem simulations, the strain gradient effect is more

prominent for CNT with smaller radii, consequently we

propose next to simulate the CNT dynamic responses of the

case 2 and 3 of Table 1, Figs. 11 and 12 respectively. Both

figures are illustrating similar frequency response curves

shapes all demonstrating hardening behaviors with

increasing resonance frequencies. Indeed, through com-

paring all reproduced frequency response curves, Figs. 10,

11 and 12, we can deduce that the discrepancies between

the results when assuming classical continuum mechanics

as compared to those obtained using the strain gradient

theory are becoming higher when the CNT radius is

decreased. Moreover, the resonance frequency shift is more

significant as the CNT radii are reduced to smaller values.

It can be concluded that the strain gradient effect is

Fig. 10 Frequency-response

curve of the CNT of case

number 1 of Table 1 for various

strain gradient parameters

values, VDC = VAC = 2 V, and

a quality factor of QNR = 100

Fig. 11 Frequency-response

curve of the CNT of case

number 2 of Table 1 for various

strain gradient parameters

values, VDC = VAC = 0.25 V,

and a quality factor of

QNR = 100
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definitely more evident when the geometrical dimensions

of the CNT are closer to the strain gradient parameters.

These results again show the capability of the strain gra-

dient theory to capture the size scale dependent effect

especially while considering very small CNT structural

geometry. Finally, it can be comprehended from Fig. 12

that the strain gradient effects are not altering only the

location of the resonant frequency, but also change the

CNT dynamic response through reducing its maximum

dynamic oscillation, therefore stiffening its overall struc-

tural behavior. This significant outcome may explain one of

the causes behind the discrepancies reported in the litera-

ture when comparing the results of classical continuum

mechanics to experimental data for CNTs driven harmon-

ically at resonance near their fundamental modes.

7 Conclusions

In this paper, a doubly-clamped CNT-based nano-resonator

model when assuming higher-order strain gradient defor-

mation theory is formulated to investigate the temperature

Fig. 12 Frequency-response curve of the CNT of case 3 of Table 1 for various strain gradient parameters values, VDC = 10 mV, VAC = 2 mV,

and a quality factor of QNR = 100
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changes and size dependent effects on the CNT nonlinear

structural and dynamical behavior. The adopted model is

taken into account three size scale dependent parameters as

well as the temperature gradient term emerging into a

nonlinear partial differential equation governing the

dynamical behavior of the nano-resonator. The Galerkin

based reduced-order model (ROM) along with Jacobian

approaches were both employed to analyze the free

vibration problem. Computed natural frequency dispersion

curves showed that for cases assuming higher temperature

regime are significantly affecting the existence of modes

veering and modes crossing. On the other hand, when

assuming cases with low temperature regime, the CNT

frequency dispersions curved were not showing any single

possibility of modes veering and modes crossing. The

model also confirmed the stiffening effect behavior while

operating the resonator in a low temperature conditions.

Succeeding the free-vibration analysis, a forced vibration

analysis under low gate actuation was conducted to

investigate the size scale dependent effect to the dynamical

behavior of the CNT based nano-resonator. Three different

CNT geometrical parameters were assumed in order to

study the size scale effect. Results showed that the dis-

crepancies between the CNT dynamic responses obtained

when using the classical continuum mechanics and those

when assuming the strain gradient model are becoming

more significant while assuming smaller CNT geometries.

The obtained results allow better understanding of the

nonlinear behavior of CNT based nanoresonators and can

guide NEMS engineers accordingly in the design consid-

eration stages.
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