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Abstract Boundary structure and geometry parameters of

the Double-Ended-Tuning Fork (DETF) resonator in a

micro-accelerometer are investigated. The theoretical

vibration model of a DETF resonator is established and

verified by the simulation results obtained by finite element

method. Uncertainty analysis incorporating the parametric

uncertainty distribution is conducted by establishing the

sample-based stochastic model to systematically investi-

gate the influence of different geometry parameters of the

DETF resonator on the natural frequency and the sensi-

tivity of DETF resonator. The results reveal the different

influences of geometry parameters, which can be used as

reference for design and optimization of the DETF res-

onator of the micro-accelerometer.

1 Introduction

Resonant micro-accelerometers inherit the properties of

quasi-digital output and excellent performances in stability,

resolution, and repeatability from the resonant sensing

mechanism (Ashwin et al. 2002). Moreover, microma-

chining processes produce drastic reduction in size, weight,

and cost of the accelerometer (Yu and Lan 2001; Eloy and

Roussel 2002; Masako 2007; Chuang et al. 2010).

As the core component of the resonant micro-ac-

celerometer, the resonator has a great influence on the

performance of the sensor. Design and optimization of the

resonator structure has become an important study of res-

onant micro-accelerometer. Working as the resonator,

Double-Ended-Tuning Fork (DETF) with the advantages of

simple structure and easy processing is widely used in the

resonant micro-accelerometers (Hopkins et al. 2006; Lee

et al. 2008). The structure of the DETF resonator is related

to the whole structure of the accelerometer and the per-

formances like scaling factor, resolution, and sensitivity

(Kim et al. 2005; Su et al. 2006; Seok and Chun 2006; He

et al. 2008). Therefore, the design and optimization of the

structure of DETF resonator, particularly boundary struc-

ture and geometry parameters of DETF resonator, are very

important.

In order to obtain better performance, selection of

boundary structure of DETF resonator is based on high

quality factor (Q value) (Beeby and Tudor 1995; Beeby

et al. 2000; Hassanpour et al. 2007). For design and opti-

mization of the DETF geometric parameters, the influence

of different structure parameters on the performance should

be clear, beside which, the specific adjustment of different

geometric parameters can be done. Especially when all the

performances can not be achieved optimal at the same

time, the necessary trade-offs must be done according to

the information of impact of each DETF geometric

parameter on the particular performance. Therefore, it is

very important to obtain the degree of influence of different

structural parameters on different performances, and to

obtain the most influential geometric parameter for each

certain performance.

A systematic methodology incorporating the parametric

uncertainty distribution to analyze the effects of the DETF

geometric parameter is necessary. Shi et al. (2014) applied
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a sample-based stochastic model to investigate the influ-

ence of different parameters in design and optimization of

an electro-thermal excited MEMS resonant sensor. Peng

et al. (2013) applied a sample-based stochastic model to

investigate the influence of different uncertain parameters

on the solid–liquid–vapor phase change processes in order

to find the key parameters that have the dominant effects.

The effects of uncertainty in the optical fiber drawing

process (Mawardi and Pitchumani 2008; Myers 1989) and

in the nonisothermal flow during resin transfer molding

(Padmanabhan and Pitchumani 1999) were also investi-

gated with a sampling-based stochastic model. This method

can be applied to the design and optimization of the geo-

metric parameters of the DETE resonator to obtain the

degree of influence of different geometric parameters on

different performances.

In this paper, the theoretical vibration model of the

DETF resonator in a micro-accelerometer is established

and verified by finite element method to invest the

boundary structure and geometry parameters of the DETF

resonator. Uncertainty analysis incorporating the paramet-

ric uncertainty distribution is conducted by establishing the

sample-based stochastic model to systematically investi-

gate the influence of different geometry parameters of the

DETF resonator on the natural frequency and the sensi-

tivity of the DETF resonator for design and optimization of

the DETF resonator of the micro-accelerometer.

2 Working principle of the resonant micro
accelerometer

The resonant silicon micro accelerometer is based on the

principle of resonance measurement to measure the

acceleration. The schematic diagram of the measurement

principle is shown in Fig. 1.

The resonant micro accelerometer mainly comprises a

mass block, a supporting beam, a resonator, a driving unit

and a detection unit. In this paper, the primary sensitive

structure of the resonant accelerometer is composed of the

mass block and the supporting beams. When the measured

acceleration is along the X axis, the primary sensitive

structure transforms the acceleration into the inertial force

along the X axis. The DETF resonator is the secondary

sensitive structure, which is used to measure the inertial

force. When there is an inertial force along the X axis, the

natural frequency of the DETF resonator is changed. In

order to realize differential measurement, the accelerome-

ter uses two identical DETF resonators to feel the same

amount of tension and pressure along the axial direction of

the DETF beams, which can eliminate the common mode

interference signal in signal processing. The drive unit

drives the DETF resonator into vibration and maintains the

resonant state. The vibration signal detected by the detec-

tion unit, and the closed-loop feedback control circuit

controls the drive unit tracking the natural frequency of the

DETF resonator. According to the vibration signal detected

by the detection unit, the change of the natural frequency

can be obtained, and then acceleration can be calculated.

The vibration characteristic of the DETF resonator can

be expressed as a single freedom second order system.

When there is no axial force, the natural frequency of the

resonator is:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

keff=Meff

p

; ð1Þ

where, keff is the equivalent stiffness of the DETF resonator

without axial force, and Meff is the equivalent mass of the

DETF resonator. The mass block and the supporting beams

together transform the acceleration into the inertial force. A

part of the inertia force is consumed by the supporting

beams of the mass block, and the other part acts on both

DETF resonators in the axial direction.

3 Structure design of the DETF resonator

The structure of the DETF resonator is related to the whole

structure of the accelerometer and the performances

(scaling factor, resolution, and sensitivity). The DETF

resonator mainly consists of two identical resonant beams,

and the structure design of the DETF resonator focus on

boundary structure and geometry parameters of the reso-

nant beam. In order to obtain better performance, selection

of the boundary structure of the DETF resonator is based
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Fig. 1 a schematic structure and b drive unit structure of resonant

micro accelerometer
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on high quality factor (Q value) (Beeby and Tudor 1995;

Beeby et al. 2000; Hassanpour et al. 2007).

In order to select the proper boundary condition and

vibration model of the DETF resonators, the DETF res-

onator is taken as the object of study. Four kinds of DETF

resonators with different boundary structures are shown in

Fig. 2. Based on the comparison of the boundary struc-

tures, the DETF resonator with better performance is

selected. And according to the selected boundary structure,

four basic mode shapes of the DETF resonator are shown

in Fig. 3. In Fig. 3, mode 1 and mode 3 are the in-phase

vibration mode, mode 2 and mode 4 are the inverse

vibration mode. Compared to mode 3 and mode 4, mode 1

and mode 2 are easily to be implemented from the aspects

of the excitation methods and the detection method.

When the DETF resonator works in the inverse vibration

mode (mode 2 or mode 4) as Fig. 3 shown, two resonant

beams of the DETF resonator are vibrating with the stress

and moment same in magnitude and opposite in direction at

the combined place, which lead the stress at the combined

place to be eliminated by each other. Meantime, for the

inverse vibration mode, the vibrations of two beams offset

each other at the end of the merger, and the energy of the

DETF transmission from the fixed end to the outside

reduces, which lead the DETF resonator to have high Q

value and the ability to resist the vibration of surrounding

structure. Since the DETF resonator has high Q value, the

DETF resonator loses less energy due to damping and can

easily keep a more stable vibration by forming a self-ex-

cited close-loop system. At the same time, increasing the Q

value is helpful to reduce the thermal mechanical noise and

improve the resolution of the DETF resonator.

The stress of the fixed end of the DETF resonator

determines the Q value. The energy loss is large and the

mechanical coupling between the beam and the surround-

ing structure is serious when the stress of the fixed end of

the DETF resonator is large, which makes the Q value is

low. Conversely, the Q value is high when the stress of the

fixed end of the DETF resonator is small.

Therefore, the inverse vibration mode is ideal operating

mode. And, in consideration of the implemented of the

excitation methods and the detection method, mode 2 is

selected as the operating mode. When one mode is taken as

the operating mode, all the other vibration modes are taken

as the interference mode. And the interference mode has

little influence on the working mode when the difference

between the natural frequencies of the operating mode and

the interference mode is great.

According to the boundary structure as shown in Fig. 2,

four DETF resonators with different boundary structure

were analyzed by FEM simulation utilizing the Finite

Element program ANSYS. In FEM simulation, all models

of DETF resonator with isotropic single crystal silicon

material were meshed with Four-node quadrilateral plane

stress elements. A group of parameters are used:

L = 500 lm, h = 4 lm, b = 40 lm, gap = 10 lm,

fsl = 50 lm, s = 2 lm, sl = 50 lm, sw = 10 lm, and the

Young’s modulus E = 133 Gpa, the Poisson’s ratio

m ¼ 0:278, the material density q ¼ 2329 kg m-3. The

result is shown in Table 1, and the natural frequencies of

the DETF resonators in mode 1(in-phase vibration mode),

mode 2 (inverse vibration mode) and the stresses of the

fixed end of the DETF resonators with different boundary

structure are given.

From Table 1, it can be found that the difference of

natural frequency between mode 2 (inverse vibration

mode) and mode 1 (in-phase vibration mode) of No. 3 and

No. 4 boundary structure is larger than that of No. 1 and

No. 2 boundary structure. The boundary structure of No. 3

and No. 4 can make the natural frequency of mode 1 far

away from the working mode, which reduces the influence

of the interference mode.

The Q value is determined by the stress at the fixed end.

No. 4 boundary structure has the least stress in four

boundary structures. The fixed end stress of the DETF

resonator with No. 4 boundary structure is just 0.08 times

of the fixed end stress of the DETF resonator with No. 3
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Fig. 2 Four kinds of DETF resonators with different boundary
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boundary structure, and the fixed end stress of the DETF

resonator with No. 3 boundary structure is the second least

stress in all DETF resonators.

Based on the above simulation results, No. 4 boundary

structure is selected. For this boundary structure, two

beams of the DETF resonator are vibrating with the same

frequency and opposite phase in the XY plane when it

working at the working mode (mode 2), and the natural

frequency depends only on the geometric parameters of the

DETF resonator and the measured acceleration.

4 Vibration analysis of DETF resonator

When the DETF resonator is working at inverse vibration

mode (mode 2), the displacement of the fixed end is very

small (almost zero). So the two beam of the DETF res-

onator can be regarded as independent double clamped

resonant beams. According to the Euler–Bernoulli beam

model (Li et al. 2012), the differential equations of motion

for the transverse bending vibration of beam is:

o2

ox2
EI

o2wðx; tÞ
ox2

� �

þ o

ox
F
owðx; tÞ

ox

� �

þ qbh
o2wðx; tÞ

ot2

¼ PðxÞ;
ð2Þ

where, wðx; tÞ is transversal displacement of a resonance

beam, x is the distance along the resonant beam from a

clamped end, and t is time. b is the width of the resonant

beam, and h is the thickness of the resonant beam. q is the

material density, and E is the Young’s modulus of the

material. I is the second moment of the beam cross sec-

tion. F is the axial load caused by the measured accelera-

tion, including the axial inertia force Na and the residual

internal force of the beam Nr. P is the inertia force caused

by the added mass of the comb on the resonant beam.

Boundary conditions of this clamped–clamped resonant

beam are:

wð0; tÞ ¼ wðL; tÞ ¼ 0
ow

ox

�

�

�

�

x¼0

¼ ow

ox

�

�

�

�

x¼L

¼ 0; ð3Þ

where, L is the length of the resonant beam.

The partial differential equation Eq. (2) can be decom-

posed into a series of ordinary differential equations by

means of the mode superposition method. The transversal

bending vibration of the beam can be expressed as the sum

of an infinite number of mutually orthogonal modes, and

wðx; tÞ is:

wðx; tÞ ¼
X

i

/iðxÞuiðtÞ; ð4Þ

where, /iðxÞ is the i order mode shape function of the

resonant beam, and uiðtÞ is the generalized coordinates

corresponding to the i order mode. It is assumed that the

cross-sectional area, the elastic modulus and the axial force

remain constant along the axis of the beam, and arbitrary

order mode can be solved by the orthogonality between the

modes.
Z L

0

qbh/2
i dxþma/iðxaÞ2

� �

€ui

þ
Z L

0

EI
o2/i

ox2

� �2

dxþ
Z L

0

F
o/i

ox

� �2

dx

 !

ui

¼ 0; ð5Þ

where, ma is the added mass of the comb on the resonant

beam, and xa is the distance of the comb from a clamped

end of the beam.

According to the energy method, the Eq. (5) represents a

single freedom second order system. The first term is the

inertia term and the second term is the stiffness term. And

the equivalent mass and equivalent stiffness of resonant

beam at a single mode can be expressed as:

Meff;i ¼
Z L

0

qbh/2
i dxþma/iðxaÞ

2

Keff;i ¼
Z L

0

EI
o2/i

ox2

� �2

dxþ
Z L

0

F
o/i

ox

� �2

dx

8

>

>

>

<

>

>

>

:

: ð6Þ

The transversal bending vibration of the beam at the i

mode can be expressed as:

Meff;i€ui þ Keff;iui ¼ 0: ð7Þ

Therefore, the natural frequencies of the resonant beam

at the i mode are:

xn;i ¼
ffiffiffiffiffiffiffiffiffiffiffi

Keff;i

Meff;i

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R L

0
EI

o2/i

ox2

� �2

dxþ
R L

0
F

o/i

ox

� �2

dx
R L

0
qbh/2

i dxþma/iðxaÞ2

v

u

u

u

t : ð8Þ

Based on the above analysis, it is found that the

transversal bending vibration of the resonant beam is the

Table 1 FEM simulation result

of DETF resonators with

different boundary structure

DETF Mode 1 (kHz) Mode 2 (kHz) Stresses of the fixed end (N/m2)

No. 1 138.366 138.665 89.2

No. 2 138.295 138.441 71.6

No. 3 129.283 138.653 10.5

No. 4 129.730 139.455 0.87
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sum of the infinitely simple solutions of a second order

equation as Eq. (7). Each two order equation corresponds

to a mode shape function and its natural frequency.

According to the Eq. (8), the first natural frequency of

the DETF resonator under the action of axial force F can be

obtained:

f ¼ xn;1

ð2pÞ : ð9Þ

According to Eq. (8), the first order natural frequency of

resonant beam in DETF resonator depends on the axial

load along the beam after the geometric parameters of

DETF resonator are determined.

The sensitivity of the DETF resonator is an important

performance which determines the scale factor of the

accelerometer, and it is the change of the natural frequency

caused by unit axial force. In order to improve the per-

formance of accelerometer, the DETF resonator must have

high sensitivity.

The frequency change caused by the unit axial force is:

S¼ f ðFÞ � f ð0Þ
F

: ð10Þ

According to Eqs. (8), (9) and (10), the natural fre-

quency and the sensitivity of the DETF resonator depends

on the geometric parameters of the DETF resonator,

including the length of the resonant beam L, the width of

the resonant beam b, the thickness of the resonant beam h,

and the added mass of the comb on the resonant beam ma.

Based on the above analysis, the theoretical analysis

results were compared with the FEM simulation results

obtained by utilizing the Finite Element program ANSYS

when the residual stress on the resonant beam is not taken

into considered. The compared results are shown in Fig. 4.

By comparing the simulation results with the results of

theoretical analysis, it is shown that the analysis results of

theoretical model are in good agreement with the simula-

tion results, which indicated that the theoretical model has

very high accuracy.

Through established theoretical model of the DETF

resonator, the change trend of the performance with the

different geometric structure parameters of the DETF res-

onator can be obtained. However, the influence degree of

each parameter on a particular performance can not be

obtained and compared, and it is not clear which parame-

ters have the greatest impact on a particular performance.
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Fig. 4 The comparison of theoretical values and simulation values.

a Theoretical values and simulation values of natural frequencies of

beams with different lengths. b Theoretical values and simulation

values of natural frequencies of beams with different thicknesses.

c Theoretical values and simulation values of natural frequencies of

beams with different widths. d Theoretical values and simulation

values of natural frequencies of beams with different added mass
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5 Uncertainty analysis method

5.1 Sample-based stochastic model

Based on the theoretical vibration model of the DETF

resonator, the stochastic modeling is realized. The detailed

procedure of the stochastic modeling is given in Fig. 5.

Different input parameter combines randomly as a com-

bination, and a number of combinations are selected to

evaluate the variability of the output parameters. In order to

decide the number of input parameter combinations,

stochastic convergence analysis is conducted. The degree

to which input parameters vary is quantified, and uncer-

tainties of the input parameters are propagated through the

established theoretical vibration model of the DETF res-

onator, so that the variability of output parameters is

quantified according to the results.

The output parameters of interest in this study include:

the natural frequency of the DETF resonator and the sen-

sitivity of the DETF resonator. Firstly, the influence of

different uncertain geometric parameters of the DETF

resonator, including the length of the resonant beam L, the

width of the resonant beam b, the thickness of the resonant

beam h, the added mass of the comb on the resonant beam

ma, on the output parameters are investigated. Assuming all

of these input parameters obey the Gaussian distribution

with the mean value l and the standard deviation r. The
mean value is considered as the design value of the input

parameters here, and the standard deviation shows the

uncertainty of the input parameters. The coefficient of

variance (COV) r=l is defined to represent the degree of

uncertainty of the input parameters, and the COV of the

uncertain parameters with high standard deviation and low

nominal mean value is high while the COVs of the certain

parameters are zero. Monte Carlo sampling (MCS) method

is used to randomly select every input parameter from its

prescribed Gaussian distribution and combining them

together as one sample.

The variability of output parameters is highly dependent

on the number of samples (Peng et al. 2013). The mean

value and standard deviation of the input parameters

converge to the nominal mean value and standard deviation

of the Gaussian distribution when the number of samples

increases, and meantime the mean values and standard

deviations of the output parameters also converge within a

certain tolerance (Peng et al. 2013; Mawardi and Pitchu-

mani 2008). By the stochastic convergence analysis, the

number of input parameter samples is selected to ensure

that the number of input parameter sample is proper and the

samples are representative.

For every input sample, the vibration model of the

DETF resonator is used to calculate the output parameters

after sufficient samples are selected. The effects of the

input parameters variability on the uncertainty of output

parameters is assessed by obtaining each set of output

parameter through this deterministic vibration model of the

DETF resonator. The probability distribution is generated

from the resulting sets of output parameters.

In order to quantify the uncertainty of the output

parameters, the interquartile range (IQR) is defined as the

difference between the 25th percentile (P25) and the 75th

percentile (P75) (Peng et al. 2013; Mawardi and Pitchu-

mani 2008):

IQR ¼ P75� P25: ð11Þ

5.2 The stochastic convergence analysis

The properties of the DETF resonator in this paper are: the

Young’s modulus E = 133 GPa, the Poisson’s ratio

m ¼ 0:278, the material density q ¼ 2329 kg m-3, and

gap = 10 lm, fsl = 50 lm, s = 2 lm, sl = 50 lm,

sw = 10 lm.

According to the uncertain input distributions, the out-

put distributions are obtained by the sample-based

stochastic model previously discussed. The stochastic

convergence analysis is conducted to identify a minimum

quantity of input parameters which can represent the input

sample distribution and guarantee steady output distribu-

tion. In the process to obtain number of input samples Ns,

the design values of the input parameters are set as their

mean values: L = 500 lm, h = 4 lm, b = 40 lm,

ma ¼ 1� 10�10 kg. And the COVs of each input parameter

are set as 0.04.

The stochastic convergence analysis of the mean values

of input parameters L, b, h, ma is conducted. The results are

shown in Fig. 6. It can be found that the mean values of the

input parameters frequently fluctuate when Ns is less than

300. The mean values of the input parameters still oscillate

but the changing amplitude is less than 1% at Ns = 300.

Therefore, 300 samples are sufficient to ensure that the

nominal mean values of input parameters are steady.

The stochastic convergence analysis of the standard

deviation of the input parameters is also conducted, and the
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standard deviation of ma
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results are shown in Fig. 7. It can be seen that the standard

deviation oscillates significantly even when the number of

input parameters Ns is more than 300.The reason for this is

that the deviation is a higher order moment and converges

much more slowly than the mean values (Peng et al. 2013).

When the sample number increases to 400, the standard

deviation of L, b, h, ma converges within 1.72, 1.29, 1.45

and 0.05%, respectively.

The stochastic convergence analysis of output parame-

ters is shown in Fig. 8. Inputs are L, b, h, ma, and it can be

seen that the mean value converges very fast. The mean

values of output parameters are within 0.43% for f and

0.46% for S when the number of samples increases beyond

400. The standard deviation converges to be within 1.79%

for f and 1.87% for S when 400 samples are used.

According to the above discussion, the minimum num-

ber of samples Ns = 400 is obtained and this number of

samples will be used to conduct following analysis.

5.3 The result of uncertainty method

The IQRs of f and S is a function of the COVs of the input

parameters L, b, h, and ma. When the COV of one input

parameter increases from 0.01 to 0.1, the COVs of other

parameters are kept constant at 0.01. The IQR analysis of

output parameters indicates a different relationship

between the IQRs and the COVs of the parameters. The

IQRs of f and S are shown in Fig. 9.

As shown in Fig. 9a, the IQR analysis of the natural

frequency of the DETF resonator indicates a strong rela-

tionship between the IQR and the COV of parameters L,

which indicates that the natural frequency of the DETF

resonator greatly depends on the length of the resonant

beam L. On the contrary, the effects of the width of the

resonant beam b, the thickness of the resonant beam h, and

the added mass of the comb on the resonant beam ma on the

natural frequency of the DETF resonator are relatively

insignificant.

As shown in Fig. 9b, the IQR analysis of the sensitivity

of DETF resonator indicates a strong relationship between

the IQR and the COV of parameters L and h, and the

effects of the COV of b and ma on the IQR are relatively

insignificant. This indicates that the sensitivity of the DETF

resonator greatly depends on the length of the resonant

beam L and the thickness of the resonant beam h. Besides,

b, and ma can also affect S greatly, which means that the

width of the resonant beam b and the added mass of the

comb on the resonant beam ma also have great effect on the

sensitivity of the DETF resonator.

According to the above analysis, the influence degree of

the length of the resonant beam L, the width of the resonant

beam b, the thickness of the resonant beam h, and the

added mass of the comb on the resonant beam ma on the
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Fig. 8 Stochastic convergence analysis of the output parameters.

a Convergence analysis of mean value of f. b Convergence analysis of

mean value of S. c Convergence analysis of standard deviation of f.

d Convergence analysis of standard deviation of S
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natural frequency and the sensitivity of the DETF resonator

are obtained and compared. It is clear which parameters

have the greatest impact on a particular performance.

When it is need to adjust input parameters to change the

natural frequency and the sensitivity of the DETF res-

onator, the length of the resonant beam L is the preferred

parameters.

6 Conclusions

In this paper, the boundary structure and geometry

parameters of the DETF resonator in a micro-accelerome-

ter are invested. Based on established theoretical vibration

model of the DETF resonator which is verified by finite

element method, the sample-based stochastic model is

established to systematically investigate the influence of

different geometry parameters of the DETF resonator on

the natural frequency and the sensitivity of the DETF

resonator. The results reveal that the length of the resonant

beam in the DETF resonator has great influence on the

natural frequency and the sensitivity of the DETF res-

onator. The obtained results can be used as reference for

design and optimization of the DETF resonator to improve

the performances of the micro-accelerometer.
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