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Abstract In this paper, the free vibration of a rotating

variable thickness two-directional FG circular microplate is

studied. The governing equations of motion for the

microplate are extracted utilizing the Hamiltonian’s prin-

ciple in conjunction with the first shear deformation theory

as well as the modified couple stress theory. The solution of

equations is presented utilizing the differential quadrature

method. In special cases, the natural frequency results

obtained by the reduced form of the proposed formulation

are compared with those available in the literature, indi-

cating a very good accuracy. The results reveal that there is

a non-proportional relation between the natural frequencies

of the microplate and the thickness-variations of the sec-

tion. In contrast, the critical angular velocity of that is not

much sensitive with respect to the thickness variation.

Moreover, the analyses indicate the significant impact of

the two-directionality-variation of the graded material on

the natural frequencies as well as the critical angular

velocities. A map on the effects of the two-directionality-

variation of the material property on the free vibration of

the microplate is presented. The results show that the

increase of the size dependency would lead to the reduction

of the non-dimensional natural frequency as well as the

critical angular velocity.

1 Introduction

The increasing demands for the structures bearing the higher

mechanical and thermal load lead to introduce the advanced

composite structures like functionally graded materials

(FGM) in industry. In comparison with competitive materials,

the higher strength to weight ratio and the reduction of the

delamination failure are the significant advantages that result

in the more application of FGM beams, plates and shell in

industry. While the FGMs are comprehensively used in

macro- micro- and nano-sizes, the tradition applications are

limited to those structures that are subjected to thermal and

mechanical loads varying in thickness direction only. Since

the multi-axial loading on the structures is the frequent ones

that are inevitable. In this way, recently, multi-directional

FGMs are introduced to use in such structures. In addition, the

thickness variability enables the designer to reach the most

efficient structures. Since there are many investigations about

static (Ghadiri and Shafiei 2015; Salamat-Talab et al. 2012;

Eshraghi et al. 2016; Ansari et al. 2015; Duan and Wang 2007;

Kadkhodayan and Golmakani 2014; Ma and Wang 2003;

Chaht et al. 2015), buckling (Van and Hoa 2013; Jabbari et al.

2014; Bedroud et al. 2013; Mehri et al. 2016; Jin et al. 2014;

Özakça et al. 2003; Anjomshoa 2013; Wang et al. 2006;

Farajpour et al. 2012; Tsiatas and Yiotis 2014; Gholami et al.

2015, 2016) and vibration (Şimşek and Kocatürk 2009; Wei

et al. 2012; Şimşek and Reddy 2013; Huang et al. 2013;

Huang and Li 2010; Alshorbagy et al. 2011; Shahba and

Rajasekaran 2012; Shahba et al. 2011; Neves et al.

2012a, b, 2013; Şimşek et al. 2012; Aydogdu and Taskin
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2007; Şimşek 2010a, b; Khalili et al. 2010; Akgöz and Civalek

2013; Şimşek 2012; Pradhan and Chakraverty 2013; Ghadiri

et al. 2015; Ebrahimi et al. 2015; Ghadiri and Hosseini 2014;

Shafiei et al. 2016a, b, c, d; Ghadiri and Shafiei 2016a, b;

Ghadiri et al. 2016) of one-directional FGMs, the shortcoming

of studies on the variable thickness multi-directional FGMs

could be seen in the literature. The rarely available studies are

only limited to macro-size structures (i.e. beams, plates and

shells).

Shariyat and Alipour (2013) and Shariyat et al. (2013)

developed a power series solution for the free vibration and

the damping analyses of a viscoelastic functionally graded

plate with a variable thickness on the elastic foundation.

Moreover, Alipour and Shariyat (2013) presented a semi-

analytical solution for the buckling analysis of a two-di-

rectional FG circular plate with a variable thickness on the

elastic foundation. Satouri (2015) studied the free vibration

of a two-directional FG sectorial plate with a variable

thickness resting on a Winkler–Pasternak elastic founda-

tion. Alinaghizadeh and Shariati (2015, 2016) investigated

the static bending of two-directional FG circular/annular

sector plates with a variable thickness.

While some investigations were conducted on the macro-

size structures, as the best knowledge of the authors, there is

not any investigation about the free vibration of a two-di-

rectional FG micro-structure with a variable thickness.

In this study, the governing equations of motion for a

rotating variable thickness two-directional FG circular

microplate are developed considering the modified couple

stress. The vibration solution of the equations is presented

using differential quadrature method (DQM). In special cases,

the results are verified with the available results in the litera-

ture. The contributions of size dependency, two-directional-

ity-variation of FG material and thickness variation effects on

the first natural frequencies of a micro-plate are studied. The

novelty of this study could be summarized as follows:

• The presentation of a formulation for a circular plate

considering a variable thickness for the section and a

two-directional FG for the material as well as a rotating

velocity for the structure, all in the micro-size.

• A parametric study on the contributions of the thick-

ness-variation in the section, two-directionality-varia-

tion in the material property and the rotating velocity of

the microplate on the natural frequencies as well as the

critical angular velocities of a circular microstructure.

2 Formulation

In this section, material assumptions and governing equa-

tions of motion in conjunction with associated boundary

conditions utilizing first shear deformation theories are

presented. Since formulation is derived for a variable

thickness two-directional FG circular microplate under

rotational velocity condition, the governing equations are

enriched with the modified couple stress effects.

2.1 Material

A schematic of a variable thickness two-directional FG

circular microplate is represented in Fig. 1. As can be seen

in Fig. 1, h0 and R are the central thickness and the outer

radius of the microplate, respectively. The thickness is the

maximum in the central point and there is a reduction for

the thickness in the radial-direction. It is assumed that the

microplate made from a combination of metal and ceramic.

The combination changes from the top to the bottom sur-

face of the plate as well as from the center to the outer

radius of plates, i.e. the top surface of the plate in central

point of the plate (z = h0/2, r = 0) is ceramic-rich whiles

the bottom surface of the plate in central point of the plate

(z = - h0/2, r = 0) is metal-rich. The angular velocity of

the rotating microplate is equal with X.

Therefore, a two-directional functionally graded mate-

rial (FGM) character, P, of the circular plate is assumed to

vary through the thickness and radius respected to the

volume fraction of the constituent components, Vi, as fol-

lows (Shariyat and Alipour 2013):

Pðr; zÞ ¼ ðPtVcðr; zÞ þ PbVmðr; zÞÞ 1 þ a
r

R

� �b� �
ð1Þ

where subscripts b and t denote the bottom and top surfaces

of the plate and the subscripts c and m address the ceramic

Fig. 1 The schematic view of the rotating micro-size tow-directional

FGM variable thickness circular plate
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and metal, respectively. a and b denote the coefficient and

the power index of the material character variation in the

radial-direction of the plate. In each material point of the

microplate, it is obvious that:

Vcðr; zÞ þ Vmðr; zÞ ¼ 1 ð2Þ

Therefore, one rewrites Eq. (1) as follows:

Pðr; zÞ ¼ ððPt � PbÞVcðr; zÞ þ PbÞ 1 þ a
r

b

� �b� �
ð3Þ

Assuming the origin of the coordinate in the center of

the plate (as shown in Fig. 1), the volume fraction of the

ceramic, Vc, would define in the power low form as

follows:

Vðr; zÞ ¼ 1

2
þ z

h

� �n

ð4Þ

where n introduces the power index of the volume fraction.

Moreover, the variable thickness function, h(r), is

defined as follows:

hðrÞ ¼ h0 1 � q
r

R

� �m� �
ð5Þ

in which q and m denote the coefficient and the power

index for thickness-variation in radial-direction. Conse-

quently, one would represent the Young’s modulus

expansion of the FGM material as follows:

Eðr; zÞ ¼ ðEc � EmÞ
1

2
þ z

h

� �n

þEm

� �
1 þ a

r

R

� �b� �
ð6Þ

and for the simplicity of the formulation, it is summed that

the mass density and the Poisson ratio variation as follows:

qðzÞ ¼ ðqc � qmÞ
1

2
þ z

h

� �n

þqm

� �
ð7Þ

mðzÞ ¼ ðmc � mmÞ
1

2
þ z

h

� �n

þmm

� �
ð8Þ

2.2 Governing equations of motion

In the three-dimensional first shear deformation plate the-

ory, the displacement components (ur, uh and uz in cylin-

drical coordinate) of the circular plates would be written as

follows:

urðr; h; z; tÞ ¼ uðr; h; tÞ þ zUðr; h; tÞ ð9aÞ
uhðr; h; z; tÞ ¼ zWðr; h; tÞ ð9bÞ
uzðr; h; z; tÞ ¼ wðr; h; z; tÞ ð9cÞ

where u and w are the radial and the transverse deflection,

U and W represent the rotations of a transverse normal line

about r and h coordinate, respectively. For the axisym-

metric problem, the circumferential displacement, uh, is

omitted and U and w would be independent of the cir-

cumferential axis. Hence, displacement field would be

rewritten as follows (Leissa 1969):

urðr; z; tÞ ¼ uðr; tÞ þ zUðr; tÞ ð10aÞ
uhðr; z; tÞ ¼ 0 ð10bÞ
uzðr; z; tÞ ¼ wðr; z; tÞ ð10cÞ

thereafter, non-zero components of the linear strain tensor

are written as follows (Leissa 1969):

errðr; z; tÞ ¼
ou

or
þ z

oU
or

ð11aÞ

ehhðr; z; tÞ ¼
u

r
þ z

r

U
r

ð11bÞ

erzðr; z; tÞ ¼
1

2

u

r
þ z

r
U

� �
ð11cÞ

moreover, a non-zero component of the symmetric curva-

ture tensor is (see ‘‘Appendix A’’):

vrh ¼
1

4
� o2w

or2
þ oU

or

� �
� U� ow

or

� �� �
ð12Þ

The strain energy of the circular microplate in axisym-

metric condition would obtain by substituting the non-zero

strain and the symmetric curvature strain components into

Eq. (31) which lead to:

U ¼ 1

2

ZR

0

ZhðrÞ2

�hðrÞ
2

rrr
ou

or
þ z

oU
or

� �
þ rhh

u

r
þ z

r

U
r

� �
þ 2rrz

1

2

u

r
þ z

r
U

� �� �

þ2mrh
1

4
� o2w

or2
þ oU

or

� �
� 1

4
U� ow

or

� �� �

2
6664

3
7775

dzdr

ð13Þ

Substituting the components of the stress tensor and the

deviatoric part of the couple stress tensors (see ‘‘Appendix

A’’) into Eq. (13), one could obtain the strain energy of the

micro-plate as follows:

U ¼ 1

2

ZR

0

Nrr

ou

or
þ Nhh

u

r
þMrr

oU
or

þ Nhh
U
r
þ Nrz

ow

or
þ U

� �

þ 1

2
Xrh � o2w

or2
þ oU

or

� �
� 1

r
U� ow

or

� �� �

2
6664

3
7775dr

ð14Þ

where the forces, Nij, the moments, Mij, and the couple

moment, Xij, are defined in ‘‘Appendix B’’.
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Since the kinetic energy of the plate, T, is extracted as

follows:

T =
1

2

ZR

0

ZhðrÞ2

�hðrÞ
2

qðr; zÞ ou

ot

� �2

þ ov

ot

� �2

þ ow

ot

� �2
" #

dzdr

ð15Þ

substituting the displacement components into Eq. (15)

would lead to

T ¼ 1

2

ZR

0

ZhðrÞ2

�hðrÞ
2

I1
ou

ot

� �2

þ2I2
ou

ot

� �
oU
ot

� �
þ I3

oU
ot

� �2

þI1
ow

ot

� �2
" #

dzdr

ð16Þ

where the constants are defined as follows:

fI1; I2; I3g ¼
ZhðrÞ2

�hðrÞ
2

qðr; zÞf1; z1; z2gdz ð17Þ

and the external work, H (due to the rotation) could present

as (Bauer and Eidel 2007):

H =
1

2

Z
NRotation ow

or

� �2

dA ð18Þ

where NRotation represents the radial-direction force due to

the circumferential acceleration of the angular velocity, X,

which is defined as follows (Bauer and Eidel 2007):

Nrotation ¼
ZhðrÞ2

�hðrÞ
2

qX2

8
ð2ðrÞð3 þ vÞÞ

� �
dz ð19Þ

The governing equations of motion for a rotating vari-

able thickness two-directional FG circular microplate

would be extracted utilizing Hamilton’s principle as

follows:

d
Z t

0

ð�U þ T þ HÞ ¼ 0 ð20Þ

where d is the variation operator.

Substituting Eqs. (14), (16), and (18) into Eq. (20), the

governing equations of motion and the associated boundary

conditions would be obtained:

1

r

o

or
ðrNrÞ � ðNhÞ ¼ I1

o2u

ot2
þ I2

o2U
ot2

ð21aÞ

1

2r

o2

or2
ðrXrhÞ þ

1

2r

o

or
ðXrhÞ þ

1

2r

o

or
ðrNrzÞ

þ o

ror
NRotationr

ow

or

� �
þ F

¼ I1
o2w

ot2
ð21bÞ

1

2r

o2

or2
ðrXrhÞ þ

Xrh

2r
þ 1

r

o

or
ðrMrÞ �

Mh

r
� Nrz

¼ I2
o2u

ot2
þ I3

o2U
ot2

ð21cÞ

ðNrÞdu ¼ 0 at r ¼ 0;R ð21dÞ
1

2r

o

or
ðrXrhÞ þ

Xrh

2r
þ Nrz � Nr

ow

or

� �
dw ¼ 0 at r ¼ 0;R

ð21eÞ
rXrh

2r

o

or
ðdwÞ ¼ 0 at r ¼ 0;R ð21fÞ

Mrr þ
Xrh

2

� �
ðdUÞ ¼ 0 at r ¼ 0;R ð21gÞ

The governing equations of motion and the associated

boundary conditions in terms of displacement components

are presented in ‘‘Appendix C’’.

2.3 Solution method

In order to solve the governing equations of motion with

the associated boundary conditions (see ‘‘Appendix C’’) for

free vibration of a rotating variable thickness two-direc-

tional FG circular microplate, DQ method is utilized. In

this method, weight coefficients are computed by an

algebraic equation system which confined the usage of

large grid numbers. The discretization rule of the method

enables one to approximate m-th derivatives of displace-

ment functions, u, w and U in respect to r that are defined

as the linear sum of the function values (Shu 2012):

omfuðrÞ;wðrÞ;UðrÞg
orm

����
r¼rp

¼
Xn

k¼1

C
ðmÞ
ik fuk;wk;Ukg ð22Þ

where

uk ¼ uðrk; tÞ ð23aÞ
wk ¼ wðrk; tÞ ð23bÞ
Uk ¼ Uðrk; tÞ ð23cÞ

n represents the total number of grid points distributed

along the r-axis and Cik
(m) is the weighting coefficients

whose recursive formula can be found in as follows:
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C
1ð Þ
ik ¼

MðriÞ
ðri � rkÞMðrkÞ

i 6¼ k

�
Pn

k¼1;i 6¼k

C
1ð Þ
ik i ¼ k

8>><
>>:

ð24Þ

where k = 1,2,3, …, n. The more accurate the weight

coefficient with an appropriate selection of the grid points,

the more accurate the solution of the equations.

In order to improve the mesh point distribution, the

cosine pattern, as known Chebyshev–Gauss–Lobatto tech-

nique, is used to generate the DQ points as follows:

ri ¼
1

2
1 � cos

ði� 1Þ
ðn� 1Þ p
� �� �

ð25Þ

where i = 1,2,3, …, n. The analysis indicates that the

above distribution would accelerate the convergence of the

solution. M(r) is defined as follows:

MðrÞ ¼
Yn

k¼1;k 6¼i

ðri � rkÞ ð26Þ

The associated weighting coefficient for r-th derivative

of displacement functions is written as follows:

C
ðmÞ
ik ¼

m C
ðm�1Þ
ik C

ð1Þ
ik � C

ðm�1Þ
ik

ðri � rkÞ

" #
i 6¼ k and 2�m� n� 1

�
Pn

k¼1;i6¼k

C
ðmÞ
ik i ¼ k and 1�m� n� 1

8>>><
>>>:

ð27Þ

Applying DQ method into the governing equations of

the rotating variable thickness two-directional FG circular

microplate in terms of displacement components (see

‘‘Appendix C’’) would lead to the discretized governing

equations of motion which are presented in ‘‘Appendix D’’.

Now, one would rewrite the governing equations of

motion in matrix form as follows:

M
o2d

ot2
þ Ked ¼ 0 ð28Þ

where M and Ke, are the mass matrix and stiffness matrix,

respectively. Utilizing the first shear deformation theory,

the dimensions of matrices would be 3N 9 3N where the

unknown displacement vector, d, is defined as follows:

d ¼ ffuigT ; fwigT ; fUigTg ð29Þ

Equation (28) would be utilized for the free vibration

analysis of the rotating variable thickness two-directional

FG circular microplate. Moreover, the critical angular

velocity of the structure which referred to the unsta-

ble condition of the microplate could be obtained in the

parametric studies.

3 Results and discussion

In this section, the first natural frequencies results for a

rotating variable thickness two-directional FG circular

microplate are presented. The non-dimensional angular

velocity, X*, of the microplate, is defined as follows:

X� ¼ Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dc

11=ðIc1 � R4Þ
p ð30Þ

where, the superscript c is addressed as a ceramic material.

The results obtained in this study are verified with the

available results in the literature and then the effects of the

angular velocity, the thickness variation, the two-direc-

tionality of FG material, the size dependency, and the

boundary condition on the first non-dimensional natural

frequencies are studied.

3.1 Verification

Leissa (1969) presented an analytical solution for the free

vibration of a circular classical plate. Moreover Yalcin

et al. (2009) and Wu et al. (2002) determined the natural

frequencies of the circular classical plates utilizing differ-

ential transformation method (DTM) and generalized dif-

ferential quadrature (GDQ), respectively. In order to

compare the results, a reduced form of the proposed for-

mulation would be obtained by assuming that U = - qw/

qr in Eqs. (10a–10c).

In Table 1, the first five non-dimensional natural fre-

quencies for a circular classical plate obtained in this study

are compared with those available results in the literature

(Leissa 1969; Yalcin et al. 2009; Wu et al. 2002) The

results are presented for different boundary conditions,

hinged and clamped. As can be seen, there is a very good

agreement between results, indicating the accuracy of the

formulation and the solution procedure for the classical

plate, neglecting the size dependency effects.

Moreover, in Table 2, the free vibration results obtained

in this study are compared with those available results in

the literature (Liew et al. 1997; Irie et al. 1980) for a cir-

cular plate utilizing first shear deformation theory, indi-

cating a very good agreement.

In order to evaluate the proposed formulation for a two-

dimensional FG material circular plate, a comparison

between obtained results in this study and those available

results in the literature (Shariyat and Alipour 2013) is

conducted in Table 3. The analyses reveal an accept-

able agreement between results.

Microsyst Technol (2018) 24:1525–1543 1529

123



3.2 Parametric study

In order to perform a parametric study on the free vibration

behavior of a variable thickness two-directional FG circu-

lar microplate, the verified proposed formulation would be

utilized. The effects of the thickness-variation, the two-

directionality-variation of the material and the size

dependency on the non-dimensional natural frequencies of

a circular microplate in terms of the non-dimensional

angular velocity are studied.

3.2.1 Thickness-variation effect

In order to evaluate the thickness-variation effects on the

non-dimensional natural frequency of a rotating two-di-

rectional FG circular microplate, in Table 4, the results for

different boundary conditions as well as angular velocities

are presented. It can be seen the fact that increasing the

angular velocity would lead the reduction in the non-di-

mensional natural frequencies and, moreover, the non-di-

mensional natural frequencies of the clamped plates are

larger than those of the hinged ones. The both are because

of the effective stiffness variation in the plates. As con-

sidered in Table 4, the variation of the non-dimensional

natural frequencies in terms of the thickness-variation

index, m, is not proportional. In the case m = 0, there is a

uniform thickness plate (the thickness is equal to h0) with a

two-directional FG material. Increasing m from 0 to 1, the

uniform thickness plate is converting to a plate with a

central thickness equal to h0 and a linear thickness reduc-

tion to h0/2 at the outer radius. In this case, due to a large

reduction in effective stiffness of the plate in comparison

with the mass reduction of that, the non-dimensional nat-

ural frequency is decreased with respect to those observed

Table 1 The comparison of the first five non-dimensional natural frequencies results, x, for a circular plate obtained in this study with those

presented in the (Leissa 1969; Yalcin et al. 2009; Wu et al. 2002) utilizing the classical theory (R/h = 20)

B.C. Mode Present study (DQM) (Leissa 1969) (exact) (Yalcin et al. 2009) (DTM) (Wu et al. 2002) (GDQ)

Hinged 1 4.9351 4.997 4.9351 4.935

2 29.7199 29.76 29.72 29.72

3 74.1559 74.2 74.1561 74.156

4 138.3179 138.34 138.3181 138.318

5 222.2145 – 222.215 222.215

Clamped 1 10.2158 10.2158 10.2158 10.216

2 39.7711 39.771 39.7711 39.771

3 89.1040 89.104 89.1041 89.104

4 158.1839 158.183 158.1842 158.184

5 247.0059 247.005 247.0064 247.006

Table 2 The comparison of the first five non-dimensional natural frequencies, x, of a circular plate obtained in this study with those presented in

the literature (Liew et al. 1997; Irie et al. 1980) utilizing the first shear deformation theory

B.C. Mode Present study

(DQM)

(Liew et al. 1997) (DQ)

_ENREF_14

(Irie et al. 1980)

(Exact)

Present study

(DQM)

(Liew et al.

1997) (DQ)

(Irie et al. 1980)

(Exact)

R/h = 1000 R/h = 4

Hinged 1 4.9353 4.9351 4.935 4.6963 4.6963 4.696

2 29.720 29.720 29.720 23.254 23.254 23.254

3 74.155 74.155 74.156 46.774 46.775 46.775

4 138.31 138.31 138.318 71.602 71.603 71.603

5 222.21 222.21 – 96.608 96.609 –

Clamped 1 10.216 10.216 10.216 8.8068 8.8068 8.807

2 39.771 39.771 39.771 27.253 27.253 27.253

3 89.102 89.102 89.102 49.420 49.420 49.420

4 158.18 158.18 158.184 73.054 73.054 73.054

5 246.99 246.99 – 97.198 97.198 –
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for the first uniform thickness plate. However, it depends

on where the thickness is decreased in the section of the

plate, the non-dimensional natural frequency might

increase or decrease. The fact is that due to two-direc-

tionality-variations in the material property (as known non-

homogeneous material), there is no a proportional relation

between the non-dimensional natural frequency and the

thickness variation, unlike the proportional relation could

be observed in a homogeneous material plate.

In Figs. 2 and 3, the first two non-dimensional natural

frequencies of a rotating two-directional FG circular

microplate in terms of the non-dimensional angular

velocity for different variations of thickness prescribed by

clamp and hinge boundary conditions are presented,

respectively. Although, the non-dimensional natural fre-

quencies of the plates vary with respect to the thickness

variation, the results reveal that the critical angular velocity

would be insensitive in respect to that.

In Figs. 4 and 5, the first non-dimensional natural fre-

quencies for a two-directional FG circular microplate in

terms of the non-dimensional natural frequency for dif-

ferent rates, q, of the linear thickness variation, m = 1,

with the clamped and the hinged boundary condition are

presented, respectively. As can be seen, the more rate of

Table 3 The comparison of the first third non-dimensional natural frequencies of two-directional FGM circular plates obtained in this study with

those presented in the literature

B.C. Mode Present

study

(DQM),

n = 0.2

(Shariyat and

Alipour 2013)

(DTM), n = 0.2

Present

study

(DQM),

n = 2

(Shariyat and

Alipour 2013)

(DTM), n = 2

Present

study

(DQM),

n = 0.2

(Shariyat and

Alipour 2013)

(DTM), n = 0.2

Present

study

(DQM),

n = 2

(Shariyat and

Alipour 2013)

(DTM), n = 2

b = 2, a = 0.5 b = 4, a = 0.5

Hinged 1 4.92078 4.959189 3.71492 3.9298 4.76340 4.79814 3.64116 3.80222

2 29.7261 29.96814 22.2568 23.74785 28.6907 28.9284 21.4185 22.9239

3 74.0722 74.67712 55.4163 59.17691 71.7757 72.3747 53.6166 57.3524

b = 2, a = - 0.5 b = 4, a = - 0.5

1 4.18313 4.218785 3.11254 3.343120 4.37398 4.41483 3.19545 3.49847

2 24.9063 25.10470 18.7440 19.89388 26.2034 26.4073 19.8241 20.9261

3 62.1123 62.61459 46.5817 49.61810 65.0230 65.4732 48.9484 51.8834

b = 2, a = 0.5 b = 4, a = 0.5

Clamped 1 10.5847 10.66458 8.03596 8.451005 10.31334 10.3881 7.88106 8.23195

2 40.1541 40.47366 30.1881 32.07281 39.05298 39.3632 29.3720 31.1928

3 89.3860 90.10920 67.0049 71.40582 86.93443 87.6448 65.1909 69.4530

b = 2, a = - 0.5 b = 4, a = - 0.5

1 8.0428 8.116881 5.87263 6.432114 8.354452 8.43586 6.01613 6.68488

2 32.6569 32.93335 24.2786 26.09760 33.98871 34.2785 25.2368 27.1635

3 73.9200 74.53463 55.1244 59.06397 76.92765 77.5327 57.3480 61.4398

Table 4 The comparison of

results obtained by first shear

deformation theory for the first

non-dimensional natural

frequency of a rotating two-

directional FG circular

microplate for different non-

dimensional angular velocities,

boundary conditions and

thickness variations (h/l = 1,

a = 0.5, b = 2, n = 2, R/

h = 20, q = 0.5)

B.C. M X* = 0 X* = 10 X* = 30

Hinged 0 68.7938347255210 68.6040017111398 66.5793716006974

1 38.3926911553748 37.2021895427589 29.1354031568160

2 63.7490610343833 63.4570694044919 60.5937766539455

3 64.7710411293419 64.4555756606505 61.3597102113318

4 65.0988788079747 64.7771189145610 61.6102662528111

5 69.0396734230879 68.6609222158449 65.0197607098747

Clamped 0 70.4605478633893 70.3255824627969 68.8380345407913

1 45.5530269827272 44.2880393912905 35.4084604393587

2 65.6046212463317 65.3865666984312 63.2315853749363

3 66.9488415844630 66.7079413565841 64.3503808093305

4 67.5304472799265 67.2861864931913 64.8887743114389

5 72.1315237224300 71.8377543075618 69.0566743707141
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the linearly increasing the thickness in the microplate, the

more enlargement of the effective stiffness. Since the lin-

early varying the thickness has a significant proportional

effect on the critical angular velocity of the clamped

microplate, this could be neglect about the hinged ones, as

can be seen in Figs. 4 and 5.

3.2.2 Two-directionality-variation in FG material effect

In order to study the impact of two-directionality-variation

of FG material, in Table 5, the first non-dimensional nat-

ural frequencies of a rotating variable thickness circular

microplate for different size dependencies, h/l, and the

material coefficients in radial-direction, a, are presented.

The results are evaluated for the hinged and the clamped

Fig. 2 Free vibration of rotating two-directional FGM circular

microplates in terms of the non-dimensional angular velocity for

different variations of the thickness with the clamped boundary

condition: a the first non-dimensional natural frequencies, x1, b the

second non-dimensional natural frequencies, x2

Fig. 3 Free vibration of rotating two-directional FGM circular

microplates in terms of the non-dimensional angular velocity for

different variations of thickness with the hinged boundary condition:

a the first non-dimensional natural frequencies, x1, b the second non-

dimensional natural frequencies, x2
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microplates. As discussed in the literature, there is a critical

size dependency in which a significant reduction would

occur in the first non-dimensional natural frequencies of

the structure. This was known as buckling phenomenon in

the literature. For instance, in the case of hinged one-di-

mensional FG microplate, (i.e. a = 0), in Table 5, h/l close

to 1 could know as a critical value. Considering the vari-

ation of material in the two-direction, (i.e. a = - 0.5 and

0.5), would lead to the increase or the decrease in the

critical values, as can be seen in Table 5. Moreover, it is

clear that the non-dimensional natural frequencies of the

microplate strongly are depending on how the material is

graded in the plate. This could be found that the effects of

the material variation in the second direction would lead to

non-proportionality of the mechanical response of the

plate. Therefore, the nonlinear effects of the material

variation on the response of such plates should be predicted

to the design of the microdevices.

Moreover, in Fig. 6, the variation of the first and the

second non-dimensional natural frequencies of a rotating

variable thickness circular microplate in terms of the non-

dimensional angular velocity for one- and two-direction FG

materials are presented. Not only the material variation in the

second direction has a significant effect on the non-dimen-

sional natural frequencies, but also there is an ineligible

impact on the critical angular velocities, as can be found in

Fig. 6.

In Fig. 7, the first three non-dimensional natural frequen-

cies of rotating variable thickness circular microplate in terms

of the FG power index in the thickness direction, n, for

homogeneous, one- and two-direction FG materials are pre-

sented. The homogeneous material plate is associated with the

case of n = a = 0. It can be seen, replacing the homogeneous

material with one-directional FG material, a = 0, and n = 0

would lead a reduction in the first non-dimensional natural

frequencies. This is because of the effective stiffness reduction

in the FG plate in comparison with the first one. Moreover, it

can be found in Fig. 7, the effects of two-directionality-vari-

ation of FG material, a, is not sensitive in respect to FG power

index in the thickness direction, n.

The impact of FG power index in the thickness direc-

tion, n, on the first non-dimensional natural non-dimen-

sional frequency in terms of the non-dimensional angular

velocity, could be seen in Figs. 8 and 9 for a variable

thickness circular microplate prescribed by clamp and

hinge boundary conditions, respectively. In the cases of

n = 0 and 1000 (infinity), there is only the radially graded

material (one-directional FG) with the homogeneous

ceramic and metal in thickness direction, respectively. As

can be found in Figs. 8 and 9, there is a proportional

relation between the FG power index in the thickness

direction, n, and the first non-dimensional natural fre-

quency as well as the critical angular velocity.

Moreover, the proportional effects of the FG power

index in the radial direction, b, on the first non-dimensional

natural frequency in terms of the non-dimensional angular

velocity could be seen in Fig. 10, where the cases of b = 0

and 1000 (infinity), are known as thickness-dependent

graded materials.

Fig. 4 The first non-dimensional natural frequency, x1, of a clamped

two-directional FG circular microplate in terms of non-dimensional

angular velocity for different rates of the linear thickness variation

Fig. 5 The first non-dimensional natural frequency, x1, of a hinged

two-directional FG circular microplate in terms of non-dimensional

angular velocity for different rates of the linear thickness variation
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In Fig. 11, a comprehensive map for the two-direction-

ality-variation of material effects on the first three non-

dimensional natural frequencies of a rotating variable

thickness circular microplate is presented. The area

between the upper and the lower curves is associated with

the non-dimensional natural frequencies for a two-direction

FG plate and the boundaries of the area are associated with

those for one-direction FG plates.

3.2.3 Size dependency effect

In Figs. 12 and 13, the impact of the size dependency on

the first non-dimensional natural frequency for a variable

thickness circular microplate in terms of the non-dimen-

sional angular velocity with clamped and hinged boundary

conditions are presented, respectively. As can be seen, the

increase of the size dependency would lead to the reduction

of the non-dimensional natural frequency as well as critical

angular velocity.

4 Conclusion

In this paper, the governing equations of motion for a

rotating variable thickness two-directional FG circular

microplate were proposed. The equations were derived

utilizing the Hamiltonian’s principle as well as the first

shear deformation and the modified couple stress theories.

The differential quadrature method was used to pursue the

solution procedure. The proposed formulation, in special

cases, was verified with the available results in the litera-

ture. The contributions of the thickness-variation of the

section, two-directionality-variation of the material and the

size dependency as well as the angular velocity of the plate,

on the first natural frequencies were studied.

Appendix A

The strain energy, U, in an isotropic linear elastic material

would obtain utilizing the modified couple stress theory as

follows (Eshraghi et al. 2016; Reddy and Berry 2012; Ke

et al. 2012):

U =
1

2

Z

V

ðr : eþ m : vÞdV ð31Þ

where e and r are the linear strain and the Cauchy stress

tensors, respectively. v and m are the symmetric curvature

strain and deviatoric part of the couple stress tensors. The

four last tensors are defined as follows (Eshraghi et al.

2016; Reddy and Berry 2012; Ke et al. 2012):

Table 5 The size dependency

effects on the first non-

dimensional natural frequency,

x1, of a rotating variable

thickness circular microplate

subjected to different boundary

conditions and two-direction FG

materials (m = 1, X* = 0.5,

b = 2, n = 1.2, R/h = 15,

q = 0.5)

B.C. H/l a = - 0.5 a = 0 a = 0.5

Hinged 0 35.5342464161960 39.4342059602109 8.93905142001673

1 22.3929925454333 26.2201843156676 87.8393475216015

2 50.8670861477480 66.6968776342821 85.0169157181622

3 41.5471243701925 55.5693909935267 72.5933640232347

4 39.3145792009598 51.9813307948652 66.2871075115930

5 38.2966557460600 50.2418785521676 62.6821309017845

6 37.7154673782919 49.2281213084505 60.4118029378133

7 37.3378214880814 48.5692985263160 58.8749818646699

8 37.0777574854644 48.1205591832066 43.4901012072814

9 36.8881282401072 47.7941670355355 56.9947071141607

10 35.5342464161960 39.4342059602109 8.93905142001673

Clamped 0 32.1699435014637 36.7204657974089 6.41516837292463

1 28.2043846777705 24.1731372625965 54.1456054753421

2 22.8377392650436 19.4336771284445 77.9839711542219

3 15.0110177292492 37.5138173132953 92.9455164114897

4 6.00980233158180 44.7738103746764 97.4416206394684

5 8.04693951659633 43.0114950090936 92.3156372331641

6 15.9258079807402 34.4212762986930 81.1073315876968

7 21.7680621774675 20.9209761966145 67.5353197667057

8 25.6298610445980 13.0178705282108 80.2905921057517

9 28.1487596479929 24.6551909055820 41.1818763118726

10 32.1699435014637 36.7204657974089 6.41516837292463
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r ¼ ktrðeÞI þ 2le ð32Þ

e ¼ 1

2
½ruþ ðruÞT � ð33Þ

m ¼ 2l2lv ð34Þ

v ¼ 1

2
½rKþ ðrKÞT � ð35Þ

where k and l are the Lame’s constant, u and l are the

displacement vector and the material length scale param-

eter, respectively, and K is a rotation vector defined by:

K ¼ 1

2
curlu ð36Þ

Appendix B

NrrðrÞ ¼
ZhðrÞ2

�hðrÞ
2

rrrdz ¼ A11ðrÞ
ou

or
þ A12ðrÞ

u

r

� �

þ B11ðrÞ
oU
or

þ B12ðrÞ
U
r

� �
ð37Þ

NhhðrÞ ¼
ZhðrÞ2

�hðrÞ
2

rhhdz ¼ A12ðrÞ
ou

or
þ A11ðrÞ

u

r

� �

þ B12ðrÞ
oU
or

þ B11ðrÞ
U
r

� �
ð38Þ

MrrðrÞ ¼
ZhðrÞ2

�hðrÞ
2

rrrzdz ¼ B11ðrÞ
ou

or
þ B12ðrÞ

u

r

� �

þ A11ðrÞ
oU
or

þ B12ðrÞ
U
r

� �
ð39Þ

MhhðrÞ ¼
ZhðrÞ2

�hðrÞ
2

rhhzdz ¼ B12ðrÞ
ou

or
þ B11ðrÞ

u

r

� �

þ D11ðrÞ
oU
or

þ D12ðrÞ
U
r

� �
ð40Þ

MrzðrÞ ¼
ZhðrÞ2

�hðrÞ
2

rrzdz ¼ ksA55ðrÞ
ow

or
þ U

� �
ð41Þ

Xrh ¼
ZhðrÞ2

�hðrÞ
2

mrhdz ¼
1

2
Sðr; zÞ oU

or
� o2w

or2

� �
� 1

r
U� ow

or

� �� �

ð42Þ

where ks = p2/12 is known as the shear correction factor

and the constants are defined as follows:

Fig. 6 Free vibration of a rotating variable thickness circular

microplate in terms of the non-dimensional angular velocity for

one- and two-direction FG materials: a the first non-dimensional

natural frequencies, x1, b the second non-dimensional natural

frequencies, x2

Microsyst Technol (2018) 24:1525–1543 1535

123



Fig. 7 free vibration of a rotating variable thickness circular

microplate in terms of the FG power index for homogeneous, one-

and two-direction FG materials: a the first non-dimensional natural

frequencies, x1, b the second non-dimensional natural frequencies,

x2, c the third non-dimensional natural frequencies, x3
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fA11;B11;D11g ¼
ZhðrÞ2

�hðrÞ
2

Eðr; zÞ
1 � v2ðr; zÞ

� �
f1; z; z2gdz ð43Þ

fA12;B12;D12g ¼
ZhðrÞ2

�hðrÞ
2

Eðr; zÞvðzÞ
1 � v2ðr; zÞ

� �
f1; z; z2gdz ð44Þ

A55 ¼
ZhðrÞ2

�hðrÞ
2

Eðr; zÞ
2ð1 þ vðr; zÞÞ

� �
dz ð45Þ

S ¼
ZhðrÞ2

�hðrÞ
2

l2ðr; zÞEðr; zÞ
2ð1 þ vðr; zÞÞ

� �
dz ð46Þ

Fig. 8 The first non-dimensional natural frequency of a clamped

variable thickness circular microplate in terms of the non-dimensional

angular velocity for one- and two-direction FG materials (the impact

of FG power index in thickness direction, n)

Fig. 9 The first non-dimensional natural frequency of a clamped

variable thickness circular microplate in terms of the non-dimensional

angular velocity for one- and two-direction FG materials (the impact

of FG power index in thickness direction, n)

Fig. 10 The first natural non-dimensional frequency of a clamped

variable thickness circular microplate in terms of the non-dimensional

angular velocity for one- and two-direction FG materials (the impact

of FG power index in radial direction, b)
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Fig. 11 A map for the two-directionality-variation of material effects

on the first three non-dimensional natural frequencies of a rotating

variable thickness circular microplate: a the first non-dimensional

natural frequencies, x1, b the second non-dimensional natural

frequencies, x2, c the third non-dimensional natural frequencies, x3
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Fig. 12 The first non-dimensional natural frequencies, x1, of a

clamped variable thickness circular microplate in terms of the non-

dimensional angular velocity for different size dependencies

Fig. 13 The first non-dimensional natural frequencies, x1, of a

hinged variable thickness circular microplate in terms of the non-

dimensional angular velocity for different size dependencies
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