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Abstract In the present paper, the two different theories

(coupled theory and Green–Lindsay theory with two

relaxation times) are applied to study the deformation of a

generalized piezo-thermoelastic rotating medium under the

influence of magnetic field. The normal mode analysis is

used to obtain the expressions for the displacement com-

ponents, the temperature, the stress, the strain components,

the electric potential and the electric displacements.

Numerical results for the field quantities are given in the

physical domain and illustrated graphically. Comparisons

are made with the results predicted by coupled and Green–

Lindsay theories in the presence and absence of rotation as

well as magnetic field.

List of symbols

ui Mechanical displacement

T Absolute temperature

rij Stress tensor

Ei Electric field

Cijkl Elastic parameters tensor

2ij Dielectric moduli

J Current density vector

E Induced electric field vector

Kij Heat conduction tensor

Ce Specific heat at constant strain

a1; a3 Coefficients of linear thermal expansion

e0; l0 Electric and magnetic permeability

respectively

vp ¼
ffiffiffiffiffiffi

C11

q

q

Longitudinal wave velocity in the medium

u Electric potential

eij Strain tensor

bij Thermal elastic coupling tensor

Di Electric displacement

ekij Piezoelectric moduli

pi Pyroelectric moduli

h Induced magnetic field vector

q Mass density

T0 Reference temperature

t0, t1 Thermal relaxation time parameters

1 Introduction

The brothers Curie and Curie (1880) was discovered the

piezoelectricity when electric charges were created by

mechanical stress on the surface of tourmaline crystals. The

first application of piezoelectric materials was used as

resonators for ultrasound sources in sonar devices. The

better type’s piezoelectric materials such as Barium Tita-

nate are obtained by the development of the materials.

Recently, breakthrough in single crystal growth technique

has led to the development of high strain and high electric

breakdown piezoceramics by Tichy et al. (2010). Mindlin

(1961) discussed first the theory of thermo-piezoelectricity.
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Nowachi (1978, 1983) investigated the physical laws for

the thermo-piezo-electric materials. Chandrasekharaiah

(1984, 1988) studied the generalized linear thermoelasticity

theory for piezoelectric media. He et al. (2002a, b) inves-

tigated two dimensional generalized thermal shock prob-

lem of a thick piezo-electric plate of infinite extent. They

deduced that the generalized thermoelasticity theory, heat

propagated as a wave with finite velocity. The propagation

of Rayleigh waves in transversely isotropic piezo-ther-

moelastic materials are investigated by Sharma et al.

(2005).

Youssef and Bassiouny (2008) discussed the two tem-

perature generalized thermo-piezoelasticity for one

dimensional problem with the state-space approach. They

solved the governing equations in the Laplace transform

domain by using the state-space approach of the modern

control theory. Othman and Ahmed (2016) studied the

influence of the gravitational field on piezo-thermoelastic

rotating medium with G–L theory. Qin and Yang (2008)

suggested the effective properties of thermo-piezoelec-

tricity. Said (2016) studied the influence of gravity on

generalized magneto-thermoelastic medium for three-

phase-lag model. Othman and Kumar (2009) and Othman

(2005) suggested the generalized electro-magneto-ther-

moelastic wave under different theories. El-Naggar and

Abd-Alla (1989) studied Rayleigh waves in magneto-

thermoelastic half-space under initial stress. Othman and

Abbas (2014) studied the effect of rotation on plane waves

in generalized thermo-microstretch elastic solid compar-

ison of different theories using finite element method.

Sharma and Kumar (2000) investigated the plane harmonic

waves in piezo-thermoelastic materials. Schoenberg and

Censor (1973) studied elastic waves in rotating media.

Othman and Elmaklizi (2013) studied the 2-D problem of

generalized magneto-thermoelastic diffusion with the

temperature dependent elastic medium. Othman (2002)

investigated Lord–Shulman theory under the dependence

of the modulus of elasticity on the reference temperature in

two-dimensional generalized thermoelasticity. Othman

et al. (2014) studied the effect of rotation on micropolar

generalized thermoelasticity with two-temperature using a

dual-phase-lag model. Othman et al. (2013) studied the

influence of the gravity field and rotation on a generalized

thermoelastic medium using a dual-phase-lag model. Oth-

man and Abbas (2015) used the finite element method to

study the effect of rotation on a magneto-thermoelastic

hollow cylinder with energy dissipation using.

Piezo-thermoelastic materials take into account the

coupling effect of elastic, thermal and electric fields

simultaneously. These materials can be used as sensors and

actuators in smart structural systems undergoing thermo-

mechanical excitation. The usefulness of piezoelectric

devices in such systems stems from the coupling that exists

between the thermoelastic and electric fields. In sensor

applications, thermomechanical disturbances can be

determined from measurements of the induced electric

potential differences (direct piezoelectric effect); in actu-

ator applications, deformation and/or stress are controlled

through the introduction of an appropriate electric field

(converse piezo effect) (Ashida et al. 1994). Sensors made

of these materials can be used in automatic fire control

systems. In regards to aerospace applications, these struc-

tures are generally light and flexible enough to induce large

deformation. In living bodies’ bones, cartilage, tendons,

ligaments, and nerve tissues are pyroelectric substances.

PVF2 polymer is used in hydrophones that are used at great

ocean depth. Piezo-thermo-elastic or thermo-piezoelectric

sensors are also used in automatic fire control system.

The present work deals with the effect of rotation and

magnetic field in a generalized piezo-thermoelastic. The

normal mode analysis is used to obtain the exact expres-

sions for the considered variables. The distributions of the

considered variables are presented graphically. Numerical

results for the field quantities are given and illustrated

graphically in the presence and absence of the magnetic

field and rotation.

2 Formulation of the problem

2.1 Basic equations

The basic governing field equations of generalized hexag-

onal piezo-thermoelastic for two-dimensional motion in x–

z plane are (2000)

2.2 Strain–displacement-relation

eij ¼
1

2
ðui; j þ uj; iÞ ð1Þ

– Stress–strain-temperature:

rij ¼ Cijklekl � ekijEk � bij 1 þ t1
o

ot

� �

Tdij; ð2Þ

where i; j; k; l ¼ 1; 2; 3:

2.3 Gauss equation and electric field relation

Di; i ¼ 0; ð3Þ

Di ¼ eijkejkþ 2ij Ej þ pi 1 þ t1
o

ot

� �

T ; ð4Þ

where Ei ¼ � u; i:
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2.4 Heat conduction equation

KijT; ij ¼ qCe 1 þ t0
o

o t

� �

_T þ T0½bij _ui; j � pi _u; i�: ð5Þ

2.5 Equation of motion

Since the medium is rotating uniformly with an angular

velocity X ¼ Xn where n is a unit vector representing the

direction of the axis of the rotation, the equation of motion

in the rotating frame of reference has two additional terms

(Schoenberg and Censor 1973): centripetal acceleration

X ^ (X ^ u) due to time-varying motion only and Corioli’s

acceleration 2X ^ _u, then the equation of motion in a

rotating frame of reference and with body force is

q½€ui þ fX ^ ðX ^ uÞgi þ ð2X ^ _uÞi� ¼ rij;j þ Fi; ð6Þ

where Fi is the Lorentz force and is given by:

Fi ¼ l0 ðJ �H)i: ð7Þ

The variation of the magnetic and electric fields are

perfectly conducting slowly moving medium and are given

by Maxwell’s equations:

curl h ¼ J + e0
_E; ð8Þ

curl E ¼ � l0
_h; ð9Þ

E = � l0 ( _u�H ), ð10Þ
div h = 0. ð11Þ

Expressing components of the vector J = (J1; J2; J3Þ in

terms of the displacement by eliminating the quantities h

and E from Eq. (8), thus yields

J1 = � h;z + e0l0H0 €w, J2 = 0, J3 = h;x + e0l0H0€u.

ð12Þ

From Eqs. (8)–(11), it can be concluded that:

h = � H0 e. ð13Þ

Substituting from Eq. (12) in Eq. (7), one can get

F = (Fx,Fy,Fz)

¼ l0 H
2
0 e;x � e0 l

2
0 H

2
0 €u, 0 , l0 H

2
0 e;z � e0 l

2
0 H

2
0 €w

� �

:

ð14Þ

The constitutive relation and electric displacement of

the hexagonal (6 mm) crystal symmetry are given by

rxx ¼ C11exx þ C13ezz � e31Ez � b1 1 þ t1
o

ot

� �

T ; ð15Þ

rzz ¼ C13exx þ C33ezz � e33Ez � b3 1 þ t1
o

ot

� �

T ; ð16Þ

rxz ¼ 2C44 ezx � e15Ex; ð17Þ

Dx ¼ e15ðu;z þ w;xÞþ 211 Ex; ð18Þ

Dz ¼ e31u;x þ e33w;zþ 233 Ez þ p3 1 þ t1
o

ot

� �

T : ð19Þ

3 The boundary conditions:

1. A mechanical boundary condition

rzzðx; 0; tÞ ¼ �f1ðx; 0; tÞ ¼ �f �1 expðiaðx� ctÞÞ;

rxzðx; 0; tÞ ¼ 0;
ou
oz

¼ 0:
ð20Þ

2. A thermal boundary condition that the surface of the

half-space subjected to thermal shock

Tðx; 0; tÞ ¼ f2ðx; 0; tÞ ¼ f �2 expðiaðx� ctÞÞ; ð21Þ

where f1ðx; tÞ and f2ðx; tÞ are arbitrary functions of x; t

and f �1 ; f
�
2 are constant.

We consider a homogeneous, anisotropic, piezo-ther-

moelastic half-space of hexagonal type. The basic gov-

erning Eqs. (3)–(6) for the temperature change Tðx; z; tÞ;
displacement vector uðx; z; tÞ ¼ ðu; 0;wÞ; and electric

potential u ðx; z; tÞ; under the effect of rotation and mag-

netic field are given by,

C11 u;xx þ C44 u;zz þ ðC13 þ C44Þ w;xz þ ðe31 þ e15Þ u;xz

� b1 1 þ t1
o

ot

� �

T;x þ l0H
2
0e;x

� e0l
2
0H

2
0 €u ¼ q €u� X2uþ 2X _w

� �

;

ð22Þ

ðC44 þ C13Þ u;xz þ C44 w;xx þ C33 w;zz þ e15 u;xx

þ e33 u;zz � b3 1 þ t1
o

ot

� �

T;z þ l0H
2
0e;z

� e0l
2
0H

2
0 €w ¼ q €w� X2w� 2X _u

� �

;

ð23Þ

e15 þ e31ð Þ u;xz þ e15 w;xx þ e33 w;zz� 211 u;xx

� 233 u;zz þ p3 1 þ t1
o

ot

� �

T;z ¼ 0;
ð24Þ

K1 T;xx þ K3 T;zz � qCe 1 þ t0
o

ot

� �

_T

¼ T0 ½b1 _u;x þ b3 _w;z � p3 _u;z�: ð25Þ

To facilitate the solution, the following non-dimensional

quantities are introduced

x0 ¼ x�

vp
x; z0 ¼ x�

vp
z; u0 ¼ qx�vp

b1T0

u; w0 ¼ qx�vp
b1T0

w;

T 0 ¼ T

T0

; r0ij ¼
rij
b1T0

; u0 ¼ epu;
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ft0; t01; t00g ¼ x�ft; t1; t0g; D0
i ¼

Di

e
;X0 ¼ X

x� ; ð26Þ

where x� ¼ CeC11

K11
; ep ¼ x�e33

vpb1 T0
; b1 ¼ ðC11 þ C12Þa1þ

C13 a3; b3 ¼ 2C13 a1 þ C33a3:

In terms of the non-dimensional quantities defined in

Eq. (26), the above governing Eqs. (22)–(25) take the form

(dropping the primes over the non-dimensional variables

for convenience)

d1u;xx þ d2 u;zz þ d3 w;xz þ d4 u;xz � 1 þ t1
o

ot

� �

T;x

¼ d5€u� X2uþ 2X _w;

ð27Þ

d3 u;xz þ d2 w;xx þ d6 w;zz þ d7 u;xx þ u;zz

þ d8 1 þ t1
o

ot

� �

T;z

¼ d5 €w� X2w� 2X _u;

ð28Þ

d9 u;xz þ d10 w;xx þ d11 w;zz þ d12 u;xx þ d13 u;zz

þ d14 1 þ t1
o

ot

� �

T;z ¼ 0;
ð29Þ

d15 T;xx þ d16 T;zz � 1 þ t0
o

ot

� �

_T

¼ ½d17 _u;x þ d18 _w;z þ d19 _u;z�; ð30Þ

where dj; j ¼ 1 � 19 are given in ‘‘Appendix A’’.

4 The solution of the problem

In this section, we applied the normal mode analysis, which

gives exact solutions without any assumed restrictions on

the displacement, stress distributions and temperature. It is

applied to a wide range of problems in different branches

(Othman (2002) and Othman et al. (2013, 2014, 2015)).

The solution of the considered physical quantities can be

decomposed in terms of the normal mode in the following

form:

½u;w;u; T �ðx; z; tÞ ¼ ½u�;w�;u�; T�� ðzÞ expðiaðx� ctÞÞ:
ð31Þ

where D = d

d z
; c ¼ x

a
; x is the complex time constant

(frequency), i is the imaginary unit, a is the wave number

in the x direction, u�; w�; u� and T� are the amplitudes of

the functions u; w; u; T :
Subsisting from Eq. (31) in Eqs. (27)–(30), we get

ðD2 þ A1Þ u� þ ðA2D þ A3Þ w� þ A4Du� þ A5T
� ¼ 0;

ð32Þ

ðA6D þ A7Þ u� þ ðD2 þ A8Þw� þ ðA9D2 þ A10Þu�

þ A11DT� ¼ 0;
ð33Þ

A12D u� þ ðD2 þ A13Þw� þ ðA14D2 þ A15Þu� þ A16DT�

¼ 0;

ð34Þ

A17 u
� þ A18Dw� þ A19Du� þ ðD2 þ A20ÞT� ¼ 0; ð35Þ

where Aj; j ¼ 1 � 20 are given in ‘‘Appendix A’’.

Equations (32)–(35) have a non-trivial solution if the

determinant coefficients of the physical quantities equal to

zero, then we get

[D8 � AD6 þ BD4 � C D2 þ E�fu�ðzÞ;
w�ðzÞ;u�ðzÞ; T�ðzÞg ¼ 0;

ð36Þ

where A; B; C; E are given in ‘‘Appendix A’’.

Equation (36) can be factored as

D2 � k2
1

� �

D2 � k2
2

� �

D2 � k2
3

� �

D2 � k2
4

� �

fu�ðzÞ;
w�ðzÞ;u�ðzÞ; T�ðzÞg ¼ 0:

ð37Þ

The solution of Eq. (37), bound as z ! 1; is given by

u� ¼
X

4

n¼1

Mn expð�knzÞ; ð38Þ

w� ¼
X

4

n¼1

H1nMn expð�knzÞ; ð39Þ

u� ¼
X

4

n¼1

H2nMn expð�knzÞ; ð40Þ

T� ¼
X

4

n¼1

H3nMn expð�knzÞ; ð41Þ

where k2
nðn ¼ 1; 2; 3; 4Þ are the roots of the characteristic

equation of Eq. (37).

By taking a non-dimension and the normal mode to

Eqs. (15)–(19) then substituting from Eqs. (38)–(41), we

obtain

r�xx ¼
X

4

n¼1

H4nMn expð�knzÞ; ð42Þ

r�zz ¼
X

4

n¼1

H5nMn expð�knzÞ; ð43Þ

r�xz ¼
X

4

n¼1

H6nMn expð�knzÞ; ð44Þ

D�
x ¼

X

4

n¼1

H7nMn expð�knzÞ; ð45Þ

D�
z ¼

X

4

n¼1

H8nMn expð�knzÞ; ð46Þ

where Hjn; j ¼ 1 � 8; n ¼ 1; 2; 3; 4 are given in ‘‘Ap-

pendix B’’.
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By applying the boundary conditions (20) and (21) to

determine Mnðn ¼ 1; 2; 3; 4Þ, we obtain

X

4

n¼1

H5nMn ¼ � f �1 ; ð47Þ

X

4

n¼1

H6nMn ¼ 0; ð48Þ

X

4

n¼1

knH2nMn ¼ 0; ð49Þ

X

4

n¼1

H3nMn ¼ f �2 : ð50Þ

By solving the above system of Eqs. (47)–(50), of

Mn n ¼ 1; 2 ; 3; 4ð Þ by using the inverse of matrix method

as follows:

M1

M2

M3

M4

0

B

B

B

@

1

C

C

C

A

¼

H51 H52 H53 H54

H61 H62 H63 H64

k1H21 k2H22 k3H23 k4H24

H31 H32 H33 H34

0

B

B

@

1

C

C

A

�1 �f �1
0

0

f �2

0

B

B

@

1

C

C

A

:

ð51Þ

5 Numerical results and discussions

For study the effect of rotation and magnetic field, we will

apply the numerical results. The material chosen for the

purpose of numerical calculations is taken as Cadmium

Selenide (CdSe) having hexagonal symmetry (6 mm class)

C11 ¼ 7:41 � 1010 Nm�2; C12 ¼ 4:52 � 1010 Nm�2;

C13 ¼ 3:93 � 1010 Nm�2; C33 ¼ 8:36 � 1010 Nm�2;

C44 ¼ 1:32 � 1010 Nm�2; T0 ¼ 298 K; q ¼ 5504 Kg

m�3; e13 ¼ � 0:160 Cm�2; e33 ¼ 0:347 Cm�2; e15 ¼
� 0:138 Cm�2; b1 ¼ 0:621 � 106 Nk�1 m�2; b3 ¼
0:551 � 106 NK�1 m�2; p3 ¼ � 2:94 � 10�6 CK�1 m�2;

K1 ¼ K3 ¼ 9 Wm�1 K�1; 211¼ 8:26 � 10�11 C2

N�1 m�2; 233¼ 9:03 � 10�11 C2 N�1 m�2; Ce ¼ 260

J Kg�1 K�1: The numerical technique, outlined above, was

used for the distribution of the real part of the displacement

component u; the temperature T ; the stress components rzz;
rxz the electric potential u and the electric displacement Dz

for the problem. Here, all variables are taken in non-di-

mensional form. The results are shown in Figs. 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11 and 12; the graph shows four curves

predicted by two theories of thermoelasticity. In these

figures, the solid lines represent the solution in the coupled

theory (CT) and the dashed lines represent the solution

derived using (G–L) theory.

Figures 1, 2, 3, 4, 5 and 6 show the comparisons

between the considered variables in the absence and pres-

ence of rotation (i.e. X ¼ 0; 0:5) at H0 ¼ 108: The com-

putations are carried out for the non-dimensional time

t ¼ 0:1 on the surface plane x ¼ 1:5; f �1 ¼ 10; f �2 ¼ 10:

Figure 1 depicts that the distribution of the horizontal

displacement u; in the context the (CT) and (G–L) theories,

always begins from negative values for X ¼ 0; 0:5: It

shows that the values of u based on the (CT) and (G–L)

theories increase then decrease and converges to zero for

X ¼ 0; 0:5: Figure 2 demonstrates that the distribution of

the temperature T: In the context of the (CT) and (G–L)

theories and in the absence and presence of a rotation (i.e.

X ¼ 0; 0:5), the distribution of T are increasing to the

maximum value in the range 0� z� 0:2 then decreases and

converges to zero. Figure 3 shows that the distribution of

the stress components rzz; in the context of the (CT) theory

the value of rzz decreases in the range 0� z� 0:2; then

increases in the range 0:2� z� 1:5; for X ¼ 0; 0:5; while

in the context of (G–L) theory, it is observed that the value

of rzz decreases in the range 0� z� 0:2; then increase in

the range 0:2� z� 1; then decrease and finally converges

to zero for X ¼ 0; 0:5: Figure 4 clarifies that the distribu-

tion of the stress component rxz; in the context of the (CT)

and (G–L) theories, begins from zero and satisfies the

boundary conditions at z ¼ 0: In the context of the two

theories, the values of rxz decreases in the range

0� z� 0:3; then increases for X ¼ 0; 0:5: It is observed

that the values of the stress components rxz at X ¼ 0 are

higher than those at X ¼ 0:5: Figure 5 exhibits the distri-

bution of the electric potential u; in the context of the (CT)

theory for X ¼ 0; 0:5; the values of u decreases then

increases and converges to zero. However, in the context of

(G–L) theory the values of u increases, then decrease for

X ¼ 0; 0:5: It is observed that the values of the electric

potential u; in the context of the (G–L) for X ¼ 0; 0:5; are

higher than the values of the electric potential u; in the

context of the (CT) for X ¼ 0; 0:5: Figure 6 depicts that the

distribution of the electric displacement Dz; in the context

the (CT) and (G–L) theories, always begins from positive

values for X ¼ 0; 0:5: It shows that the values of Dz; based

on the (CT) and (G–L) theories decrease then increase and

finally converges to zero for X ¼ 0; 0:5:

Figures 7, 8, 9, 10, 11 and 12 show the comparisons

between the considered variables in the absence and pres-

ence of a magnetic field (i.e. H0 ¼ 0; 109) at X ¼ 0:5:

Figure 7 shows that the distribution of the horizontal

displacement u; in the context of (CT) and (G–L) theories,

the value of u; increase in the range 0� z� 0:5; then

decreases in the range 0:5� z� 3; for H0 ¼ 0: It is

observed that in the case of absence of magnetic field the

two curves of the (CT) and (G–L) theories are coincide,
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while for H0 ¼ 109; it is observed that the value of u;

decreases then converges to zero. Figure 8 shows the dis-

tribution of temperature T : For H0 ¼ 0; the value of T

increase to the maximum value in the range 0� z� 0:2;

then decrease in the range 0:2� z� 1; then increase in the

range 1� z� 3:5; and finally converges to zero. For H0 ¼

0 0.5 1 1.5 2 2.5 3
-40

-35

-30

-25

-20

-15

-10

-5

0

5

z

u

CT(Ω=0)
CT(Ω=0.5)
GL(Ω=0)
GL(Ω=0.5)

Ω=0

Ω=0.5 

Fig. 1 Horizontal displacement

distribution u in the absence and

presence of rotation

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

30

40

50

z

T

CT(Ω=0)
CT(Ω=0.5)
GL(Ω=0)
GL(Ω=0.5)

Ω=0.5

Ω=0

Fig. 2 Temperature

distribution T in the absence

and presence of rotation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

-40

-30

-20

-10

0

10

20

z

σ zz

CT(Ω=0)
CT(Ω=0.5)
GL(Ω=0)
GL(Ω=0.5)

Ω=0.5

Ω=0

Fig. 3 Distribution of stress

component rzz in the absence

and presence of rotation
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109; the value of T decreases, then increase and finally

converge to zero in the context of the (CT) and (G–L)

theories. Figure 9 represents the distribution of the stress

component rzz; in the context of the (CT) and (G–L) the-

ories, always begins from negative values for H0 ¼ 0; 109:

In the case of absence of the magnetic field the curve which

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-60

-50

-40

-30

-20

-10

0

10

z

σ xz

CT(Ω=0)
CT(Ω=0.5)
GL(Ω=0)
GL(Ω=0.5)

Ω=0

Ω=0.5

Fig. 4 Distribution of stress

component rxz in the absence
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represent (CT) theory decreases to the minimum value in

the range 0� z� 0:2; then increase and converge to zero at

z� 1:5; while the curve which represent the (G–L) theory

decreases to the minimum value in the range 0� z� 0:2;

then increases in the range 0:2� z� 1; then decrease and

converge to zero at z� 2:5. However, in the case of the
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Fig. 7 Horizontal displacement
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presence of a magnetic field the curve, which represents

(CT) theory has increased then decreased while the curve,

which represent (G–L) theory is an increase in the range

0� z� 0:1; then decrease in the range 0:1� z� 0:5; then

increase and converge to zero at z� 3:5: Figure 10 exhibits

that the distribution of the stress component rxz in the

context of the (CT) and (G–L) theories, begins from zero

and satisfies the boundary conditions at z ¼ 0. In the
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Fig. 10 Distribution of stress

component rxz in the absence
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context of the two theories, the values of rxz decreases in

the range 0� z� 0:3; then increase for H0 ¼ 109: How-

ever, in the case of absence of the magnetic field the values

of rxz increases then decreases and converges to zero. It is

observed that the values of the stress components rxz at

H0 ¼ 109; are higher than those at H0 ¼ 0: Figure 11

represents the variations of the electric potential u; in the

context of the (CT) and (G–L) theories, the values of u;
decreases in the range 0� x� 0:5; then increases for (CT)

at H0 ¼ 0; and (G–L) at H0 ¼ 109; while in the case of

(CT) at H0 ¼ 109; and (G–L) at H0 ¼ 0; it is observed that

the value of u; increases then decreases and converges to

zero. Figure 12 shows that the distribution of the electric

displacement Dz; in the context of (CT) and (G–L) theories,

the value of Dz; decrease in the range 0� x� 0:7; then

increases for H0 ¼ 0; while for H0 ¼ 109; it is observed

that the value of Dz; increases then converges to zero.

3D curves Figs. 13, 14, 15, 16, 17 and 18 are repre-

senting the relation between the physical variables and both

components of the distance, in the presence of rotation

X ¼ 0:5 and magnetic field H0 ¼ 108 in a generalized

piezo-thermoelastic medium, in the context of (G–L).

These figures are very important to study the dependence

of these physical quantities on the vertical component of

distance. The curves obtained are highly depending on the

vertical distance and all the physical quantities are moving

in wave propagation.

6 Conclusions

This study solves the mathematical model for studying the

influence of rotation and magnetic field in anisotropic

piezo-thermoelastic materials for two-dimensional propa-

gation of plane harmonic waves. Recent interest in the

piezoelectric materials stems from their potential applica-

tions in intelligent structural systems, and piezoelectric is

currently enjoying a greatest resurgence in both funda-

mental research and technical applications. The thermoe-

lasticity is concerned with the study of thermo-dynamics
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system of bodies in equilibrium, whose interactions with

the surroundings are limited to mechanical work, heat

exchange and external work. Comparing the figures which

obtained under the two theories, important phenomena

have observed that,

• Analytical solutions based upon normal mode analysis

for thermoelastic problem in solids have been devel-

oped and used.

• The method which used in the present article is

applicable to a wide range of problems in hydrody-

namics and thermoelasticity.

• The value of all physical quantities converges to zero

with an increase in distance z and all functions are

continuous. All the physical quantities satisfy the

boundary conditions.
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• Deformation of a body depends on the nature of forced

applied as well as the type of boundary conditions.

• The comparisons of two theories of thermoelasticity,

(CT) and (G–L) theories are carried out.

Appendix A

d1 ¼
C11 þl0H

2
0

q v2
p

; d2 ¼
C44

q v2
p

; d3 ¼
C13 þC44 þl0H

2
0

q v2
p

;

d4 ¼
ðe31 þ e15Þ

e33

; d5 ¼ 1þ e0l2
0H

2
0

q

� �

;

d6 ¼
C33 þl0H

2
0

q v2
p

; d7 ¼
e15

e33

; d8 ¼�b3

b1

;

d9 ¼
ðe15 þ e31Þ

q v2
p

; d10 ¼
e15

q v2
p

; d11 ¼
e33

q v2
p

;

d12 ¼�211

e33

; d13 ¼�233

e33

; d14 ¼
p3

b1

; d15 ¼
K1x�

qCe v2
p

;

d16 ¼
K3x�

qCe v2
p

; d17 ¼
b2

1T0

q2Ce v2
p

;

d18 ¼
b1 b3 T0

q2Cev2
p

; d19 ¼�p3 b1 T0

qCee33

:

ð52Þ

A1 ¼ �ða2d1 � a2c2d5 � X2Þ
d2

; A2 ¼ iad3

d2

;

A3 ¼ 2iacX
d2

; A4 ¼ iad4

d2

; A5 ¼ � iað1 � iac t1Þ
d2

;

A6 ¼ iad3

d6

; A7 ¼ � 2iacX
d6

;

A8 ¼ �ða2d2 � a2c2d5 � X2Þ
d6

; A9 ¼ 1

d6

;

A10 ¼ � a2d7

d6

;A11 ¼ d8ð1 � iac t1Þ
d6

; A12 ¼ iad9

d11

;

A13 ¼ � a2d10

d11

; A14 ¼ d13

d11

;

A15 ¼ � a2d12

d11

;A16 ¼ d14ð1 � iact1Þ
d11
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A17 ¼ � a2cd17

d16

; A18 ¼ iacd18

d16

; A19 ¼ iacd19

d16

;

A20 ¼ �ða2d15 � iac� a2c2t0Þ
d16
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ðA14A20 þ A15 � A16A19 þ A8A14
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þ A2A9A12 þ A4A6 � A4A12Þ
ð54Þ
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�A4A6A16A18 � A4A12A20 þ A4A16A17
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