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Abstract In the current paper, axial buckling characteris-

tics of nanoscaled single-layered graphene sheets (SLGSs)

are investigated on the basis of Eringen’s nonlocal elas-

ticity continuum and different plate theories namely as

classical plate theory and first-order shear deformation

theory. Through implementing of the nonlocal equations

into the different types of plate theory, nonlocal plate

models are developed to consider the small-scale effects in

the axial buckling analysis of SLGSs. Generalized differ-

ential quadrature method is utilized to discretize the gov-

erning differential equations of the nonlocal elastic plate

models along simply-supported and clamped boundary

conditions. Afterward, molecular dynamics (MD) simula-

tions are performed for a series of SLGS with various

values of side-length and chiralities, the results of which

are matched with those of nonlocal plate models to extract

the appropriate values of nonlocal parameter. It is found

that among the type of boundary conditions, chirality, and

nonlocal plate theory, boundary conditions have the most

significant influence on the recommended values of non-

local parameter to predict the axial buckling behavior of

SLGSs.

1 Introduction

After the discovery of carbon nanotubes (CNTs) by Iijima

(1991), the families of carbon nanostructures such as gra-

phene sheets, carbon nanotubes, and fullerenes provide a

new foundation to apply in the different emerging fields of

nanoscience and nanotechnology (Chen et al. 2003; Kim

et al. 2004; Pumera et al. 2006; Yu et al. 2010) due to their

extraordinary physical, mechanical and electrical proper-

ties. According to the direction of the rolling of the gra-

phene sheet, carbon nanotubes can be classified into

armchair and zigzag which are indicated in Fig. 1. Because

of the small scale of such structures, investigation of the

behavior of them using experimental methods makes some

difficulties that causes the importance of theoretical anal-

yses has been increasing.

Liew et al. (2006) proposed a continuum model to

analyze the vibrations of multi-layered graphene sheet

(MLGS) embedded in an elastic matrix on the basis of the

classical plate theory (CLPT). Ansari and Hemmatnezhad

(2010) applied the homotopy perturbation method for

nonlinear vibration of multi-walled carbon nanotubes

embedded in an elastic medium based on the classical

continuum mechanics. The nanoscale vibration analysis of

MLGS embedded in an elastic medium was studied by

Behfar and Naghdabadi (2005). They considered each layer

of MLGSs as orthotropic plates whose elastic modulus are

different in two perpendicular directions. Based on the

CLPT, Kitipornchai et al. (2005) investigated the vibration

response of MLGSs with simply-supported boundary con-

ditions using a continuum model. They proposed an

explicit formula for the van der Waals interaction between

any two sheets of a MLGS.

As the classical continuum models do not have the

capability to consider the size-effects in the analyses of
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nanostructures, using them to predict the behavior of

structures at the nanoscale becomes controversial. Hence,

the extension of the continuum mechanics to accommodate

the size dependence of nanostructures is a topic of major

concern. Modified continuum models are one of the most

applied theoretical approaches for the investigation of

nanomechanics due to their computational efficiency and

their capability to produce accurate results which are

comparable to those of atomistic models. The application

of nonlocal continuum mechanics allowing for the small

scale effects in the analyses of nanomaterials has been

recommended by many research workers.

The use of nonlocal elasticity to study size-effects in

micro and nanoscale structures was pioneered by Ped-

dieson et al. (2003). They studied the bending of micro and

nanoscale beams with the concept of nonlocal elasticity

and concluded that size-effects could be significant for

nano-sized structures and that the magnitude of the size-

effects greatly depends on the value of the nonlocal

parameter. After that, Nonlocal continuum model has

gained much popularity among the researchers because of

its efficiency as well as simplicity to analyze the behavior

of various nanostructures.

Wang et al. (2006) developed nonlocal elastic beam and

shell models to investigate the small-scale effects on the

buckling analysis of CNTs under compression. They

demonstrated that the buckling solutions for CNTs via

local continuum mechanics are overestimated. Various

available beam theories were reformulated by Reddy

(2007) using the nonlocal differential constitutive relations

of Eringen to bring out the effect of the size-effects

buckling loads and natural frequencies of the beams at

nanoscale. Shen (2010) presented an investigation on the

buckling and postbuckling of microtubules subjected to a

uniform external radial pressure in thermal environments

based on nonlocal shear deformable cylindrical shell.

Amara et al. (2010) studied the column buckling of multi-

walled carbon nanotubes with large aspect ratios under

axial compression coupling with temperature change on the

basis of nonlocal theory of thermal elasticity mechanics.

Ansari and Sahmani (2012) incorporated Eringen’s non-

locality into different beam theories to include small-scale

effects on the axial buckling of single-walled CNTs with

different boundary conditions and compared with the

results of molecular dynamics simulations. There are so

many other studies about buckling and vibration responses

of nanostructures in which the nonlocal elasticity contin-

uum models have been utilized (Hu et al. 2008; Kiani

2010; Ansari et al. 2010; Ansari and Sahmani 2013; Radic

et al. 2014; Sahmani and Bahrami 2015; El-Borgi et al.

2015; Sari and Al-Kouz 2016; Sahmani and Aghdam

2017a, b, c; Zhang et al. 2017; Sahmani and Fattahi

2017a, b) which show the enormous interest of this

extension of continuum mechanics in various fields of

nanoscience and nanomechanics.

In this work, axial buckling response of single-layered

graphene sheets (SLGSs) is studied based on nonlocal

continuum mechanics. To this end, Eringen’s nonlocal

elasticity equations are incorporated into the different types

of plate theory to develop nonlocal elastic plate models.

Generalized differential quadrature (GDQ) method is

implemented into the governing differential equations of

nonlocal models to discretize them along the simply sup-

ported and clamped boundary conditions. Then molecular

dynamics (MD) simulations are performed for a series of

armchair and zigzag SLGSs with various values of side-

length and boundary conditions, the results of which are

fitted with those of nonlocal plate models to derive

appropriate values of nonlocal parameter.

2 Overview of plate theories

2.1 Introduction

To represent the behavior of plates, there are different plate

theories. Consider a uniform square nanoplate with the side

length L and thickness h. A coordinate system ðx; y; zÞ is

introduced at the one corner of the midplane of the nano-

plate, whereas the x axis is taken along the length of the

nanoplate, the y axis in the width direction and the z axis is

taken along the depth (thickness) direction. The displace-

ment components ðu1; u2; u3Þ along the axes ðx; y; zÞ can be

written in a general form as:

Fig. 1 Definition of chiral vector for a graphene sheet
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u1 ¼ �z
ow

ox
þ wðzÞ ow

ox
þ ux

� �

u2 ¼ �z
ow

oy
þ wðzÞ ow

oy
þ uy

� �

u3 ¼ wðx; tÞ; ð1Þ

where w is the transverse displacement and ux;uy are the

angular displacements in the x and y directions, respec-

tively. wðzÞ is the shape function as follows:

For classical plate theory (CLPT): w zð Þ ¼ 0.

For first-order shear deformation theory (FSDT):

w zð Þ ¼ z.

2.2 Classical plate theory

The simplest and the most well-known plate theory is

the classical plate theory which is on the basis of that the

straight lines which are vertical to the mid-plane will

remain straight and vertical to the mid-plane after

deformation. In otherwise, the effects of shear defor-

mation and rotational inertia are not considered in this

type of plate theory. On the basis of Eq. (1), the strain–

displacement relations appropriate to CLPT can be

obtained as:

exx ¼
ou1

ox
¼ �z

o2w

ox2
; ð2-aÞ

eyy ¼
ou2

oy
¼ �z

o2w

ox2
; ð2-bÞ

cxy ¼
ou1

oy
þ ou2

ox
¼ �2z

o2w

oxoy
; ð2-cÞ

cxz ¼ cyz ¼ 0: ð2-dÞ

Using the principle of virtual displacement, the follow-

ing equilibrium equation can be expressed for CLPT as:

o2Mxx

ox2
þ o2Myy

oy2
þ 2

o2Mxy

oxoy
� P

o2w

ox2
¼ 0; ð3Þ

where P is the critical axial buckling load and

M ¼ Mxx;Myy;Mxy

� �T¼ R h=2

�h=2
z rxx; ryy; rxy
� �T

dz.

The governing equation of (3) can be obtained in terms

of displacements as:

� Eh3

12ð1 � m2Þ
o4w

ox4
þ 2m

o4w

ox2oy2
þ o4w

oy4

� �

� Eh3

6ð1 þ mÞ
o4w

ox2oy2
� P

o2w

ox2
¼ 0: ð4Þ

2.3 First-order shear deformation theory

The next type of plate theory is the first-order shear

deformation plate theory in which the effects of shear

deformation and rotational inertia are taken into account,

so the straight lines will no longer remain vertical to the

mid-plane of the plate after deformation. However, it is

assumed that the transverse shear stress has a linear dis-

tribution along the thickness of the plate. Using Eq. (1),

the following strain–displacement relations can be

obtained as:

exx ¼
ou1

ox
¼ z

oux

ox
; ð5-aÞ

eyy ¼
ou2

ox
¼ z

ouy

oy
; ð5-bÞ

cxy ¼
ou1

oy
þ ou2

ox
¼ z

oux

oy
þ
ouy

ox

� �
; ð5-cÞ

cxz ¼
ou1

oz
þ ou3

ox
¼ ow

ox
þ ux; ð5-dÞ

cyz ¼
ou2

oz
þ ou3

oy
¼ ow

oy
þ uy: ð5-eÞ

Using the principle of virtual displacement, the equi-

librium equations can be expressed for FSDT as:

oQxx

ox
þ oQyy

oy
� P

o2w

ox2
¼ 0; ð6-aÞ

oMxx

ox
þ oMxy

oy
� Qxx ¼ 0; ð6-bÞ

oMyy

oy
þ oMxy

ox
� Qyy ¼ 0; ð6-cÞ

where Q ¼ Qxx;Qyy

� �T¼ R h=2

�h=2
rxz; ryz
� �T

dz:
The governing equations of (6) can be obtained in terms

of displacements as:

jGh
oux
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þ
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oy2

� �
� P
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3 Nonlocal plate theories for axial buckling
of SLGSs

3.1 Review of Eringen’s nonlocal elasticity

The theory of nonlocal elasticity was first considered by

Eringen in the 1970’s (Eringen 1972). This concept is

inherent in solid state physics where the nonlocal attrac-

tions of atoms are prevalent Eringen. In contrast to the

classical elasticity, in the nonlocal model the stress at a

reference point x in an elastic body depends not only on the

strains at x, but also on strains at all other points of the

body (Eringen 1972). According to the nonlocal elasticity

theory, this fact was attributed to the atomic theory of

lattice dynamics and experimental measurements of pho-

non dispersion (Eringen 1983).

For homogenous and isotropic elastic continuum, the

linear nonlocal elasticity theory can be expressed as the

following set of equations (Eringen 1983):

rkl;k þ q fl � €ulð Þ ¼ 0; ð8-aÞ

rklðxÞ ¼
Z
V

a x� x0j j; sð Þrcklðx0ÞdV ; ð8-bÞ

rcklðx0Þ ¼ L1errðx0Þdkl þ 2L2eklðx0Þ; ð8-cÞ

eklðx0Þ ¼
1

2

dukðx0Þ
dx0l

þ dulðx0Þ
dx0k

� �
; ð8-dÞ

where Eq. (8-a) is the equilibrium relation in which

rkl;l; q; fl and ul are the nonlocal stress tensor, mass density,

body force density and displacement vector at a reference

point x in the body, respectively. Equation (8-b) is the

relation between local (rckl) and nonlocal (rkl;l) stress ten-

sors using the nonlocal modulus (a x� x
0�� ��; s� �

). Finally,

Eqs. (8-c) and (8-d) are the classical constitutive stress–

strain and strain–displacement relationships, respectively.

L1 and L2 are the Lame constants.

Eringen (1972) made certain assumptions to simplify

Eq. (8-b) to a partial differential equation form as:

1 � s2‘2r2
� �

tklðxÞ ¼ rklðxÞ; s ¼ e0

a

‘
; ð9Þ

where tkl ¼ rkl;l, a=‘ is the characteristic length ratio and e0

is the nonlocal constant which are appropriate to the

material.

3.2 Application of nonlocal elasticity in plate

theories

3.2.1 Classical plate theory

Using Eq. (9), the only constitutive relation for nonlocal

model of CLPT with elastic medium is obtained as:

� Eh3

12 1� m2ð Þ
o4w

ox4
þ 2m

o4w

ox2oy2
þ o4w

oy4

� �
� Eh3

6 1þ mð Þ
o4w

ox2oy2

�P
o2w

ox2
þlP

o4w

ox4
þ o4w

ox2oy2

� �
¼ 0: ð10Þ

3.2.2 First order shear deformation theory (FSDT)

Using Eq. (9), the constitutive relations for nonlocal model

of FSDT with elastic medium can be expressed as:
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4 Generalized differential quadrature (GDQ)
method

4.1 Introduction

The differential quadrature method is a numerical

technique used to solve the initial and boundary value

problems (Chen 1996; Noye and Tan 1989; Quan and

Chang 1989). This method compared with the other

numerical method such as the finite difference methods

and finite element methods, and showing excellent

numerical results, it needs only applying a few grid

points in order to get high-precise solutions, a good

convergence and it requires only less computational

workload (Bert and Malik 1996; Shu et al. 2000). This

method was proposed by Bellman in the early 70 s

(Bellman and Casti 1971; Bellman et al. 1972). Then,

the technique has been successful employed in a variety

of problems in engineering and physical sciences hence

attracted many researchers attention in recent years. Al-

Saif and Zhu (2002), using the differential quadrature

method to solve the coupled incompressible Navier–

Stokes equation and heat equation and showing that

accurate numerical results can be obtained by the DQM
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using only a few grid point and requires less storage and

computational effort compared to the conventional low-

order finite difference method. In another work, Al-saif

and Zhu (2003), using the mixed differential quadrature

method (MDQM) for solving the coupled two-dimen-

sional incompressible Navier–Stokes equation and heat

equation. The results show that the new method is more

accurate and has better convergence than the traditional

DQM. The purpose of this paper is to introduce and

application the differential quadrature method to solving

unsteady state two-dimensional convection–diffusion

equation. The results demonstrated that high accurate

numerical solution by using only a few grid points and

requires less storage and computational effort compared

to the some numerical methods wealthy from some

researchers in the precedent studies.

The GDQ method is one of the most efficient numerical

techniques to solve various boundary value problems.

Many researchers have recently suggested the application

of the generalized differential quadrature (GDQ) method to

the analysis of nanostructures. This method has shown

superb accuracy, efficiency, convenience and great poten-

tial in solving complicated partial differential equations.

The basic idea of the differential quadrature method lies in

the approximation of partial derivative of a function with

respect to a coordinate at a discrete point as a weighted

linear sum of the function values at all discrete points along

that coordinate direction. Let or f
oxr

be the rth derivative of a

function f ðxÞ which can be expressed as a linear sum of the

function values:

orf ðxÞ
oxr

����
x¼xP

¼
Xn
Q¼1

A
ðrÞ
PQf ðxPÞ; ð12Þ

where n is the number of total discrete grid points used in

the approximation process and A
ðrÞ
PQ are weighting coeffi-

cients. The weighting coefficients of the first derivative are

determined by:

A
ð1Þ
PQ ¼ MðxPÞ

xP � xQð ÞMðxQÞ
P;Q ¼ 1; 2; . . .; n;P 6¼ Qð Þ;

ð13Þ

where

MðxPÞ ¼
Yn

Q¼1;Q6¼P

ðxP � xQÞ: ð14Þ

The weighting coefficients of higher-order derivatives

can be obtained through the following recurrence relation:

A
ðrÞ
PQ ¼

r A
ðr�1Þ
PQ A

ð1Þ
PQ�

A
ðr�1Þ
PQ

xp� xq

" #
; P 6¼Q

�
Pn
Q¼1

A
ðrÞ
PQ;P¼Q ðP;Q¼ 1;2; . . .;n;2� r�n� 1Þ

8>>>><
>>>>:

:

ð15Þ

4.2 Implementation of GDQ method

along of governing equations

By applying the GDQ method, the discrete counterparts of

governing differential equations corresponding to each

type of nonlocal plate model can be expressed as:

For CLPT:

� Eh3

12 1 � m2ð Þ
XNx

k¼1

A
ð4Þ
pk Wkq þ 2m

XNx

k¼1

XNy

m¼1
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 !
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A
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A
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ð2Þ
qmWkm ¼ 0:

ð16Þ

For FSDT:
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A
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ð2Þ
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� jGh /xpq
þ
XNx

k¼1
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4.3 Implementation of GDQ method

along of boundary conditions

Using the GDQ approximation, the discretized counterparts

of different boundary conditions relevant to each type of

plate theory can be expressed as:

For CLPT:

All edges simply supported (SSSS):

Wpq ¼ 0;
XNx

k¼1

A
ð2Þ
pk Wkq ¼ 0 at edges x ¼ 0; L;

Wpq ¼ 0;
XNy

m¼1

Bð2Þ
qmWpm ¼ 0 at edges y ¼ 0; L:

All edges clamped (CCCC):

Wpq ¼ 0;
XNx

k¼1

A
ð1Þ
pk Wkq ¼ 0 at edges x ¼ 0; L;

Wpq ¼ 0;
XNy

m¼1

Bð1Þ
qmWpm ¼ 0 at edges y ¼ 0; L:

For FSDT:

All edges simply supported (SSSS):

Wpq ¼ 0;
XNx

k¼1

A
ð1Þ
pk /xkq

¼ 0 at edges x ¼ 0; L;

Wpq ¼ 0;
XNy

m¼1

Bð1Þ
qm/ypm

¼ 0 at edges y ¼ 0; L:

All edges clamped (CCCC):

Wpq ¼ 0; /xpq
¼ 0 at edges x ¼ 0;L;

Wpq ¼ 0; /ypq
¼ 0 at edges y ¼ 0;L:

5 Molecular dynamics simulation

Molecular dynamics simulation is an atomistic method

used in the analysis of different nanostructures. Through

the fast development of various fields of nanotechnology,

MD simulation is considered as a powerful and accurate

implement to study systems at the nanoscale. A comparison

between different methods of Young’s modulus determi-

nation for SWCNTs using MD simulation was made by

Agrawal et al. (2006). Hao et al. (2008) investigated the

buckling of defective single-walled and double-walled

carbon nanotubes under compressive loads by MD simu-

lations. Tachikawa et al. (2009) applied MD simulation to

study the dynamics interaction of magnesium on the gra-

phene surface. The fracture behavior of a graphene sheet

containing a center crack was studied by Tsai et al. (2010)

based on the MD simulation and continuum mechanics.

They showed that the strain energy release rate can be an

appropriate parameter for describing the fracture of cova-

lently bonded graphene sheet. To present the nonlinear

vibrational response of simply supported SLGSs, Shen

et al. (2010) fitted the natural frequencies of graphene

sheets obtained from MD simulations and nonlocal plate

model to estimate the value of small scale parameter.

The essential concept of MD simulation is to evaluate

the motions of atoms in the system at different time peri-

ods. An appropriate potential field is adopted to simulate

the set of the atoms of the system. Currently, the potentials

which are available to implement in the MD simulations,

can be classified as semi-empirical, empirical and quantum

mechanical ones. Some of them are pair potentials such as

the non-bonded Lennard-Jones potential (Lennard-Jones

1924) used to incorporate the van der Waals forces in the

simulations. The other ones are many body potentials like

the Tersoff (1989) potential originally employed to simu-

late systems consisting of carbon and semi-conductor

atoms. One of the most important factors in the MD

modeling is the correct choice of potential that is used in a

MD simulation. This choice depends on various conditions

such as the nature of the simulation, the type of material

being simulated and the trade-off between accuracy and

computational efficiency.

The molecular dynamics simulator ‘‘NanoHive’’

(Nanorex Inc. 2005) is utilized to perform the simulations

presented in the current study. NanoHive is a free open

source MD simulator which has certain features that can be

used to model different loading conditions of nanostruc-

tures (Nanorex Inc. 2005). Quasi-static molecular dynam-

ics simulations are performed on DWCNTs with different

chirality, aspect ratios, and boundary conditions. All sim-

ulations are established using the Adaptive Intermolecular

Reactive Empirical Bond Order (AIREBO) potential

(Stuart et al. 2000). The AIREBO potential is an extension

of the commonly used REBO potential developed for solid

carbon and hydrocarbon molecules (Stuart et al. 2000).

The MD simulations presented here are all performed at

constant temperature equal to the room temperature (300

Kelvin). The van Gunstern-Berendsen thermostat

(Berendsen et al. 1984) is implemented in such a way that

the scaling factor is used after each step of the MD simu-

lation; the velocities of the atoms of system are scaled as

the average kinetic energy remains approximately constant.

A time step of 0:5fs is selected with about 35,000 numbers

of steps to simulate the axial buckling response of SLGSs.

Compressive axial strain is applied to each SLGS by

mathematically changing the coordinate of the carbon

atoms (Nanorex Inc. 2005). Then using the NanoHive

simulator, various time steps of relaxation are arranged to

enable the graphene sheets to reach to the equilibrium
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configuration. This procedure is repeated for different

values of the compressive strain while for a certain value of

the strain, the SLGS collapses corresponding to its buck-

ling mode-shape. One layer of atoms at all sides of the

SLGSs is fixed in space to simulate simply-supported

boundary conditions. However, there are four atomic layers

of carbon fixed to simulate clamped boundary conditions.

According to this modeling conception, the simply sup-

ported and clamped boundary conditions considered in this

study are shown in Fig. 2, schematically.

A series of axial buckling simulation are established for

a range of zigzag and armchair graphene sheets with sim-

ply supported and clamped boundary conditions and dif-

ferent values of side-length. The critical axial buckling

loads obtained directly from MD simulations are given in

Tables 1 and 2 for armchair and zigzag SLGSs, respec-

tively. It can be observed from the results of MD simula-

tion that armchair SLGSs relatively have higher critical

buckling loads compared to zigzag SLGSs especially for

lower values of side-length.

6 Numerical results and discussion

6.1 Results of nonlocal elastic plate models

The critical axial buckling loads of SLGSs based on non-

local elastic plate models are calculated using GDQ

method for simply supported and clamped boundary con-

ditions. It is assumed that thickness of graphene sheet

h ¼ 0:34, Young’s modulus E ¼ 1TPa, and Poisson’s ratio

m ¼ 0:16 (Kitipornchai et al. 2005).

The numerical results presented in Tables 3 and 4 are

the critical axial buckling loads of nanosheets corre-

sponding to SSSS and CCCC boundary conditions,

respectively. It can be seen from the tables that the crit-

ical axial buckling loads obtained from the nonlocal

models have different values relevant to the various val-

ues of the nonlocal parameter l. However, for higher

side-lengths, this difference between the critical buckling

loads diminishes. It implies that the size-effects reduce

with the increase of SLGS’s size. Therefore, an important

issue in the application of the nonlocal elasticity models

used for nanostructures is the determination of the

appropriate value of the nonlocal parameter. Use of the

nonlocal models is only beneficial if the correct values of

nonlocal parameter are available which are proposed in

the next section.

A critical part of the numerical methods is to show the

convergence of their results. Table 5 represents the con-

vergence criteria of GDQ method used to evaluate the

critical axial buckling loads of SLGSs with different values

of nonlocal parameter and types of boundary conditions.

This pattern of convergence of the numerical technique

reflects its efficiency and reliability.

Fig. 2 Schematic of single-

layered graphene sheet. a One

atomic layer at ends of all sides

are held fixed to simulate

simply-supported boundary

conditions. b Four atomic layers

at ends of all sides are held fixed

to simulate clamped boundary

conditions

Table 1 Critical axial buckling loads of armchair SLGSs obtained

from MD simulation (nN)

L (nm) SSSS CCCC

4.99 2.1703 9.4023

8.08 1.3131 5.1250

10.77 0.8751 3.2550

14.65 0.5304 1.9029

18.51 0.3509 1.2363

22.35 0.2480 0.8649

26.22 0.1835 0.6360

30.04 0.1415 0.4882

33.85 0.1123 0.3865

37.81 0.0906 0.3110

41.78 0.0745 0.2554

45.66 0.0626 0.2143
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6.2 Appropriate values of nonlocal parameter

An important issue in the application of the nonlocal

elasticity models to SLGSs is the derivation of the appro-

priate value of nonlocal elasticity parameter l used in the

nonlocal plate models. The nonlocal models presented in

the Sect. 3 are only efficient if the correct value of the

nonlocal parameter is known.

Previous research on finding the correct values of the

nonlocal constant for CNTs is very limited. Still, there is

no consensus on the value of l that should be used for

CNTs. Some recent publications have proposed l values

by comparing nonlocal models with molecular dynamics

simulation results: Zhang et al. (2005) used a nonlocal

Timoshenko beam model to compare axial buckling

results with molecular mechanics (MM) simulations of

Sears and Brata (2004) and proposed the value of 0.82

Table 2 Critical axial buckling loads of zigzag SLGSs obtained from

MD simulation (nN)

L (nm) SSSS CCCC

4.99 2.1213 8.9872

8.08 1.2953 5.0008

10.77 0.8672 3.2046

14.65 0.5275 1.8856

18.51 0.3496 1.2290

22.35 0.2474 0.8613

26.22 0.1832 0.8340

30.04 0.1413 0.4871

33.85 0.1122 0.3858

37.81 0.0905 0.3105

41.78 0.0744 0.2551

45.66 0.0625 0.2141

Table 3 Critical axial buckling loads of simply-supported SLGSs

obtained from nonlocal plate models (nN)

L ðnm) l CLPT FSDT

10 0 1.3270 1.3270

0.25 1.2646 1.2643

0.5 1.2078 1.2072

0.75 1.1559 1.1551

1 1.1083 1.1073

1.25 1.0644 1.0632

1.5 1.0239 1.0226

1.75 0.9863 0.9849

2 0.9514 0.9500

20 0 0.3318 0.3318

0.25 0.3277 0.3277

0.5 0.3238 0.3238

0.75 0.3199 0.3199

1 0.3162 0.3161

1.25 0.3125 0.3125

1.5 0.3089 0.3089

1.75 0.3054 0.3053

2 0.3020 0.3019

50 0 0.0531 0.0531

0.25 0.0530 0.0530

0.5 0.0529 0.0529

0.75 0.0528 0.0528

1 0.0527 0.0527

1.25 0.0526 0.0526

1.5 0.0525 0.0525

1.75 0.0524 0.0524

2 0.0523 0.0523

Table 4 Critical axial buckling loads of clamped SLGSs obtained

from nonlocal plate models (nN)

L ðnmÞ l CLPT FSDT

10 0 4.5163 4.5163

0.25 4.2958 4.2946

0.5 4.1032 4.1011

0.75 3.9271 3.9243

1 3.7655 3.7621

1.25 3.6167 3.6128

1.5 3.4792 3.4749

1.75 3.3518 3.3471

2 3.2334 3.2284

20 0 1.1291 1.1291

0.25 1.1148 1.1147

0.5 1.1013 1.1013

0.75 1.0882 1.0882

1 1.0755 1.0754

1.25 1.0630 1.0629

1.5 1.0508 1.0507

1.75 1.0388 1.0387

2 1.0272 1.0271

50 0 0.1807 0.1807

0.25 0.1803 0.1803

0.5 0.1799 0.1799

0.75 0.1796 0.1796

1 0.1792 0.1792

1.25 0.1789 0.1789

1.5 0.1785 0.1785

1.75 0.1782 0.1782

2 0.1778 0.1778
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for the nonlocal parameter. Hu et al. (2008) compared

nonlocal shell models for dispersion of propagating

waves in CNTs with results from molecular dynamics

simulations and reported l values of 0.6 for transverse

waves and 0.2–0.23 for torsional waves. Khademolhos-

seini et al. (2010) have been used MD simulation and

nonlocal continuum shell models to extract effective

shell thickness and consistent value of nonlocal param-

eter for torsional buckling of simply-supported

SWCNTs. They presented nonlocal parameters of 0.85

and 0.86 for armchair and zigzag SWCNTs, respectively.

Recently, Ansari et al. (2010) performed MD simulations

for free vibrations of armchair and zigzag SLGSs with

simply-supported and clamped side-length and the

results are matched with those of nonlocal plate model to

propose the appropriate values of nonlocal parameter

corresponding to each type of chirality, nonlocal plate

model and boundary conditions.

Due to large scattering of the different values of non-

local parameter proposed in the previous publications,

further investigation about this crucial variable of nonlocal

models used for SLGSs seems necessary which makes it

possible to understand better the size-effects on responses

of SLGSs.

In this work, a nonlinear least-square fitting procedure is

utilized to propose the appropriate values of nonlocal

parameter by minimizing the Euclidean norm of the dif-

ference between the critical buckling loads obtained

directly from the MD simulations and those of nonlocal

elastic plate models in which l is set as optimization

variable. The values of l obtained from the matching

procedure are presented in Table 6 for both armchair and

zigzag SLGSs corresponding to different types of nonlocal

plate model and boundary conditions. To compare the

effects of type of chirality, nonlocal plate model, and

boundary conditions with each other, Table 7 indicates the

Table 5 Convergence study of

critical axial buckling loads

(nN) of SLGSs with different

boundary conditions

ðL ¼ 20 nmÞ

Number of grid points Nonlocal parameter Boundary conditions

SSSS CCCC

CLPT FSDT CLPT FSDT

7 � 7 0 0.3318 0.3318 1.1292 1.1292

1 0.3162 0.3161 1.0756 1.0755

2 0.3020 0.3019 1.0272 1.0271

9 � 9 0 0.3318 0.3318 1.1291 1.1291

1 0.3162 0.3161 1.0755 1.0754

2 0.3020 0.3019 1.0272 1.0271

11 � 11 0 0.3318 0.3318 1.1291 1.1291

1 0.3162 0.3161 1.0755 1.0754

2 0.3020 0.3019 1.0272 1.0271

13 � 13 0 0.3318 0.3318 1.1291 1.1291

1 0.3162 0.3161 1.0755 1.0754

2 0.3020 0.3019 1.0272 1.0271

15 � 15 0 0.3318 0.3318 1.1291 1.1291

1 0.3162 0.3161 1.0755 1.0754

2 0.3020 0.3019 1.0272 1.0271

Table 6 Appropriate values of nonlocal parameter corresponding to

different types of chirality, nonlocal plate model and boundary

conditions

Boundary conditions Nonlocal plate model

CLPT FSDT

Armchair SLGSs

SSSS 1.83 1.79

CCCC 1.18 1.15

Zigzag SLGSs

SSSS 1.91 1.87

CCCC 1.29 1.26

Table 7 Comparison between the influences of chirality, nonlocal

plate model and boundary conditions on the recommended values of

nonlocal parameter

Type of difference Amount of influence (%)

Chirality 9.5

Nonlocal plate model 2.2

Boundary conditions 55.6
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influence of each of them separately and it is concluded

that boundary conditions have the most significant influ-

ence on the recommended values of nonlocal parameter for

the axial buckling of SLGSs.

Figures 3 and 4 depict the comparison between the critical

axial buckling loads obtained directly from MD simulations

and those of nonlocal elastic plate models with their proposed

appropriate values of nonlocal parameter corresponding to

CLPT and FSDT, respectively. It can be seen from the fig-

ures that there is an excellent agreement between the two

series of the numerical results for both types of boundary

conditions which implies the capability of the present nonlo-

cal plate models to predict axial buckling behavior of SLGSs.

7 Conclusions

In the present study, axial buckling characteristics of

SLGSs with different boundary conditions were investi-

gated. To consider small-scale effects into the buckling

Fig. 3 Comparison between the

results of MD simulations and

nonlocal CLPT with its

recommended values of

nonlocal parameter a armchair

SLGSs, b zigzag SLGSs
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analysis, Eringen’s nonlocal elasticity equations were

incorporated into various plate theories to develop nonlocal

elastic plate models. The discretized forms of the govern-

ing differential equations relevant to each type of nonlocal

plate model were obtained using generalized differential

quadrature (GDQ) method along simply supported and

clamped boundary conditions.

Afterward, a series of MD simulations were performed

for armchair and zigzag square SLGSs with different side-

lengths and boundary conditions, the results of which were

matched with those of nonlocal plate models through a

nonlinear least-square fitting procedure to find the correct

values of nonlocal parameter corresponding to each type of

chirality, nonlocal plate model, and boundary conditions. It

was observed that the present nonlocal elastic plate models

with their recommended values of nonlocal parameter have

an excellent capability to predict the axial buckling

response of SLGSs.

Moreover, it was found that among the type of boundary

conditions, chirality, and nonlocal plate theory, boundary

Fig. 4 Comparison between the

results of MD simulations and

nonlocal FSDT with its

recommended values of

nonlocal parameter a armchair

SLGSs, b zigzag SLGSs
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conditions have the most significant influence on the

appropriate values of nonlocal parameter for the axial

buckling of SLGSs.
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