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1 Introduction

Radio Frequency Micro Electro Mechanical Systems is an 
innovative and the recently emerging technology especially 
in the design of switching devices (Rebeiz et al. 2003). The 
name itself indicates that it has an interdisciplinary nature. 
The size of the device varies between 1 and 100 micro-
metres. MEMS devices combine the advantages and over-
come the disadvantages of electro-mechanical switches like 
coaxial, waveguide switches and semiconductor switches 
such as PIN diodes, FETs (Molaei and Ganji 2016). As the 
component size is in the order of the microns, it facilitates 
many advantages like less consumption of power, low cost, 
linearity, low operating voltage, high isolation, high relia-
bility, less insertion loss and moreover it provides an oppor-
tunity to fabricate in large arrays (He et al. 2011). As it has 
fabulous characteristics, it could be used in many applica-
tions like Smart Mobile device, Antennas, Space systems, 
Bluetooth, T/R modules, Communication. Mainly RF 
MEMS switches are designed for microwave applications 
like cell phone, short range communications like Bluetooth 
and WLAN, automotive industries. These devices were 
employed in RF, i.e., from 30 KHz to 300 GHz with dif-
ferent and WLAN, automotive industries. These devices 
were employed in RF, i.e., from 30 KHz to 300 GHz with 
different geometrical structures and characteristics like low 
insertion loss and high isolation (Angira et al. 2014).

In a short time ago many RF MEMS capacitive shunt 
switches have been designed and fabricated by introduc-
ing different technologies; in this paper we are presenting 
the design and simulations of the capacitive shunt switch 
which is a fixed-fixed structure in FEM Tool. In order to 
increase the performance of switching of the fixed-fixed 
structure some modifications are done to the structure; the 
modifications include the addition of meander, perforations 
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to the existing structure, and also by building the step down 
structure to the movable beam. All the proposed structures 
have fixed and movable beam as parallel whereas for step-
down structure fixed beam and movable beam are separated 
by gap which resembles a bridge structure. Stepdown struc-
ture with 3 square meander has very low actuation voltage 
when compared to uniform 3 square meander structure; this 
is due to dielectric layer as Hfo2 is used. For uniform struc-
tures both stepdown and switch has 3 square meander, but 
the overall performance is better for uniform step structure 
with 3 square meander when compared to switch with uni-
form 3 square Meander. Stepdown structure with 3 square 
meander has very low actuation voltage up to 2.45V and 
high isolation upto -61dB at a frequency of 40GHz. This 
uniform structure with 3 square meander along with perfo-
rations has very low actuation voltage of 2.5 V, low inser-
tion loss up to -0.07dB at a frequency of 40GHz and high 
isolation of -43dB at a frequency of 28GHz.

2  The structural model of MEMS shunt capacitive 
switch

Fixed-fixed capacitive shunt switch is the most commonly 
preferred switch in RF MEMS. The schematic of the pro-
posed structure is shown in the below figure. The structure 
consists of a movable beam, dielectric, two fixed blocks 
and two anchors (Guha et al. 2016) (Figs. 1, 2). 

As poly-tetra-fluoro-ethylene (PTFE) has very less 
weight and cost effective, it is used for movable beam, 
anchors, fixed blocks. Silicon nitrate (Si3N4) or hafnium 

oxide (HfO2) is used as dielectric (Bachman et al. 2012). 
Silicon dioxide that has high resistivity is used as substrate 
(Table 1).

2.1  Perforations

Here we observed the results by introducing the different 
shaped perforations in the movable beam. The perforations 
facilitate the switch to perform at low actuation voltages 
(Sharma et al. 2015). The shapes for the perforations are rec-
tangle, square and cylindrical. Addition of these perforations 
decreases the mass of the beam, resulting in more deflection. 
Flexibility of the switch is more efficient when it is provided 
with rectangular-shaped perforations (Table 2).

2.2  Meander

Meander technique helps to decrease the value of pull-in 
voltage and increase the speed of switching of the device 
(Manfaineiad et al. 2013). A comparative study is done for 
different shaped menders with rectangular shaped perfo-
rations on each structure. The shape of meander used are 
plus shape, zigzag shape, three square shape (Figs. 3, 4, 5; 
Tables 3, 4, 5).     

3  Theoretical analysis

In shunt capacitive fixed–fixed switch, RF response depends 
on the capacitance ratio (Shekhar et al. 2014). Up state 
capacitance  (Con) of the switch is calculated by using the 
formulae

COn =
εoxy

go +
td
εr

Fig. 1  Schematic of RF MEMS switch

Fig. 2  Schematic of rectangle perforation on Fixed–fixed switch with 
three square meander

Table 1  Dimensions of the blocks

Length (L) Width (W) Height (H)

Fixed block 1 (µm) 60 40 1

Dielectric (µm) 60 20 1

Movable beam (µm) 60 20 1

Table 2  Dimensions of the perforations

Perforation Rectangular (µm) Square (µm) Cylindrical (µm)

Dimension L = 4 L = 2 R = 2

W = 2 W = 2 H = 1

H = 1 H = 1
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where CON is up state capacitance,x is Width of the actuation 
electrode, y is width of the actuation electrode, td is dielectric 
thickness, go is gap between beam and dielectric, εr is rela-
tive permittivity of dielectric material, εo is relative permit-
tivity of free space. The up state capacitance varies for differ-
ent materials based on their relative permittivity (Angira et al 

2013). The relative permittivity of  HfO2 is 14 and for  Si3N4 is 
7.6 (Table 6).

From the table it can be clearly observed that the capaci-
tance value decreases as the gap between the dielectric and 
the movable beam increases.

Coff is the Down state capacitance and is calculated by 
using the formulae

where COff  is down state capacitance, εo = 8.85 × 
 10−12 F m−1 which is called electric constant or permittiv-
ity of free space.

Down state capacitance is independent of the gap. The 
down state capacitance for  HfO2,  Si3N4 is 49fF, 26.9fF 
respectively.

The capacitive ratio can be calculated by ratio of up state 
capacitance to the downstate capacitance (Balaraman et al. 
2012).

Cratio is also known as figure of merit (Fedder et al. 
1994), εr is relative dielectric constant. Dielectric constant 
for  HfO2 and  Si3N4 is 14 and 7.6 respectively.

4  Results and discussions

The FEM abbreviated as Finite Element Method is used 
to analyze the electrical and mechanical characteristics of 
the RF MEMS switch using electro-mechanics study in 
COMSOL Multi-Physics software. The electro-mechan-
ics force is responsible for the deflections in the movable 
beam which enable the functioning of the switch (Ramli 
et al. 2012). Hence to obtain the better deflections in the 
switch the gap between the dielectric, movable beam is 
preferred as 0.8 µm and material used is  HfO2 for dielec-
tric. Figures 6 and 7 presents the basic structure of uni-
form switch with, without meander and the displacement is 
8.27 × 10−3, 0.01 in negative direction of z-component at 
2.5 V as pull in voltage respectively. 

Figures 8 and 9 shows the step-down movable beam 
structure of uniform switch with, without meander and the 
displacement is 9.2 × 10−3, 7.46 × 10−7 in negative direc-
tion of z-component at 2.5 V as pull in voltage respectively.

4.1  Electro mechanical analysis

Structure of a switch is an efficient part in overall perfor-
mance of the switch (Verma et al. 2013). Hence structural 
analysis is done by plotting the graphs for source voltage 

Coff =
εoεrxy

td

Cratio =

(

Cdown

Cup

)

=

εoεrxy
td

εoxy

go+
td
εr

Fig. 3  Schematic of plus meander

Fig. 4  Schematic of three square meander

Fig. 5  Schematic of three square meander

Table 3  Dimensions of each block in a Plus shaped meander

Spring constant Length (L) Width (W) Height (H)

K1 (µm) 29 1 1

K2 (µm) 1 15 1

K3 (µm) 10 1 1
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and beam deflection by varying the gap between movable 
beam and dielectric for switch with and without meanders 
and step down switch along with rectangular perforations 
(Figs. 10, 11, 12, 13, 14, 15, 16).      

4.2  Switching analysis

RF MEMS Switch for transmit/receive switching applica-
tions parameters like low return loss and high isolation 

loss a very important (Lee et al. 2004). Along with these 
parameters switching speed is also a major factor that 
influence the working of switching for transmit/receive 
applications.

Table 4  Dimensions of each block in a three square meander

Spring constant Length (L) Width (W) Height (H)

K1 (µm) 5 1 1

K2 (µm) 1 20.5 1

K3 (µm) 1 40 1

Table 5  Dimensions of each block in a zigzag meander

Spring Constant Width (W) Depth (D) Height (H)

K1 (µm) 24 1 1

K2 (µm) 1 7 1

K3 (µm) 18 1 1

K4 (µm) 1 15 1

K5 (µm) 10 1 1

Table 6  Up state capacitance for different gaps

CON for  HfO2 CON for  Si3N4

g = 0.8 µm 4.06fF 3.802fF

g = 1 µm 3.304fF 3.12fF

g = 1.5 µm 2.25fF 22.17fF

g = 2 µm 1.708fF 1.66fF

g = 2.5 µm 1.37fF 1.345fF

g = 3 µm 1.15fF 1.130fF

Fig. 6  Z component displacement of switch without meander

Fig. 7  Z component displacement of switch without meander

Fig. 8  Z component displacement of switch with step-down movable 
beam and without meander

Fig. 9  Z component displacement of switch with step-down movable 
beam and without meander
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The time required for the switch to toggle from active 
state to inactive state and vice versa is called switching 
time. The switching time performance is the key parameter 
that to be considered for studying the switch functioning.

The switching time  (ts) is calculated by using the 
formulae

where  Vpi is the pull in voltage,  Vs is source voltage,  wo 
resonant frequency.

For the efficient performance of the switch we need the 
less actuation voltage and huge isolation. A low voltage 
MEMS switch makes it more convenient for a switch to 
be embedded into real applications. By using the spring 

ts = 3.67
Vpi

woVs

constant  (Kz) the pull in voltage  (Vpi) can be calculated 
by using the below formulae

Pull-in-voltage should be as less as possible so to 
reduce it, the spring constant  (Kz), air gap  (g0) should 
be less. The reduction in gap may result in migration of 
the charges and breakdown of dielectric. The area of the 
switch cannot be increased as it results in increase of 
the size of the device. So, the probability is to lessen the 
value of the spring constant

Vpi =

√

8Kzg
3
0

27Aε0

Fig. 10  Plot of displacement versus voltage for switch without 
meander when the gap between the dielectric and the movable beam

Fig. 11  Plot of displacement versus voltage for switch without 
meander when the gap between the dielectric and the movable beam 
is 1 µm

Fig. 12  Plot of displacement versus voltage for switch with plus 
shaped meander when the gap between the dielectric and the movable 
beam is 0.8 µm and material for dielectric is  HfO2

Fig. 13  Plot of displacement versus voltage for Switch with three 
square meander when the gap between the dielectric and the movable 
beam is 0.8 µm and material for dielectric is  HfO2
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The spring constant of each block is calculated by 
using the formulae

where Y is Young’s modulus of the material of movable 
beam (young’s modulus of PTFE is 0.4 GPa) W, l and 
t are width, length and thickness of the block. Thus the 
spring constant of the device mainly rely on the choice 
of the material used for the movable beam, dielectric and 
their dimensions (Verma et al.  2013).

Resonant frequency  (wo) of the device explains about 
the physical variation of the device when it is put to 

K =
YWt3

l3

stress. It is also one of the important parameter in switch 
performance evaluation.

where f is resonant frequency, d is density, h is beam 
height.

Thus the switching time for Switch without Meander 
is 35 µs, Switch with three square Meander is 25 µs, step 
switch without meander is 62 µs and step switch with 
three square meander is 10. 25 µs at  Vs = 2 V (Figs. 17, 
18).

f = 1.03

√

Y

d

h

l2

Fig. 14  Plot of displacement versus voltage for switch with zigzag 
meander when the gap between the dielectric and the movable beam 
is 0.8 µm and material for dielectric is  HfO2

Fig. 15  Plot of displacement versus voltage for switch with step 
down structure when the gap between the dielectric and the movable 
beam is 0.8 µm and material for dielectric is  HfO2

Fig. 16  Plot of displacement versus voltage for switch with step 
down structure with three square meander. When the gap between the 
dielectric and the movable beam is 0.8 µm and material for dielectric 
is  HfO2

Fig. 17  Plot of switching time analysis for the switches with differ-
ent meander
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4.3  Performance analysis

The movable beam is supplied with positive dc voltage 
and the dielectric acts as ground, these two conductors 
separated by distance acts as a capacitor and capacitance 
is developed between them. The switch can be demon-
strated as a capacitor between the movable beam and the 
dielectric. Proposed microwave characteristics are con-
sidered using HFSS software.

Return loss  S11 is defined as the measure of efficient 
impedance matching of the devices. It is usually repre-
sented as negative number. It is measured in dB.

Insertion loss and isolation are represented by  S21 
parameter.

When the switch is in OFF and ON state respectively 
(Patil et al. 2013).

High isolation loss in the on state of the switch and 
the less insertion loss in the off state of the switch are 

obtained when the down state capacitance is high and 
the up state capacitance is low (Molaei and Ganji 2016) 
(Figs. 19, 20, 21; Table 7).

5  Conclusion

In this paper, Comparative analysis for Fixed–Fixed RF 
MEMS Capacitive Shunt switch with, without meanders 
and also step down structure of the movable beam is done 
to obtain less pull in voltage, low insertion, return losses 
and high isolation and is investigated under 1–40 GHz for 
k-band applications at different applied voltages. From 
the simulated results it is observed that the rectangular 
perforations gives the better results, when compared with 
square and cylindrical shaped perforations. So the struc-
tures with zigzag, plus and three square shaped mean-
der are provided with rectangular perforations on the 
movable beam of each structure. Step switch with three 
square Meander has switching time 10.25 µs, pull in volt-
age as 2.45 V. The material dependency is a major con-
tribution for switching time and Structural Analysis of 
Shunt Capacitive switch. The Dielectric material is used 

Fig. 18  Plot of switching time analysis for step down structure with-
out and with three square meander

Fig. 19  Return loss  (S11 parameter) analysis

Fig. 20  Insertion loss  (S21 parameter) analysis

Fig. 21  Isolation loss  (S21 parameter) analysis
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as  Si3N4 and  HfO2,  HfO2 obtained better results, as its 
dielectric constant is high. Further the Performance anal-
ysis depends on S-parameters and the observed results 
are the return loss  (S11) is less than −60 dB, the inser-
tion loss is less than −0.07 dB in the range of 1–40 GHz 
frequency and switch isolation  (S21) is −61 dB at 28 GHz 
frequency.
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