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1 Introduction

The discovery of carbon nanotubes by Iijima (1991) has 
inspired the promise of a new generation in diverse engi-
neering, materials science, and reinforced composite struc-
tures due to superior mechanical and physical properties 
of carbon nanotubes over any other known materials. One 
of the most useful applications of this new material is the 
use of it as strong, light-weight and high-toughness fibers 
for nanocomposite structures. A large number of theoreti-
cal and experimental researches using carbon nanotubes as 
reinforcing fibers have been carried out.

Liao and Li (2001) carried molecular mechanics simu-
lations to study the interfacial characteristics of polysty-
rene-nanotube interface. They noted that on relaxing the 
structure without applying any external force or displace-
ment, there is a slight decrease in the nanotube diameter. 
Wei et al. (2001) discussed the effect of chemical bonding 
between the carbon nanotube and polymer on effective 
load transfer in the composites. They observed better load 
transfer in case of double site bonding and higher shear 
strain. The load transfer properties between carbon nano-
tubes and polymer using theoretical models were studied 
by Lau (2003). They found that the maximum shear stress 
for pullout of a single-walled carbon nanotube (SWCNT) 
is comparatively higher than that for a multi-walled car-
bon nanotube. Hammel et al. (2004) focused on produc-
tion and improvement of vapour grown carbon fibers for 
composite applications. Han and Elliot (2007) presented 
classical molecular dynamics (MD) simulations of model 
polymer/carbon nanotube composites constructed by 
embedding an armchair SWCNT into methyl methacrylate 
polymer matrix. By comparing the simulation results with 
the macroscopic rule of mixture for composite systems, 
they showed that for strong interfacial interactions, there 
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can be large deviations of the results from the rule of 
mixture.

There so many other researches in which the response 
of nanocomposite structures subjected to various loading 
conditions have been studied with computational tech-
niques and simulation models (Zeng et al. 2008; Xiao et al. 
2006; Esawi and Farag 2007; Lau et al. 2006; Shokrieh 
and Rafiee 2010; Qian et al. 2000; Haque and Ramasetty 
2005; Saffar et al. 2008; Frankland et al. 2003; Villoria and 
Miravete 2007; Cao et al. 2010).

Continuing with the experimental investigations, 
Schadler et al. (Schadler et al. 1998) dispersed 5% by 
weight of multi-walled carbon nanotubes in an epoxy 
resin and cured the mixture using a hardener. The results 
indicated that the composite showed a marked difference 
between the change of properties in tension and com-
pression due to the multi-walled carbon nanotube addi-
tion. Epoxy nanocomposites of different content of car-
bon nanofibers were fabricated and studied in terms of 
mechanical and electrical properties by Bal (2010). He 
found that flexural modulus and hardness increase sig-
nificantly in refrigerated samples due to prevention of 
aggregates of nanofibers. On the basis of various testing 
procedures, it has been shown an improvement in stiff-
ness of the carbon nanotube-polymer composite of up to 
20–40% (Qian et al. 2000; Gong et al. 2000; Xu et al. 
2002) and 200–350% (Geng et al. 2002; Cadek et al. 
2002; Lozano and Barrera 2001), by addition of carbon 
nanotubes.

According to the above literature review, it can be con-
cluded that carbon nanotubes are envisaged to be ideal 
reinforcements for composite materials with different poly-
mers. However, Polyethylene is the simplest and the least 
expensive of all the polymers available. The molecular 
structure of polyethylene is the easiest to generate through 
no functional units and just one repetitive unit. At the 
atomic level, polyethylene is classified as amorphous poly-
ethylene and crystalline polyethylene. In amorphous case, 
the structure of each monomer unit remains the same, but 
adjacent units are rotated around the connecting C–C bond. 
This type of structure leads to the same properties in all the 
directions.

In the current study, buckling behavior of nanocomposite 
beams which are reinforced by (10,10) armchair SWCNTs 
embedded in amorphous polyethylene is investigated based 
on the various elastic beam theories (Labuschange et al. 
2009). Generalized differential quadrature (GDQ) method 
is utilized to discretize the governing differential equations 
along with four sets of end supported namely as simply 
supported-simply supported, clamped–clamped, clamped-
simply supported, and clamped-free. Then the material 
properties calculated by the beam theories in conjunc-
tion with the rule of mixture are fitted with those obtained 

directly from MD simulations to extract consistent values 
of carbon nanotube efficiency parameters accounting for 
the scale-dependent material properties corresponding to 
both of short and long carbon nanotube reinforcements.

2  Overview of different beam theories

There are various beam theories to describe the behavior of 
beams. Consider a straight uniform beam with the length 
L and rectangular cross-section of thickness h. A coor-
dinate system (x, y, z) is introduced on the central axis of 
the beam, whereas the x axis is taken along the length of 
the beam, the y axis in the width direction and the z axis 
is taken along the depth (height) direction. Also, the origin 
of the coordinate system is selected at the left end of the 
beam. It is assumed that the deformations of the beam take 
place in the x–z plane, so the displacement components 
(u1, u2, u3) along the axis (x, y, z) are only dependent on the 
x and z coordinates and time t. In a general form, the fol-
lowing displacement field can be written:

where w and ϕ are the transverse displacement and angu-
lar displacement of the beam, respectively, and ψ(z) is the 
shape function as follows:

For Euler–Bernoulli beam theory (EBT): ψ(z) = 0.
For Timoshenko beam theory (TBT): ψ(z) = z.
For Reddy beam theory (RBT): ψ(z) = z − 4z3

3h2
.

3  Buckling analysis of nanocomposite beams

3.1  Constitutive equations

The stress-displacement and Euler–Lagrange relations for 
each type of beam theory can be expressed as

For Euler–Bernoulli beam theory:

For Timoshenko beam theory:

u1(x, z, t) = −z
∂w(x, t)

∂x
+ ψ(z)

(

∂w(x, t)

∂x
+ ϕ(x, t)

)

(1)u2(x, z, t) = 0

u3(x, z, t) = w(x, t)

(2-a)εxx =
∂u1

∂x
= −z

∂2w

∂x2
→ σxx =

−zE11

1− ν2

∂2w

∂x2

(2-b)γxz =
∂u1

∂z
+

∂u3

∂x
= 0 → σxz = 0

(3)
∂2M

∂x2
− P

∂2w

∂x2
= 0
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For Reddy beam theory:

where

and P is the critical buckling load.
By substituting stress-displacement relations into the 

respective Euler–Lagrange relations, the constitutive 
equations corresponding to each type of beam theory can 
be obtained as

For Euler–Bernoulli beam theory:

(4-a)εxx =
∂u1

∂x
= z

∂ϕ

∂x
→ σxx =

zE11

1− ν2

∂ϕ

∂x

(4-b)γxz =
∂u1

∂z
+

∂u3

∂x
=

∂w

∂x
+ ϕ → σxz = G12

(

∂w

∂x
+ ϕ

)

(5-a)
∂Q

∂x
− P

∂2w

∂x2
= 0

(5-b)
∂M

∂x
− Q = 0

(6-a)

εxx =
∂u1

∂x
= z

∂ϕ

∂x
−

4z3

3h2

(

∂ϕ

∂x
+

∂2w

∂x2

)

→ σxx

=
zE11

1− ν2

∂ϕ

∂x
−

4z3E11

3h3
(

1− ν2
)

(

∂ϕ

∂x
+

∂2w

∂x2

)

(6-b)

γxz =
∂u1

∂z
+

∂u3

∂x
=

(

1−
4z2

h2

)(

ϕ +
∂w

∂x

)

→ σxz

= G12

(

1−
4z2

h2

)(

ϕ +
∂w

∂x

)

(7-a)
4

3h2
∂2R

∂x2
+

∂Q

∂x
−

4

h2

∂S

∂x
− P

∂2w

∂x2
= 0

(7-b)
∂M

∂x
−

4

3h2
∂R

∂x
− Q+

4

h2
S = 0

M =

∫

zσxxdA

Q =

∫

σxzdA

R =

∫

z3σxxdA

S =

∫

z2σxzdA

(8)
E11I

1− ν2

∂4w

∂x4
− P

∂2w

∂x2
= 0

For Timoshenko beam theory:

For Reddy beam theory:

where A, I are the cross-sectional area and moment of 
inertia of the beam, respectively, and κ is the shear cor-
rection factor.

3.2  Rule of mixture

In the present work, it is assumed that the carbon 
nanotube-reinforced composite is made of a mixture 
of (10,10) armchair SWCNT and polyethylene matrix 
with isotropic behavior. It has been shown that carbon 
nanotube-reinforced composites have anisotropic mate-
rial properties (Han and Elliott 2007; Zhang and Shen 
2006). On the basis of the rule of mixture, the effective 
values of Young’s modulus and shear modulus of car-
bon-nanotube-reinforced composite can be evaluated as 
(Shen 2009)

in which ECNT
11 ,ECNT

22 ,GCNT
12  are longitudinal Young’s 

modulus, transverse Young’s modulus, and shear modulus 
of the carbon nanotube, respectively; Em,Gm are Young’s 
modulus and shear modulus of the isotropic matrix, 
respectively; VCNT ,Vm are the volume fractions of carbon 
nanotube and matrix, respectively and are related by

(9-a)(κG12A− P)
∂2w

∂x2
+ κG12A

∂ϕ

∂x
= 0

(9-b)−κG12A
∂w

∂x
+

E11I

1− ν2

∂2ϕ

∂x2
− κG12Aϕ = 0

(10-a)

E11I

21
(

1− ν2
)

∂4w

∂x4
+

(

8G12A

15
− P

)

∂2w

∂x2

+
16E11I

105
(

1− ν2
)

∂3ϕ

∂x3
+

8G12A

15

∂ϕ

∂x
= 0

(10-b)

−
16E11I

105
(

1− ν2
)

∂3w

∂x3
−

8G12A

15

∂w

∂x

+
68E11I

105
(

1− ν2
)

∂2ϕ

∂x2
−

8G12A

15
ϕ = 0

(11-a)E11 = ϑ1VCNTE
CNT
11 + VmE

m

(11-b)
ϑ2

E22
=

VCNT

ECNT
22

+
Vm

Em

(11-c)
ϑ3

G12
=

VCNT

GCNT
12

+
Vm

Gm

(12)VCNT + Vm = 1
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The coefficients of ϑ1,ϑ2,ϑ3 are the carbon nanotube 
efficiency parameters to incorporate the scale-dependent 
characteristic of material properties which are determined 
with the results obtained directly from MD simulations.

4  Generalized differential quadrature method

The GDQ method is one of the most efficient numerical 
techniques to solve various boundary value problems. 
Many researchers have recently suggested the application 
of the generalized differential quadrature (GDQ) method 
to the analysis of nanostructures (Haftchenari et al. 2007; 
Malekzadeh and Fiouz 2007; De Rosa et al. 2008; Hu 
et al. 2009; Sepahi et al. 2010; Pradhan and Murmu 2010). 
This method has shown superb accuracy, efficiency, con-
venience and great potential in solving complicated par-
tial differential equations. The basic idea of the differen-
tial quadrature method lies in the approximation of partial 
derivative of a function with respect to a coordinate at a 
discrete point as a weighted linear sum of the function 
values at all discrete points along that coordinate direc-
tion. Let ∂

r f
∂xr

 be the rth derivative of a function f (x) which 
can be expressed as a linear sum of the function values

where n is the number of total discrete grid points used in 
the approximation process and A(r)

PQ are weighting coef-
ficients. The weighting coefficients of the first derivative 
are determined by

where

The weighting coefficients of higher-order derivatives 
can be obtained through the following recurrence relation

4.1  Implementation of GDQ method into the 
constitutive equations

By applying the GDQ method, the discrete counterparts 
of constitutive differential equations corresponding to 

(13)
∂r f (x)

∂xr

∣

∣

∣

∣

x=xP

=

n
∑

Q=1

A
(r)
PQf (xP)

(14)A
(1)
PQ =

M(xP)
(

xP − xQ
)

M
(

xQ
) (P,Q = 1, 2, . . . , n;P �= Q)

(15)M(xP) =

n
∏

Q=1;Q �=P

(

xP − xQ
)

(16)

A
(r)
PQ

=















r

�

A
(r−1)
PQ

A
(1)
PQ

−
A
(r−1)
PQ

xp−xq

�

, P �= Q

−
n
�

Q=1

A
(r)
PQ

, P = Q (P,Q = 1, 2, . . . , n; 2 ≤ r ≤ n− 1)

each type of beam theory at the rth given point can be 
expressed as

For Euler–Bernoulli beam theory:

For Timoshenko beam theory:

For Reddy beam theory:

4.2  Implementation of GDQ method into boundary 
conditions

Using the GDQ approximation, the discretized counter-
parts of different boundary conditions at the rth given point 
become for each type of beam theory as

For Euler–Bernoulli beam theory:

•	 Simply supported-simply supported:

•	 Clamped–clamped:

•	 Clamped-simply supported:

(17)
E11I

(

1− ν2
)

n
∑

s=1

A(4)
rs Ws − P

n
∑

s=1

A(2)
rs Ws = 0

(18-a)(κG12A− P)

n
∑

s=1

A(2)
rs Ws + κG12A

n
∑

s=1

A(1)
rs φs = 0

(18-b)−κG12A

n
∑

s=1

A
(1)
rs Ws +

E11I
(

1− ν2
)

n
∑

s=1

A
(2)
rs φs − κG12Aφr = 0

(19-a)

(

8G12A

15
− P

) n
∑

s=1

A
(2)
rs Ws

+
16E11I

105
(

1− ν2
)

n
∑

s=1

A
(3)
rs φs

+
8G12A

15

n
∑

s=1

A
(1)
rs φs = 0

(19-b)

−
16E11I

105
(

1− ν2
)

n
∑

s=1

A
(3)
rs Ws −

8G12A

15

n
∑

s=1

A
(1)
rs Ws

+
16E11I

105
(

1− ν2
)

n
∑

s=1

A
(2)
rs φs −

8G12A

15
φr = 0

Wr = 0,

n
∑

s=1

A(2)
rs Ws = 0 at edges x = 0, L

Wr = 0,

n
∑

s=1

A(1)
rs Ws = 0 at edges x = 0, L
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•	 Clamped-free:

For Timoshenko beam theory:

•	 Simply supported-simply supported:

•	 Clamped–clamped:

•	 Clamped-simply supported:

•	 Clamped-free

For Reddy beam theory:

•	 Simply supported-simply supported:

•	 Clamped–clamped:

•	 Clamped-Simply supported:

Wr = 0,

n
∑

s=1

A(1)
rs Ws = 0 at edge x = 0

Wr = 0,

n
∑

s=1

A(2)
rs Ws = 0 at edge x = L

Wr = 0,

n
∑

s=1

A(1)
rs Ws = 0 at edge x = 0

n
∑

s=1

A(2)
rs Ws = 0,

n
∑

s=1

A(3)
rs Ws = 0 at edge x = L

Wr = 0,

n
∑

s=1

A(1)
rs φs = 0 at edges x = 0, L

Wr = 0,φr = 0 at edges x = 0, L

Wr = 0,φr = 0 at edge x = 0

Wr = 0,

n
∑

s=1

A(1)
rs φs = 0 at edges x = 0, L

Wr = 0,φr = 0 at edge x = 0

n
∑

s=1

A(1)
rs φs = 0,φr +

n
∑

s=1

A(1)
rs Ws = 0 at edge x = L

Wr = 0,
68

105

n
∑

s=1

A
(1)
rs φs −

16

105

n
∑

s=1

A
(2)
rs Ws = 0 at edges x = 0,L

Wr = 0,φr = 0 at edges x = 0, L

•	 Clamped-free:

5  Molecular dynamics simulation

The application of MD simulation considers as one of 
the most accurate methods to describe an atomic system 
which has the capability to handle simulations involv-
ing large numbers of atoms, allowing more complicated 
dynamic systems to be modeled in an approximately 
short period of time when compared with ab initio meth-
ods. Hanasaki et al. (2004) conducted a MD simulation 
of the molecular flow inside a modeled carbon nano-
tube junction as a strong gravitational field and periodic 
boundary conditions were applied in the flow direction. 
MD simulations of model polymer/carbon nanotube com-
posites with different volume fraction were presented by 
Han and Elliott (2007). The simulation results supported 
the idea that it is possible to use carbon nanotubes to 

Wr = 0,φr = 0 at edge x = 0

Wr = 0,
68

105

n
∑

s=1

A
(1)
rs φs −

16

105

n
∑

s=1

A
(2)
rs Ws = 0 at edge x = 0

Wr = 0,φr = 0 at edge x = 0

68

105

n
∑

s=1

A
(1)
rs φs −

16

105

n
∑

s=1

A
(2)
rs Ws = 0,φr

+

n
∑

s=1

A
(1)
rs Ws = 0 at edges x = L

Fig. 1  (10,10) SWCNT embedded in an amorphous Polyethylene
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mechanically reinforce an appropriate polymer matrix, 
especially in the longitudinal direction of the nanotube. 
Bi et al. (2006) studied the thermal conductivity of SWC-
NTs dependent on tube length and temperature based 
on MD simulation. They demonstrated that the vacancy 
scattering on phonons is stronger than the isotropic atom 
which causes more reduction on lattice thermal conduc-
tivity of carbon nanotubes.

In the current study, unidirectional carbon nanotube-
polymer nanocomposites are simulated using the molecu-
lar dynamics simulator “NanoHive” (Nanorex Inc. 2005). 
NanoHive is a free open source MD simulator which 
has certain features that can be used to model differ-
ent loading conditions of nanostructures (Nanorex Inc. 
2005). Two types of composites are considered namely 
as long-(10,10) SWCNT composite and short-(10,10) 

Fig. 2  Schematic MD 
simulation cell for both of short-
SWCNT and long-SWCNT 
composites

Fig. 3  Applied longitudinal 
and transverse strains to the MD 
simulation cell
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Table 1  MD results for elastic moduli of carbon nanotube-reinforced composites

Carbon nanotube 
volume fraction

Short-carbon nanotube composite Long-carbon nanotube composite

Longitudinal 
modulus (GPa)

Transverse 
modulus (GPa)

Longitudinal 
modulus (GPa)

Transverse 
modulus (GPa)

(10,10) armchair nanotube (DCNT = 1.34 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.82 3.45 67.79 3.93

 10% 5.56 4.44 101.02 5.10

 15% 8.39 6.38 154.55 7.38

 25% 13.51 7.27 250.38 8.46

(8,8) armchair nanotube (DCNT = 1.07 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.90 3.53 69.28 4.02

 10% 5.68 4.54 103.24 5.21

 15% 8.57 6.52 157.95 7.54

 25% 13.81 7.43 255.88 8.65

(6,6) armchair nanotube (DCNT = 0.80 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.93 3.55 69.78 4.05

 10% 5.72 4.57 103.99 5.25

 15% 8.64 6.57 159.08 7.60

 25% 13.90 7.48 257.73 8.71

(5,5) armchair nanotube (DCNT = 0.67 nm)

 0% 3.22 3.22 3.22 3.22

 5% 4.08 3.69 72.49 4.20

 10% 5.94 4.75 108.03 5.45

 15% 8.97 6.82 165.26 7.89

 25% 14.45 7.77 267.73 9.04

(17,0) zigzag nanotube (DCNT = 1.32 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.66 3.36 61.01 3.71

 10% 5.34 4.33 90.89 4.82

 15% 8.05 6.21 139.06 6.97

 25% 12.96 7.09 225.29 7.99

(14,0) zigzag nanotube (DCNT = 1.08 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.74 3.44 62.34 3.80

 10% 5.45 4.43 92.89 4.92

 15% 8.22 6.36 142.12 7.12

 25% 13.25 7.24 225.29 8.17

(10,0) zigzag nanotube (DCNT = 0.78 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.77 3.46 62.77 3.83

 10% 5.48 4.45 93.56 4.96

 15% 8.29 6.40 143.12 7.18

 25% 13.33 7.29 231.85 8.23

(8,0) zigzag nanotube (DCNT = 0.63 nm)

 0% 3.22 3.22 3.22 3.22

 5% 3.91 3.59 65.19 3.96

 10% 5.70 4.63 97.15 5.14

 15% 8.61 6.64 148.62 7.45

 25% 13.86 7.56 240.78 8.54

0.9595 0.975 0.9575 0.945
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SWCNT composite that both of them are surrounded by 
amorphous polyethylene matrix (Fig. 1). As shown in 
Fig. 2, a simulation cell with approximate dimensions 
of 5× 5× 10 nm is utilized for all simulations which 
are established using the adaptive intermolecular reac-
tive empirical bond order (AIREBO) potential (Stuart 
et al. 2000). The AIREBO potential is an extension of 
the commonly used REBO potential developed for solid 
carbon and hydrocarbon molecules (Stuart et al. 2000). It 
includes the covalent bonding interactions represented by 
REBO potential together with the Lennard-Jones terms 
and torsional interactions as

The MD simulations presented here are all performed 
at constant temperature equal to the room temperature 

(20)UAIREBO =
1

2

�

i

�

j �=i



UREBO
ij + ULJ

ij +
�

k �=i,j

�

p �=i,j,k

UTorsional
kijp





(300 K). The van Gunstern-Berendsen thermostat (Ber-
endsen et al. 1984) is implemented in such a way that the 
scaling factor is used after each step of the MD simulation; 
the velocities of the atoms of system are scaled as the aver-
age kinetic energy remains approximately constant. A time 
step of 0.5fs is selected with about 2000 numbers of steps 
to simulate deformations of the MD cell under longitudinal 
and transverse strain.

Longitudinal and transverse strains are applied to 
the MD cell, respectively, by mathematically chang-
ing the coordinates of the atoms to an extended 
strained condition as depicted in Fig. 3. Then, using 
the NanoHive simulator, various time steps to relax 
the system of atoms to their equilibrium position are 
set up to enable the MD cell reaches to the equilib-
rium configuration. This procedure is repeated for 
different values of the tensile strain while for 5% 
value of the strain. The stress–strain curves of the 
MD cells are obtained which result in the values of 
Young’s modulus in the longitudinal and transverse 
directions. The values of Young’s modulus obtained 
directly from the MD simulations are given in Table 1 
corresponding to both of longitudinal and transverse 
directions and different values of carbon nanotube 
volume fraction.

6  Numerical results and discussion

The values of critical buckling load of (10,10) carbon nano-
tube-reinforced composite beams with four commonly used 
end supports are presented in this section corresponding to 

Table 2  Proper values of carbon nanotube efficiency parameters

Carbon nanotube volume fraction ϑ1 ϑ2

Short-carbon nanotube reinforcement

 5% 0.0254 1.0351

 10% 0.0443 1.2854

 15% 0.0628 1.7798

 25% 0.0740 1.8751

Long-carbon nanotube reinforcement

 5% 2.1577 1.1767

 10% 1.6354 1.4765

 15% 1.6868 2.0588

 25% 1.6531 2.1820

Table 3  Critical buckling 
load of nanocomposite beam 
reinforced by short-SWCNT 
with simply supported-simply 
supported boundary conditions 
(106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 0.2910 0.2830 0.2830

5 0.3440 0.3337 0.3337

10 0.4990 0.4822 0.4822

15 0.7504 0.7241 0.7241

25 1.2003 1.1427 1.1428

20 0 0.0728 0.0719 0.0722

5 0.0860 0.0853 0.0853

10 0.1247 0.1237 0.1237

15 0.1876 0.1859 0.1859

25 0.3001 0.2963 0.2963

50 0 0.0116 0.0116 0.0116

5 0.0138 0.0137 0.0137

10 0.0200 0.0199 0.0199

15 0.0300 0.0300 0.0300

25 0.0480 0.0479 0.0479
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different types of beam theory and carbon nanotube vol-
ume fraction. Polyethylene is used as the matrix material 
with Em = 3.22 GPa, νm = 0.3 at the room temperature. 
For the (10,10) armchair SWCNT as the reinforcement, 
it is assumed that ECNT

11 = 600 GPa, ECNT
22 = 10 GPa , 

GCNT
12 = 5 GPa, νCNT = 0.19 (Cornwell and Wille 1997; 

Popov et al. 2000).
Through matching the elastic moduli calculated by 

the rule of mixture and those of obtained directly from 
MD simulations, the carbon nanotube efficiency param-
eters are extracted which are given in Table 2 relevant 
to both short and long SWCNT reinforcements with 
various values of carbon nanotube volume fraction. It is 

worth mentioning that for the case of shear modulus, it 
is assumed that ϑ3 = ϑ2. With the comparison between 
the values of longitudinal and transverse Young’s moduli 
predicted by the rule of mixture and MD simulation, it is 
observed that with proper choosing of ϑ1 and ϑ2, the rule 
of mixture has an excellent capability to predict the elas-
tic properties of nanocomposites.

The values of critical axial buckling load of composite 
beams reinforced by short-(10,10) SWCNT with thickness 
of h = 0.1 m and various aspect ratios and carbon nanotube 
volume fractions are presented in Tables 3, 4, 5, 6 corre-
sponding to simply supported-simply supported, clamped–
clamped, clamped-simply supported, and clamped-free 

Table 4  Critical buckling 
load of nanocomposite beam 
reinforced by short-SWCNT 
with clamped–clamped 
boundary conditions (106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 1.1407 1.1096 1.1096

5 1.3485 1.3084 1.3084

10 1.9561 1.8907 1.8907

15 2.9415 2.8392 2.8393

25 4.7052 4.4805 4.4807

20 0 0.2928 0.2881 0.2881

5 0.3431 0.3403 0.3403

10 0.4975 0.4936 0.4936

15 0.7485 0.7417 0.7417

25 1.1974 1.1822 1.1823

50 0 0.0464 0.0463 0.0463

5 0.0552 0.0548 0.0548

10 0.0799 0.0795 0.0795

15 0.1201 0.1199 0.1199

25 0.1919 0.1915 0.1915

Table 5  Critical buckling 
load of nanocomposite beam 
reinforced by short-SWCNT 
with clamped-simply supported 
boundary conditions (106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 0.5834 0.5674 0.5674

5 0.6897 0.6691 0.6691

10 1.0005 0.9668 0.9668

15 1.5045 1.4518 1.4518

25 2.4066 2.2911 2.2910

20 0 0.1501 0.1476 0.1476

5 0.1758 0.1744 0.1744

10 0.2550 0.2529 0.2529

15 0.3836 0.3802 0.3802

25 0.6137 0.6059 0.6059

50 0 0.0239 0.0237 0.0237

5 0.0282 0.0280 0.0280

10 0.0409 0.0407 0.0407

15 0.0614 0.0613 0.0613

25 0.0982 0.0980 0.0980
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boundary conditions, respectively. The same results for 
composite beams reinforced by long-(10,10) SWCNT are 
tabulated in Tables 7, 8, 9, 10. It can be found from the 
results that the stiffness of nanoconposite beam reinforced 
with long-SWCNT is so higher than those reinforced with 
short-SWCNT.

Also it is seen that by incorporating the influence of 
transverse shear strains in Timoshenko and Reddy beam 
theories, the values of critical buckling load will be reduced 
from those of Euler–Bernoulli beam theory relevant to 
all carbon nanotube volume fraction specifically for the 
beams with lower aspect ratios. Furthermore, the difference 
between critical buckling loads predicted Timoshenko and 

Reddy beam theories is relatively more considerable cor-
responding to lower aspect ratios.

It can be observed from the results that an increase in 
the carbon nanotube volume fraction causes higher critical 
buckling load for both of short- and long-SWCNT rein-
forced composite beams, but it is more significant corre-
sponding to the latter.

The extremely small dimensions of 1D nanostruc-
tures impose great challenges to many existing mechani-
cal testing instruments, methodologies, and even theories. 
Calibration procedures in nanomechanical testing have 
been largely ignored; this may lead to different or even 
contrasting reports in the literature. Development of new 

Table 6  Critical buckling 
load of nanocomposite beam 
reinforced by short-SWCNT 
with clamped-free boundary 
conditions (106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 0.0715 0.0696 0.0696

5 0.0845 0.0820 0.0820

10 0.1226 0.1185 0.1185

15 0.1844 0.1780 0.1780

25 0.2949 0.2809 0.2809

20 0 0.0183 0.0179 0.0181

5 0.0216 0.0214 0.0214

10 0.0313 0.0310 0.0310

15 0.0470 0.0466 0.0466

25 0.0752 0.0743 0.0743

50 0 0.0029 0.0029 0.0029

5 0.0035 0.0035 0.0035

10 0.0050 0.0050 0.0050

15 0.0074 0.0074 0.0074

25 0.0121 0.0121 0.0121

Table 7  Critical buckling 
load of nanocomposite beam 
reinforced by long-SWCNT 
with simply supported-simply 
supported boundary conditions 
(106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 0.2911 0.2830 0.2830

5 6.1053 4.1142 4.1224

10 9.0660 5.8485 5.8621

15 13.8224 8.7641 8.7859

25 22.2455 12.3440 12.3967

20 0 0.0734 0.0719 0.0723

5 1.5258 1.3613 1.3618

10 2.2661 1.9924 1.9933

15 3.4559 3.0203 3.0211

25 5.5610 4.6316 4.6342

50 0 0.0117 0.0124 0.0124

5 0.2441 0.2401 0.2401

10 0.3638 0.3546 0.3546

15 0.5532 0.5405 0.5405

25 0.8904 0.8620 0.8620



5089Microsyst Technol (2017) 23:5079–5091 

1 3

nanomechanical testing techniques and calibration meth-
ods is greatly needed (Lin et al. 2010). With the advent 
of 2D nano-composite materials such as graphene, many 
researchs have been done in recent years (Li et al. 2005; 
Yang et al. 2013). For future wok, this research can be 
developed to 2D nanostructured reinforced composites.

7  Conclusion

In this work, buckling behavior of carbon nanotube-
reinforced composite beams was investigated under four 

common sets of boundary conditions namely as simply 
supported-simply supported, clamped–clamped, clamped-
simply supported, and clamped-free. Both of short- and 
long-SWCNT reinforcements were considered in the study 
based on different types of beam theory. The rule of mix-
ture in conjunction with generalized differential quadra-
ture method to discretize the constitutive differential equa-
tions was employed to obtain critical buckling loads of the 
nanocomposite beams. To select proper values of carbon 
nanotube efficiency parameters used in the rule of mixture, 
the elastic moduli relevant to both of composites with the 
short- and long-SWCNT reinforcements were evaluated 

Table 8  Critical buckling 
load of nanocomposite beam 
reinforced by long-SWCNT 
with clamped–clamped 
supported boundary conditions 
(106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 1.1411 1.1096 1.1096

5 23.9328 16.1318 16.1639

10 35.5387 22.9320 22.9853

15 54.1838 34.3641 34.4495

25 87.2024 48.4008 48.6074

20 0 0.2928 0.2861 0.2885

5 6.0879 5.4352 5.4476

10 9.0417 7.9497 7.9712

15 13.7890 12.0510 12.0814

25 22.1884 17.4028 18.5322

50 0 0.0464 0.0463 0.0463

5 0.9740 0.9601 0.9601

10 1.4548 1.4180 1.4180

15 2.2122 2.1615 2.1615

25 3.5607 3.4472 3.4472

Table 9  Critical buckling 
load of nanocomposite beam 
reinforced by long-SWCNT 
with clamped-simply supported 
boundary conditions (106N)

Aspect ratio 
(L/h)

Carbon nanotube vol-
ume fraction (%)

Euler–Bernoulli 
beam theory

Timoshenko beam 
theory

Reddy beam 
theory

10 0 0.5834 0.5674 0.5674

5 12.2411 8.2489 8.2654

10 18.1773 11.7262 11.7535

15 27.7139 17.5720 17.6157

25 44.6022 24.7497 24.8553

20 0 0.1501 0.1466 0.1478

5 3.1203 2.7837 2.7849

10 4.6342 4.0744 4.0763

15 7.0673 6.1765 6.1781

25 11.3723 9.4716 9.4769

50 0 0.0239 0.0237 0.0237

5 0.4994 0.4912 0.4912

10 0.7443 0.7255 0.7255

15 1.1318 1.1059 1.1059

25 1.8217 1.7636 1.7636
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using molecular dynamics simulation, the results of which 
were fitted with those obtained from the rule of mixture.

It was found that there are various carbon nanotube effi-
ciency parameters corresponding to different values of car-
bon nanotube volume fraction. Moreover, it was observed 
that for higher values of carbon nanotube volume fraction, 
the stiffness of nanocomposite beam increases more in the 
case of long-SWCNT reinforcement compared to the short-
SWCNT one.
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