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1  Introduction

Because of intrinsic elecromechanical coupling charac-
teristics, piezoelectric materials have been widely used in 
various nanostructures such as gallium nitride nanoscaled 
wires (Tanner et al. 2007) and aluminum nitride nanofilms 
(Karabalin et al. 2009; Sinha et al. 2009) as good choices to 
design nanootransducers, nanoelectromechanical switches 
and energy harvesters. In such applications, size effects 
play a substantial role in the mechanical behavior, so in 
order to have a proper design for smart nanosystems, it is 
vital to consider these small scale effects.

On the other hand, due to the lack of generality of the 
classical continuum theory to characterize the size depend-
ency in mechanical response of nanostructures, several 
higher-order continuum elasticity theories have been pro-
posed and utilized during the past decade, for instances, 
modified couple stress elasticity theory (Mindlin and Tier-
sten 1962; Mindlin 1963), strain gradient elasticity theory 
(Aifantis 1999; Lam et al. 2003), surface elasticity theory 
(Gurtin and Murdoch 1975, 1978) and nonlocal elasticity 
theory (Eringen 1972). Among this variety of non-classical 
theories, the nonlocal elasticity theory is the most com-
monly successful applied one. In accordance with this non-
conventional elasticity theory, it is supposed that the stress 
tensor at a reference point of body is related not only to 
strain components of that position, but also to all other 
points in the continuum. Based on the nonlocal continuum 
elasticity, the size-dependent behavior of various nano-
structures has been extensively studied.

On the basis of nonlocal Euler–Bernoulli and 
Timoshenko beam models, Wang and Liew (2007) pre-
sented explicit solutions for scale effect on the static defor-
mation of nanorods and nanotubes. Hu et al. (2008) focused 
on the influence of carbon nanotube (CNT) microstructure 
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on the elastic transverse wave dispersion of single- and 
double-walled CNTs using a nonlocal shell model. Liu 
et  al. (2008) introduced a novel model based on nonlocal 
Timoshenko beam model to analyze delaminating buckling 
occurred in microwedge indentation experiment. Ansari 
et  al. (2010) proposed a nonlocal late model to calculate 
the natural frequencies of single-layered graphene sheets, 
the results of which are compared with those of molecular 
dynamics simulations. Aydogdu (2009) developed a gener-
alized nonlocal beam model to predict different mechani-
cal characteristics of beams at nanoscale corresponding 
to various types of the classical beam theories. Yan et  al. 
(2010) examined the nonlocal size effect on the static bend-
ing behavior of triple-walled CNTs including initial stress 
and subjected to temperature field. Hao et al. (2010) used 
a nonlocal multiple-shell model to obtain the critical shear 
force of multi-walled CNTs under torsional load in the 
presence of thermal environments and elastic foundation. 
Ansari et al. (2011) applied nonlocal continuum elasticity 
within the framework of the Donnell shell theory to predict 
the axial buckling response of single-walled CNTs includ-
ing temperature changes. Şimşek (2011) studied analyti-
cally the forced vibration of two CNTs connected ellipti-
cally with each other on the basis of nonlocal continuum 
theory. Ansari and Sahmani (2012) investigated the free 
vibrational response of single-walled CNTs on the basis of 
various types of nonlocal beam models and then extracted 
the proper value of nonlocal parameter via molecular 
dynamics simulation. Wang and Wang (2013) developed a 
nonlocal Timoshenko beam model to study the vibration 
of embedded nanotubes including stress and strain gradi-
ents. Potapov (2013) described size-dependent oscillations 
of a nanobeam under stochastic load using nonlocal Euler–
Bernoulli beam model. Wang and Li (2014) obtained the 
amplitude-frequency response of a nanobeam under non-
linear primary resonance including nonlocality effect. Peng 
et  al. (2015) studied the nonlocality scale effect on the 
buckling characteristics of bilayer composite plates under 
non-uniform axial compression. Yan et  al. (2015) derived 
exact asymptotic solutions for bending deflection of nano-
beams and nanoplates through applying nonlocal con-
tinuum theory. Li and Hu (2016) proposed nonlocal strain 
gradient beam models corresponding to the frameworks of 
Euler–Bernoulli and Timoshenko beam theories to deter-
mine the nonlinear bending deflection and nonlinear natu-
ral frequencies of nanoscaled beams.

Lately, some investigations have been carried out 
to apply nonlocal elasticity theory in prediction of 
size-dependent mechanical behavior of piezoelectric 

nanostructures. For instance, Asemi et al. (2014) implement 
nonlocal continuum theory to examine nonlinear vibration 
of piezoelectric nanoresonators subjected to electric volt-
age. Li et al. (2015) provided the nonlinear frequencies of 
grapheme/piezoelectric laminated sheets subjected to elec-
tric field in the presence of nonlocal effect.

Li and Wang (2016) reported the nonlocality influence 
in sensing moving force related to the nonlinear dynamic 
characteristics of grapheme/piezoelectric sandwich films. 
Arefi (2016) presented a nonlocal solution for wave propa-
gation in functionally graded piezoelectric nanorods.

The main objective of the present study is to focus on 
size dependency in the large deflection and postbuckling 
response of piezoelectric nanoshells under axial compres-
sion combined with external lateral electric field and ther-
mal environments. The basic equations of nonlocal piezo-
electricity are firstly proposed within the framework of the 
first-order shear deformation shell theory and von Karman 
nonlinear strain–displacement kinematics. Then the non-
linear size-dependent governing equations are deduced 
to boundary layer-type ones and solved with the aid of a 
perturbation-based solution methodology to derive explicit 
asymptotic solutions for thermo-electro-mechanical post-
buckling response of piezoelectric nanoshells.

2 � Theoretical formulations of nonlocal 
piezoelectric shell model

The schematic representation of a piezoelectric nanoshell 
with associated Cartesian coordinate system and in thermal 
environment is shown in Fig. 1 with length L, radius R and 
thickness h. As it can be seen, the location of the origin of 
coordinate system is chosen at the left end of nanoshell and 
on middle plane. Within the framework of the first-order 
shear deformation shell theory in conjunction with von 
Karman geometrical nonlinearity, the strain–displacement 
relations for an imperfect nanoshell can be defined as

where the subscripts following a comma represent dif-
ferentiations. Also, the strain components in mid-plane 
(ε0ij; i, j = x, y) and curvature components (κij; i, j = x, y) 
are as follows

(1)

εxx = ε0xx + zκxx + εExx + εTxx,

εyy = ε0yy + zκyy + εEyy + εTyy,

γxy = γ 0
xy + zκxy

γxz = ψx + w,x, γyz = ψy + w,y,
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in which u, v and w are the displacement components 
in mid-plane in order along x, y and z axis, ψx and ψy are 
the rotations of the mid-plane normal about the y- and x-
axis, respectively. Also w∗ stands for the initial geometric 
imperfection. Additionally, the electrical strain components 
(εEii ; i = x, y) and thermal strain components (εTii ; i = x, y) 
can be given as

where d31, d32 denote piezoelectric constants, V = Ezh is 
the value of voltage related to the applied lateral electric 
field, α is thermal expansion coefficient, and �T  represents 
the temperature change.

In contrast to the local (classical) continuum theory, in 
the nonlocal continuum elasticity, the stress at a reference 
point is dependent on the strain components of all other 
point of the continuum in addition to that of the reference 
point. Thereby, the nonlocal constitutive relations of a pie-
zoelectric nanoshell are in the forms as

(2)

ε0xx = u,x +
1

2

(

w,x

)2 + w,xw
∗
,x ,

ε0yy = v,y −
w+ w∗

R
+ 1

2

(

w,y

)2 + w,ww
∗
,x

γ 0
xy = u,y + v,x + w,xw,y + w,xw

∗
,y + w,yw

∗
,x , κxx = ψx,x

κyy = ψy,y, κxy = ψx,y + ψy,x ,

(3)εExx =
d31V

h
, εEyy =

d32V

h
, εTxx = εTyy = α�T ,

where e0θ denotes the nonlocal parameter in such a way 
that θ is an internal characteristic constant and e0 is a con-
stant related to the selected material. Also, ∇2 represents 
the Laplacian operator. The elastic constants can be intro-
duced as below

(4)

�

1− e20θ
2∇2
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(5)

Q11 = Q22 = �+ 2µ, Q12 = Q21 = �, Q33 = Q44 = Q55 = µ,

Fig. 1   Schematic representa-
tion of thermo-electro-mechan-
ical excited piezoelectric 
nanoshell
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in which � = Eν/((1− ν)(1+ 2ν)), µ = E/(2(1+ ν)) 
represents Lame’s constants.

By employing the principle of minimum potential 
energy of system, the nonlinear governing equations for 
piezoelectric nanoshell are constructed as

where the nonlocal resultants can be expressed as

in which Aij and Dij in order are stretching stiffness compo-
nents and bending stiffness components as below

(6a)Nxx,x + Nxy,y = 0,

(6b)Nxy,x + Nyy,y = 0,

(6c)
Qx,x + Qy,y +

Nyy

R
+ Nxx

(

w,xx + w∗
,xx

)

+ 2Nxy

(

w,xy + w∗
,xy

)

+ N
yy

(

w,yy + w∗
,yy

)

,

(6d)Mxx,x +Mxy,y − Qx = 0,

(6e)Mxy,x +Myy,y − Qy = 0,

(7a)
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(7c)
(

1− e20θ
2∇2

)

{
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h
2

∫

− h
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σxz
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,

Moreover, ks stands for the shear correction factor 
(Chroscielewski et al. 2010).

Through definition of Airy stress function f (x, y) as 
below, the two first governing Eqs.  (6a) and (6b) can be 
satisfied completely:

Furthermore, for an imperfect nanoshell, the compati-
bility relation corresponding to the mid-plane strain com-
ponents can be rewritten as

Now, by substituting Eq. (9) in the inverse of Eqs. (7) 
and using Eqs.  (6) and (10), the governing differential 
equations related to nonlocal thermo-electro-mechanic 
exciting behavior can be extracted as

(8)

A11 = A22 = (�+ 2µ)h,A12 = A21 = �h,

A33 = µh,A44 = A55 = ksµh

D11 = D22 =
(�+ 2µ)h3
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,

D12 = D21 =
�h3

12
,D33 =

µh3

12
.

(9)Nxx = f,yy,Nyy = f,xx,Nxy = −f,xy.

(10)
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∗
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∗
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∗
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Regarding the boundary conditions at the left and right 
ends of piezoelectric nanoshells, the clamped edge sup-
ports are considered based on which: w = 0,w,x = 0

Also, the equilibrium satisfaction for loading condi-
tions along x-axis yields

For a closed shell-type structure, the periodicity condi-
tion results in

which can be summarized in the following form

Moreover, the unit shortening associated to the mova-
ble ends of thermo-electro-mechanical excited piezoelec-
tric nanoshell can be evaluated by

3 � Solving process for asymptotic solutions

3.1 � Boundary layer theory of nonlocal shell buckling

In order to solve the problem in a more general frame-
work, the following dimensionless parameters are 
supposed

(12)
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in which A110 = (�+ 2µ)h. Now, by introducing the deriv-
ative operators as presented in Appendix A, the dimension-
less form of the nonlocal nonlinear governing differential 
equations can be rewritten as

Additionally, the dimensionless form of the clamped 
boundary conditions at the left (X = 0) and right (X = π ) 
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ends of the piezoelectric nanoshell can be given as 
W = 0,W,X = 0.

Also, the boundary layer-type equilibrium requirement 
for axially loading condition can be expressed as

The dimensionless periodicity condition takes the form 
as

In addition, the unit shortening of thermo-electro-
mechanical excited piezoelectric nanoshell in dimension-
less form can be introduced as

3.2 � Perturbation‑based solution methodology

In the preceding subsection, through definition of ǫ namely 
the small perturbation parameter, the nonlocal govern-
ing differential Eqs.  (17) were constructed in the form of 
boundary layer. At this step of the solving process, using 
the singular perturbation technique (Shen 1998, 2001, 
2008; Shen and Li 2002; Sahmani et al. 2016a, b), the inde-
pendent variables are considered as the summations of the 
regular and boundary layer solutions as below

(18)
1

2π
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(
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(
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(
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(
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(
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h

)

ε

}
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(21a)W = W̄ (X,Y , ǫ)+ W̃ (X,Y , ǫ, ξ)+ Ŵ (X,Y , ǫ, ς),

(21b)F = F̄ (X ,Y , ǫ)+ F̃ (X ,Y , ǫ, ξ)+ F̂ (X ,Y , ǫ, ς),

(21c)ΨX = Ψ̄
X
(X, Y , ǫ)+ Ψ̃

X
(X, Y , ǫ, ξ)+ Ψ̂

X
(X, Y , ǫ, ς),

(21d)
ΨY = Ψ

Y
(X, Y , ǫ)+ Ψ̃

Y
(X, Y , ǫ, ξ)+ Ψ̂

Y
(X, Y , ǫ, ς),

where the accent character ˉ represents the regular solution, 
and the accent characters ~ and ^ denote the boundary layer 
solutions associated with the left (X = 0) and right (X = π) 
ends of piezoelectric nanoshell, respectively.

Now, each part of the solutions can be altered to the per-
turbation expansions in the following forms

where ξ and ς represent the boundary layer variables in the 
following forms

Thereafter, by substituting Eqs.  (21) and (22) into the 
nonlocal governing differential Eqs. (17) and then collect-
ing the expressions having the similar order of ε, the sets of 

(22)

W̄ (X, Y , ǫ) =
∑

i=0

ǫi/2W̄i/2(X, Y), F̄ (X, Y , ǫ)

=

∑

i=0

ǫi/2F̄i/2(X, Y)

Ψ̄ x (X, Y , ǫ) =
∑

i=1

ǫi/2Ψ̄xi/2(X, Y), Ψ̄y(X, Y , ǫ)

=

∑

i=1

ǫi/2Ψ̄yi/2(X, Y)

W̃ (X, Y , ǫ, ξ) =
∑

i=0

ǫi/2+1W̃i/2+1(X, Y , ξ), F̃ (X, Y , ǫ, ξ)

=

∑

i=0

ǫi/2+2F̃i/2+2(X, Y , ξ)

Ψ̃ x (X, Y , ǫ, ξ) =
∑

i=0

ǫi+3/2Ψ̃xi+3/2(X, Y , ξ), Ψ̃y(X, Y , ǫ, ξ)

=

∑

i=0

ǫi/2+2Ψ̃yi/2+2(X, Y , ξ)

Ŵ (X, Y , ǫ, ς) =
∑

i=0

ǫi/2+1Ŵi/2+1(X, Y , ς), F̂ (X, Y , ǫ, ς)

=

∑

i=0

ǫi/2+2F̂i/2+2(X, Y , ς)

Ψ̂ x (X, Y , ǫ, ς) =
∑

i=0

ǫi+3/2Ψ̂xi+3/2(X, Y , ς), Ψ̂y(X, Y , ǫ, ς)

=

∑

i=0

ǫi/2+2Ψ̂yi/2+2(X, Y , ς),

(23)ξ = X√
ǫ
, ς = π − X√

ǫ
.

Table 1   Material properties of PZT-5H piezoelectric material 
(Huang and Yu 2006; Yan 2011)

�(Pa) 31× 109

µ(Pa) 35.5× 109

ν 0.3

d31 = d32(m/V) −2.65× 10−10

α(1/◦C) 6.71× 10−6
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perturbation equations can be extracted for the both regular 
and boundary layer solutions. This procedure resumes until 
a maximum order of ε corresponding to which the conver-
gence of the solving process is confirmed. For this purpose, 

a tolerance limit <0.001 is supposed and it is indicated that 
the tolerance limit is achieved up to the forth-order of the 
small perturbation parameter.

Fig. 2   Local and nonlocal 
load–deflection response of 
perfect piezoelectric nanoshells 
corresponding to different non-
local parameters: a h = 1 nm, b 
h = 2 nm
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Fig. 3   Local and nonlo-
cal load–deflection response 
of imperfect piezoelectric 
nanoshells corresponding to 
different nonlocal parameters: a 
h = 1 nm, b h = 2 nm
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To continue the solution methodology, it needs to define 
the initial buckling mode shape in conjunction with the ini-
tial geometric imperfection for the imperfect piezoelectric 
nanoshell as follows

(24)W̄
2
(X , Y) = A

(2)
00 +A

(2)
11 sin (mX) sin (nY)+A

(2)
02 cos (2nY),

(25)

W∗(X, Y , ǫ) = ε2A∗
11 sin (mX) cos (nY) = ǫ2ℓA

(2)
11 sin (mX) cos (nY),

Fig. 4   Local and nonlocal 
load-shortening response of 
perfect piezoelectric nanoshells 
corresponding to different non-
local parameters: a h = 1 nm, b 
h = 2 nm
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Fig. 5   Local and nonlo-
cal load-shortening response 
of imperfect piezoelectric 
nanoshells corresponding to 
different nonlocal parameters: a 
h = 1 nm, b h = 2 nm
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in which ℓ stands for the imperfection parameter.
Afterwards, through performing some mathematical 

calculations, the asymptotic solutions can be extracted rel-
evant to each independent variable as given in Appendix 
A. by inserting them in Eqs. (18) and (20) and rearranging 

them in accordance with the order of the second perturba-
tion parameter (A(2)

11 ǫ), the explicit expressions for the non-
local load–deflection and nonlocal load-shortening equilib-
rium curves are obtained, respectively, as below

Fig. 6   Electro-mechanical 
load–deflection response of 
piezoelectric nanoshells under 
various electric fields corre-
sponding to local and nonlocal 
models: a W∗ = 0, b W∗ = 0.1
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Fig. 7   Electro-mechanical 
load-shortening response of 
piezoelectric nanoshells under 
various electric fields corre-
sponding to local and nonlocal 
models: a W∗ = 0, b W∗ = 0.1
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(26)

Px =

∑

i=0,2,4,...

P(i)
x

(

A
(2)
11

ǫ

)i

= P(0)
x + P(2)

x

(

A
(2)
11

ǫ

)2

+ P(4)
x

(

A
(2)
11

ǫ

)4

+ · · · ,
(27)

δx =
∑

i=0,2,4,...

δ(i)x

(

A
(2)
11

ǫ

)i

+ δTx + δEx

= δ(0)x + δTx + δEx + δ(2)x

(

A
(2)
11

ǫ

)2

+ δ(4)x

(

A
(2)
11

ǫ

)

ε4 + · · · .

Fig. 8   Thermo-mechanical 
load–deflection response of 
piezoelectric nanoshells under 
various thermal environments 
corresponding to local and 
nonlocal models: a W∗ = 0, b 
W∗ = 0.1
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Fig. 9   Thermo-mechanical 
load-shortening response of 
piezoelectric nanoshells under 
various thermal environments 
corresponding to local and 
nonlocal models: a W∗ = 0, b 
W∗ = 0.1
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The parameters presented in the above equations are 
defined in Appendix B. Now, it is supposed that the dimen-
sionless coordinate of the point in which the maximum 
deflection occurs is in the form as (X, Y) = (π/2m,π/2n) . 
So, it yields

where wm is the maximum deflection. Also, the symbols S1 
and S2 are defined in Appendix B.

4 � Results and discussion

Selected numerical results for nonlocal instability of 
thermo-electro-mechanical excited piezoelectric nanoshell 
are given corresponding to various parameters. In the 
preceding presentation of results, the left and right ends 
of nanoshell is supposed to be clamped and R/h = 50, 
L = 2R. The properties are tabulated in Table 1 relevant to 
PZT-5H piezoelectric material.

The mechanical excitation of piezoelectric nanoshell is 
demonstrated firstly as in Figs. 2 and 3, the local and non-
local postbuckling load–deflection curves are displayed 
for perfect and imperfect piezoelectric nanoshells, respec-
tively, and corresponding to different shell thicknesses. 
It is revealed that the nonlocality effect leads to decrease 
the critical axial load and the width of the postbuckling 
regime, but it increases the minimum load of the postbuck-
ling domain. These anticipations are similar for the cases of 
in the presence and in the absence of the initial geometric 
imperfection. Additionally, it is indicated that an increment 
in the value of shell thickness causes to reduce the nonlo-
cality influence.

Figures  4 and 5 illustrate the local and nonlocal load-
shortening curves including the both prebuckling and post-
buckling domains for piezoelectric nanoshells with various 
nonlocal parameters and shell thicknesses in order without 
and with initial geometric imperfection. The snap-through 
phenomenon is obvious for the both local and nonlocal 
models. It is seen that by increasing the value of nonlocal 
parameter, the gap between the classical and size-depend-
ent shell models increases. Moreover, it can be observed 
that in addition to the critical buckling load, the critical 
shortening of nanoshell decreases due to the nonlocality 
effect.

After that, the electro-mechanical response of piezo-
electric nanoshell is investigated as in Fig.  6, the nonlin-
ear local and nonlocal postbuckling load–deflection curves 
are shown for piezoelectric nanoshells subjected to various 

(28)A
(2)
11 ǫ = wm

h
+ S2 + S1

(wm

h
+ S2

)2

,

lateral electric fields. It is found that for the both local and 
nonlocal models with and without initial geometric imper-
fection, an electric field coming from a positive applied 
voltage leads to increase the axial stiffness of piezoelectric 
nanoshell in such a way that the critical load and width of 
postbuckling domain increase, but no considerable change 
occurs in the minimum load of the postbuckling regime. 
However, it can be seen that an electric field coming from a 
negative applied voltage leads to reduce the axial stiffness 
of piezoelectric nanoshell.

Depicted in Fig.  7 are the local and nonlocal electro-
mechanical load-shortening behaviors of piezoelectric 
nanoshells including the both prebuckling and postbuck-
ling domains corresponding to different external electric 
fields. It is observed that in the both local and nonlocal 
shell models, the lateral applied electric fields with positive 
and negative signs induce, respectively, initial contraction 
and expansion in the piezoelectric nanoshell which causes 
in order to increase and decrease the critical shortening 
relevant to electro-mechanical instability of piezoelectric 
nanoshell.

Finally, the thermo-mechanical excitation of piezoelec-
tric nanoshell is studied as in Fig. 8, the nonlinear local and 
nonlocal postbuckling load–deflection curves are shown 
for piezoelectric nanoshells subjected to different thermal 
environments. It is revealed that for the both local and non-
local models with and without initial geometric imperfec-
tion, a temperature increment reduces the buckling load of 
piezoelectric nanoshell, but a temperature reduction leads 
to increase it. However, in the both cases, the temperature 
change has a negligible influence on the value of minimum 
load of the postbuckling domain.

Figure  9 represents the local and nonlocal thermo-
mechanical load-shortening behaviors of piezoelectric 
nanoshells including the both prebuckling and postbuck-
ling domains corresponding to different thermal environ-
ments. It can be seen that in the both local and nonlo-
cal shell models with and without consideration of initial 
imperfection, increment and reduction of temperature 
induce, respectively, initial expansion and contraction 
in the piezoelectric nanoshell which causes in order to 
decrease and increase the critical shortening relevant to 
thermo-mechanical instability of piezoelectric nanoshell.

5 � Concluding remarks

The prime objective of the current work was to evaluate the 
nonlocality effect on the nonlinear instability of piezoelec-
tric nanoshells under thermo-electro-mechanical excitation. 
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To capture the size dependency, the nonlocal continuum 
elasticity theory was put to use within the framework of the 
first-order shear deformation shell theory. To simulate the 
large deflection relevant to the postbuckling response, von 
Karman kinematics nonlinearity was taken into considera-
tion. With the aid of the boundary layer shell-buckling the-
ory in conjunction with a perturbation-based solution meth-
odology, explicit expressions for the nonlocal postbuckling 
equilibrium paths were constructed.

It was displayed that the nonlocality effect leads to 
decrease the critical axial load and the width of the post-
buckling regime, but it increases the minimum load of the 
postbuckling domain. Additionally, it was shown that an 
increment in the value of shell thickness causes to reduce 
the nonlocality influence. Furthermore, it was seen that in 
addition to the critical buckling load, the critical shorten-
ing of nanoshell decreases due to the nonlocality effect. 
It was found that for the both local and nonlocal models 
with and without initial geometric imperfection, an elec-
tric field coming from a positive applied voltage leads to 
increase the axial stiffness of piezoelectric nanoshell in 
such a way that the critical load and width of postbuck-
ling domain increase, but no considerable change occurs 
in the minimum load of the postbuckling regime. Also, 
it was indicated that in the both local and nonlocal shell 
models with and without consideration of initial imper-
fection, increment and reduction of temperature induce, 
respectively, initial expansion and contraction in the pie-
zoelectric nanoshell which causes in order to decrease 
and increase the critical shortening relevant to thermo-
mechanical instability of piezoelectric nanoshell.

6 � Applications of piezoelectric nanostructures 
in micro‑ and nano‑technology

Because of having the capability of converting mechani-
cal deformation into electrical signal, the piezoelec-
tric nanostructures have a wide range of application in 
micro-electromechanical systems (MEMSs) and nano-
technology. To mention some of these applications, 
the piezoelectric nanoscaled structures can be used as 
energy harvesting (Wang and Song 2006), sensing (Wang 
et  al. 2006) and actuation (Pu et  al. 2010), micro- and 

nanogenerator to convert the mechanical energy in our 
environments to wireless electric systems (Hudak and 
Amatucci 2008), and strain sensors to produce free-
standing nanowires with high sensitivity (Wang 2010).

In order to use piezoelectric nanostructures in a more 
efficient way, it is essential to predict the size depend-
ency in their mechanical characteristics. Therefore, the 
numerical results given in the current study may be use-
ful in capturing the desirable efficiency for piezoelectric 
nanodevices and smart microsystems.

Appendix A

The solutions in asymptotic forms corresponding to each 
of independent variables are extracted as below

(29)

W = A
(0)
00 + ǫ

[

A
(1)
00 −A

(1)
00

(

sin

(

Γ X√
ǫ

)

+ cos

(

Γ X√
ǫ

))

e
− Γ X√

ǫ

−A
(1)
00

(

sin

(

Γ (π − X)√
ǫ

)

+ cos

(

Γ (π − X)√
ǫ

))

e
− Γ (π−X)√

ǫ

]

+ ǫ2
[

A
(2)
00 +A

(2)
11 sin (mX) sin (nY)+A

(2)
02 cos (2nY)

−
(

A
(2)
00 +A

(2)
02 cos (2nY)

)

(

sin

(

Γ X√
ǫ

)

+ cos

(

Γ X√
ǫ

))

e
− Γ X√

ǫ

−
(

A
(2)
00 +A

(2)
02 cos (2nY)

)

(

sin

(

Γ (π − X)√
ǫ

)

+ cos

(

Γ (π − X)√
ǫ

))

e
− Γ (π−X)√

ǫ

]

+ ǫ4
[

A
(4)
00 +A

(4)
11 sin (mX) sin (nY)+A

(4)
20 cos (2mX)

+A
(4)
02 cos(2nY)+A

(4)
13 sin (mX) sin (3nY)

+A
(4)
22 cos (2mX) cos (2nY)

]

+ O

(

ǫ5
)

,

(30)

ΨX = ǫ3/2
[

A
(1)
00 c

(3/2)
10 sin

(

Γ X√
ǫ

)

e
− Γ X√

ǫ

+A
(1)
00 c

(3/2)
10 sin

(

Γ (π − X)√
ǫ

)

e
− Γ (π−X)√

ǫ

]

+ ǫ5/2
[

(

A
(2)
00 +A

(2)
02 cos (2nY)

)

c
(5/2)
10 sin

(

Γ X√
ǫ

)

e
− Γ X√

ǫ

+
(

A
(2)
00 +A

(2)
02 cos (2nY)

)

c
(5/2)
10 sin

(

Γ (π − X)√
ǫ

)

e
− Γ (π−X)√

ǫ

]

+ ǫ3
[

C
(3)
11 cos (mX)sin(nY)

]

+ O

(

ǫ5
)

,
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(31)

Appendix B

(32)ΨY = ǫ3
[

D
(3)
11 sin (mX)cos(nY)+D

(3)
02 sin(2nY)

]

+ O

(

ǫ5
)

.

(33)P(0)
x = 1

2

{

K0ǫ
−1 + K3β

2ǫ

}

,

(34)

P
(2)
x = −1

2

{(

6n2β2K2
0

K2

)

ǫ−1

−
(

2K6β
2n2 + K0K4H20β

4n4 + 4K0K5H20β
2n2

2(K0H20 − K4)

+K2
0
H20β

4n4 + 4K0K5β
2n2

2(K0H20 − K4)
+ K2

0
β4n4 + 4K0K5β

2n2

2(K0 − K4)

)

ǫ

}

,

(35)

P(4)
x = 1

2

{(

12K3
0
K7H13β

2n4

K2
2 (K0H13 − K7)

+4β2n4K3
0 (K0 + 2K7)

K2
2 (K0 − K7)

+ 16β4n4K3
0

K2
2

)

ǫ−1

}

,

(36)δ(0)x = ϑ1Px +
(

αϑ2
2P

2
x

π
− 2ϑ2

2Px

πϑ1a

)

ǫ1/2,

where

where Ki(i = 0, . . . , 7) are constant parameters extracted 
via the perturbation sets of equations.

(37)δ(2)x = m2ǫ

16
,

(38)δ(4)x = αK2
0 ǫ

−3/2

8π2K2
2

+ m2

4

(

K0H20β
2n2 + 4K5

4(K0H20 − K4)

)2

ǫ3,

(39)δEx = d31RV

2h2
,

(40)δTx = αR�T

2h
,

H11 = 1+ π2G2
(

m2 + β2n2
)

, H02 = 1+ 4π2G2β2n2,

(41)

H20 = 1+ 4π2G2m2
, H13 = 1+ π2G2

(

m2 + 9β2n2
)

,

(42)S1 = −K0

K2

ǫ−1 +
(

a∗12
(

a∗11
)2 −

(

a∗12
)2

)

(

2P(2)
x

)

,
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