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1 Introduction

In recent decades, the technological innovations on elec-
tric and electronics equipment (EEE) and life style changes 
cause production of a large amount of waste electric and 
electronics equipment (WEEE) in a fast rate (Rahmani 
et al. 2014; Wang and Xu 2015; Yoshida et al. 2016). Pre-
cious metals like gold, silver, palladium are extensively 
used in manufacturing of EEE. Hence, WEEE are the vital 
sources for recovering precious metals (Akcil et al. 2015; 
Chancerel et al. 2009; Cui and Zhang 2008; Gurung et al. 
2013). Printed circuit boards (PCBs) are the key compo-
nents of EEE and are considered as the most valuable parts 
among them, since they contain precious metals in higher 
concentrations than natural high-grade ores (Chen et al. 
2013; Hageluken and Corti 2010; Park and Fray 2009; Van 
Eygen et al. 2016). In addition, natural occurrences of these 
precious metals are limited and, in some mines, already 
depleted. Hence, the effective recovery of these precious 
metals from secondary sources like WPCBs is quite impor-
tant from economic and environmental points of view.

Hydrometallurgical and pyrometallurgical techniques 
have been widely used to recover precious metals from 
waste materials. Hydrometallurgical treatments are basi-
cally preferred over pyrometallurgical treatments for the 
recovery of precious metals from WPCBs due to the higher 
selectivity and the better environmental friendliness origi-
nating from the lower waste gas, no volatile metals, and 
the lower energy consumption (Akcil et al. 2015). In recent 
years, the impact of environmental friendliness is increas-
ing in recovery of precious metals (Adhikari et al. 2008; 
Gurung et al. 2014; He and Xu 2015; Monier et al. 2014a, 
b; Navarro et al. 1999; Sharma and Rajesh 2014; Zhou 
et al. 2013). The leaching course is the first step in given 
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recycling chains through hydrometallurgical routes. The 
common leaching agents used for recovery of precious 
metals are aqua regia (Oh et al. 2003), alkaline cyanide 
(Parga et al. 2007; Warshawsky et al. 2001), chlorine (Kim 
et al. 2011), thiosulphate (Vinh et al. 2010), and thiourea 
(Orgul and Atalay 2002). Among them, aqua regia is a bet-
ter leaching agent than others due to its ability for complete 
metal leaching from whole WPCBs along with the produc-
tion of lesser toxic substances, while its strong acidity lim-
its available adsorbents used in the next steps (Jadhav and 
Hocheng 2015). The leached solutions containing base and 
precious metals are subjected to the course of separation 
and purification, such as precipitation of impurities, solvent 
extraction, adsorption, and ion exchange to isolate and con-
centrate the metal of interest. The application of commer-
cially available ion exchange resins and chelating resins is 
limited owing to their non-selective nature and low uptake 
capacity of precious metals (Chen et al. 2009; Lee et al. 
2001; Ni et al. 2001). Therefore, it is important from tech-
nical, commercial, and environmental considerations that 
the precious metals are separated not only from the base 
metals with a high efficiency of recovery but also in a cost-
effective method. From these points of view, it is desired to 
develop a new low cost metal adsorbent with high selectiv-
ity for these metals. Thus, the design of selective scaven-
gers for precious metals would benefit from synthetic pro-
cedures involving accessible materials and facile protocols.

The selectivity to specific metal ions depends on the 
nature of chelating agents incorporated on the matrix sub-
stances. On account of high affinity of sulfur atoms to soft 
metal ions such as Au(III), Pd(II), and Ag(I), the selective 
recovery of these precious metals by chelating agents con-
taining sulfur atoms was reported by the authors (Hyder 
and Ochiai 2017; Ochiai et al. 2009) and other (Nagai et al. 
2010). Our adsorbent, CFP-g-PHCTMA (Fig. 1) based on 
accessible cellulose filter paper (CFP) and sulfur, is highly 
selective to precious metals (Hyder and Ochiai 2017). We 
subjected CFP-g-PHCTMA towards selective recovery of 
precious metals from a WPCB leachate. The adsorption 
behavior toward Au(III), Pd(II), and Ag(I) were studied in 
detail in order to understand the selective adsorption abil-
ity. Based on the results of these fundamental experiments, 
we demonstrate the practical recovery of Ag(I), Pd(II), 
and Au(III) from the WPCB leachate in aqua regia using 
CFP-g-PHCTMA.

2  Experimental

2.1  Materials

All the chemicals used were of analytical reagent grade. 
CFP (Adventec 5C) (Toyo Roshi, Tokyo, Japan) was 

used for modification. Nitric acid, and Cu(II) and Ni(II) 
standard solution for ICP (1000 mg L−1) were purchased 
from Wako Chemicals (Tokyo, Japan). Pd(II), Au(III), 
and Ag(I) standard solution for ICP (1000 mg L−1), 
and multi-elemental solution (1) (Cu(II), V(V), Ni(II), 
Co(II), Fe(III), Mn(II), Cr(III), Ag(I), Zn(II) and Cd(II) 
and multi-elemental solution (2) (Pd(II), Au(III), Pt(IV), 
Ru(III), Rd(III), Os(III), Ir(III)) for ICP (100 mg/L) were 
purchased from Sigma-Aldrich (St. Louis, Missouri, 
USA). Water was purified with MINIPURE TW-300RU 
(Nomura Micro Science, Kanagawa, Japan). The scaven-
ger, CFP-g-PHTCMA (Hyder and Ochiai 2017), and the 
precursors, O-1-mercapto-3-phenoxypropan-2-yl N-2-hy-
droxyethylcarbamothioate (HCT) (Hyder and Ochiai 
2017) and 4-(phenoxymethyl)-1,3-oxathiolane-2-thione 
(DTC) (Kihara et al. 1995; Ochiai and Endo 2005) was 
prepared per the literatures.

2.2  Adsorption experiment (typical procedure)

The adsorption experiment was carried out in batch mode. 
For adsorption experiments, CFP-g-PHCTMA (5 mg) was 
placed in a 10 mL plastic bottle containing 100 mg L−1 
of a metal ion solution (5 mL) at a determined acid con-
centration. The adsorption experiments for Au(III) were 
conducted using 200 mg L−1 Au(III) solutions. The bot-
tles were equilibrated at 25 °C on a thermostated shaker. 
Then the mixture was filtrated and the filtrate metal solu-
tion was analyzed for its residual concentration. The con-
centration of metal ions was determined by Perkin Elmer 
ELAN DRC II inductively coupled plasma (ICP) mass 
spectrophotometer.

The percentages of adsorption of metals were evaluated 
using the relations of initial and equilibrium concentrations 
of metal ions in solutions indicated in Eq. 1.

Fig. 1  Structure of CFP-g-PHCTMA
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Ci (mg L−1) is the initial metal ion concentration; and Ce 
(mg L−1) is the metal ion concentration in equilibrium.

The adsorption amounts were calculated from residual 
amounts of metal ions in solutions per Eq. 2.

Qe (mg g−1) is the adsorption capacity; V (L) is the vol-
ume of metal solution; W (g) is the mass of dry adsorbent, 
respectively.

2.3  WPCB leaching in aqua regia

The sample of WPCB leachate was obtained as follows. 
Connectors were collected from WPCB, and treated with 
aqua regia (Fig. 2). The resulting mixture was filtrated 
and the filtrate was analyzed by ICP-MS after proper dilu-
tion. Detected metal ions are V(V), Fe(III), Ni(II), Cu(II), 
Mn(II), Zn(II), Pd(II), Au(III), and Ag(I), and the concen-
trations are indicated in Table 1.

3  Result and discussion

3.1  Effect of H+ ion concentration on adsorption 
processes

Selective adsorption of precious metals in strong acid is 
an important requirement for a metal scavenger applied 
in the practical hydrometallurgical collection of precious 
metals, as concentrated acids are used in metal leaching. 
Hence, adsorption isotherm studies under different acid 

(1)Percent of adsorption (%) =
(Ci − Ce)× 100

Ci

(2)Qe =
(Ci − Ce)V

W

Fig. 2  Leaching of metals in 
aqua regia from WPCBs

WPCBs Connector of WPCBs Connector of WPCB 
dissolved in aqua regia 

Shredding Aqua regia 

Table 1  Concentrations of 
metals in leachate of WPCB 
connectors

Metals Gold Silver Palladium Copper Iron Nickel Zinc Vanadium

Concentration (ppm) 125 163 13 142,500 2650 13,000 375 200

Fig. 3  Effect of [H+] concentration on the adsorption of Ag(I), 
Pd(II), and Au(III) onto CFP-g-PHCTMA. Initial concentration of Ag 
(I), and Pd (II) = 100 mg L−1, and Au(III) = 200 mg L−1, CFP-g-
PHCTMA = 1 g L−1, 24 h, 25 °C

Fig. 4  Adsorption kinetics of Ag(I), Pd(II), and Au(III) on Cell-g-
PHCTMA. Initial concentration = 100 mg L−1 (Ag(I), Pd(II)) and 
200 mg L−1 (Au(III)), CFP-g-PHCTMA = 1 g L−1, [H+] = 0.1 M, 
25 °C



686 Microsyst Technol (2018) 24:683–690

1 3

concentrations were carried out for Au(III) and Pd(II) in 
aqueous HCl, and Ag(I) in aqueous HNO3 (Fig. 3). The 
high adsorption capacity of CFP-g-PHCTMA toward 
Au(III) and Pd(II) was maintained at a wide range of HCl 
concentration, though with slight decrements.

The trend of the decrement of the adsorption capacity for 
Ag(I) upon increasing the HNO3 concentration was found 
to be significant. The decrease of the adsorption capacities 
can be explained by the slight protonation of sulfur atoms 
in the thione functional groups of CFP-g-PHCTMA as 
observed in adsorption of Au(III) and Pd(II) by phosphine 
sulphide-type chelating polymers (Sanchez et al. 2001) and 
the competition between the proton ion and Au(III), Pd(II), 
and Ag(I) for the exchange sites on the CFP-g-PHCTMA 
(Monier et al. 2014a).

3.2  Kinetics of Adsorption of Au(III), Pd (II), and Ag(I) 
by CFP‑g‑PHCTMA

Fast uptake ability is an important requirement on collec-
tion of metals from waste stream. In order to investigate 
the kinetics of the adsorption process, an adsorption experi-
ment was performed using 1 g L−1 CFP-g-PHCTMA for 
Ag(I) (100 mg L−1), Pd(II) (100 mg L−1), and Au(III) 
(200 mg L−1) solutions under 0.1 M acid concentrations at 
25 °C (Fig. 4). The adsorption of these precious metals pro-
ceeded smoothly and the adsorbed amounts almost reached 
to plateaus after 50 min. The adsorption kinetics was stud-
ied using a pseudo-first order kinetic model (Eq. 3) along 
with its linear form (Eq. 4) and a pseudo-second model 
(Eq. 5) along with its linear form (Eq. 6).

(3)Qt = Qe

(

1− e−k1t
)

(4)ln (Qe − Qt) = lnQe − k1t

(5)Qt =
k2Q

2
e t

1+ k2Qet

Qe (mg g−1) and Qt (mg g−1) are the amounts of metal ions 
adsorbed per unit mass of the adsorbent at equilibrium and 
time (t) respectively. k1 (g mg−1 min−1) and k2 (dm−3 mg−1 
min−1) are the pseudo-first order and pseudo-second order 
rate constants, respectively. The results of the kinetic were 
obtained analyzing Fig. 4. Table 2 lists the kinetic param-
eters of the pseudo-first order and pseudo-second order 
models. 

The linear plots of the pseudo-first order (Fig. 5a) and 
the pseudo-second order (Fig. 5b) kinetic models for 
the adsorption of Ag(I), Pd(II), and Au(III) on CFP-g-
PHCTMA indicate that the second-order plots have better 
linearity, as can be confirmed by the R2 values (Table 2). 
As the adsorption of Ag(I), Pd(II), and Au(III) fitted the 
pseudo-second order model, the rate determining step of 
this adsorption is the chemical reaction between the ions 
and the adsorbent (Azizian 2004; Ho 2004, 2006; Ho and 
McKay 1999).

3.3  Selective adsorption of Ag(I), Pd(II), and Au(III) 
from multi‑elemental solutions

Practical recovery processes of precious metals ions are car-
ried out from multi-elemental solutions containing various 
base metals such as copper, zinc, and nickel in high concen-
tration of acidic media. Accordingly, the adsorption experi-
ments were carried out using two types of multi-elemental 
solutions with various acid concentrations to determine the 
selective adsorption behavior of CFP-g-PHCTMA even in 
highly acidic media (Fig. 6). Figure 6a shows the selec-
tive adsorption of Ag(I) from a multi-elemental solution 
(1) containing Ag(I), Cu(II), Zn(II), Ni(II), Co(III), V(V), 
Cr(III), Fe(III), Mn(II), and Cd(II) in HNO3 aq. with the 
acid concentration varied from 1 to 6 M. This result indi-
cates that CFP-g-PHCTMA adsorbs only Ag(I) from the 
mixture of various base metal ions without co-adsorption 

(6)
t

Qt

=
1

k2Q
2
e

+
t

Qe

Table 2  Kinetic parameters 
for Ag(I), Pd(II) and Au(III) 
adsorption by CFP-g-PHCTMA

Metals Pseudo-first order model

k1 × 10−3 (min−1) Qe (mg g−1) R2

Ag(I) 16.27 27.33 0.9877

Au(III) 23.50 97.69 0.9810

Pd(II) 18.63 37.28 0.9848

Metals Pseudo-second order model

k2 × 10−3 (g mg−1 min−1) Qe (mg g−1) R2

Ag(I) 1.244 69.53 0.9984

Au(III) 0.340 137.6 0.9982

Pd(II) 1.049 84.47 0.9988
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of other metals. Figure 6b presents the metal adsorption 
behavior of CFP-g-PHCTMA from a multi-elemental solu-
tion (2) containing Au(III), Pd(II), Pt(IV), Ir(III), Os(III), 
Ru(III) and Rh(III) in HCl aq. with the acid concentration 
varied from 1 to 6 M. It was observed that only Au(III) 
and Pd(II) was bound to the adsorbent, whereas the trace 
amounts of Os(III) and Pt(IV) was adsorbed and no other 
precious metals were captured at all by CFP-g-PHCTMA. 

The adsorption of Os(III) and Pt(IV) was suppressed under 
high acid concentrations.

As PCB metals are often leached by aqua regia, 1 in 
HNO3 media and 2 in HCl media were mixed together 
and the mixture was employed for the adsorption 
experiment with CFP-g-PHCTMA (total acid concen-
tration 1.53 M) (Fig. 7). CFP-g-PHCTMA selectively 
and efficiently adsorbed Au(III), Pd(II), and Ag(I) 

Fig. 5  Linear plots of a pseudo-first order kinetics and b pseudo-second order kinetics of adsorption of Ag(I), Pd(II), and Au(III) ions on CFP-
g-PHCTMA. Initial concentration = 100 mg L−1 (Ag(I), Pd(II)) and 200 mg L−1 (Au(III)), Cell-g-PHCTMA = 1 g L−1, [H+] = 0.1 M, 25 °C

Fig. 6  Effect of acid concentration on adsorption of a Ag(I) from 
multi-elemental solution (1) in HNO3 aq. media, and b Pd(II) and 
Au(III) from multi-elemental solutions (2) onto CFP-g-PHCTMA 

in HCl aq. Initial concentration of Mn+= 100 mg L−1; CFP-g-
PHCTMA = 6 g L−1; 25 °C
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even from the mixture of the two multi-elemental 
solutions as well as the individual and the original 
multi-metal solutions.

3.4  Selective recovery of Au(III), Pd (II), and Ag(I) 
from WPCB leachate

On the basis of the excellent adsorptive recovery of Au(III), 
Pd(II), and Ag(I), we carried out collection of the pre-
cious metals from WPCB leachate with aqua regia by 
CFP-g-PHCTMA, which involves difficulty in selective 
adsorption due to the presence of various organic compo-
nents and base metals such as Cu(II), Ni(II), V(V), Fe(II), 
and Zn(II). The leachate consists of Pd(II), Au(III), and 
Ag(I), and significantly higher amounts of base metals as 
indicated in Table 1. Figure 8 represents the adsorption 
behavior of metals in the WPCB metal leachate with CFP-
g-PHCTMA. It was observed that Cu(II), Ni(II) Zn(II), 
V(V), and Fe(II) was negligibly adsorbed onto the adsor-
bent CFP-g-PHCTMA. By contrast, Au(III), Pd(II), and 
Ag(I) were completely adsorbed. The concentrations of 
CFP-g-PHCTMA in the metal leachate in aqua regia for the 
complete recovery of Au(III) and Pd(II) are 3 g L−1, while 
that for Ag(I) is 7 g L−1. This differences in the efficiencies 
agrees with the ability of adsorption of Cell-g-PHCTMA 

Fig. 7  Selective adsorption of Ag(I), Pd(II), and Au(III) from a mixture of multi-elemental solution (1) and multi-elemental solution (2) onto 
CFP-g-PHCTMA at (HCl + HNO3) acid media. Initial concentration Mn+= 50 mg L−1; CFP-g-PHCTMA = 6 g L−1, [H+] = 1.53 M, 25 °C

Fig. 8  Adsorption of metal ions by CFP-g-PHCTMA from WPCB 
connector leachate in aqua regia for 3 h at 25 °C

Fig. 9  States of CFP-g-
PHCTMA before and after 
adsorption from WPCB metal 
leachate in aqua regia

Original CFP-g-PHCTMA  CFP-g-PHCTMA
after adsorption experiment 

Adsorption 
experiment for 
WPCB metal 

leachate
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towards Au(III), Pd(II) and Ag(I) observed in the single ion 
experiments at higher acid concentration. These amounts of 
CFP-g-PHCTMA for entire recovery of Au(III), Pd(II), and 
Ag(I) from the WPCB leachate is not so high considering 
the expensiveness of these precious metals than higher than 
organic materials accessible from inexpensive resources. 
Figure 9 shows that the color of CFP-g-PHCTMA was 
changed from white to yellow in a similar manner with 
the adsorption of individual metal ions (Hyder and Ochiai 
2017). These results clearly demonstrated that the precious 
metals Au(III), Pd(II), and Ag(I) were successfully recov-
ered by CFP-g-PHCTMA from the metal leachate from 
WPCBs. In other words, CFP-g-PHCTMA is a promising 
candidate for practical recovering of precious metals. 

4  Conclusion

The adsorbent CFP-g-PHCTMA was found to be effective 
for the selective recovery of Au(III), Pd(II), and Ag(I) from 
WPCB. The successful result originates from the specific 
adsorption ability of the thiocarbamate ligand and the sta-
bility under very high concentration of acid media. The 
high selectivity was manifested by the negligible adsorp-
tion of base metals, namely Cu(II), Zn(II), Ni(II), Co(III), 
V(V), Cr(III), Fe(III), Mn(II), and Cd(II), and other pre-
cious metals, namely Pt(IV), Ir(III), Os(III), Ru(III), and 
Rh(III). The kinetic study revealed that the adsorption 
rates are fast and the experimental data well fit the pseudo-
second order model. This features are vital for practical 
recovery of precious metals, and CFP-g-PHCTMA is a 
promising adsorbent for a wide range of hydrometallurgical 
recovery of precious metals from various wastes.
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