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groups in recent years. Specific applications including 
memories (Charlot et al. 2008), sensors (Southworth et al. 
2010), switches (Intaraprasonk and Fan 2011), and band-
pass filters (Maani Miandoab et al. 2015b; Tajaddodianfar 
et  al. 2015b) have motivated the growing research in the 
field of M/NEMS with arch beam elements. Functional 
advantages of these systems originate from their bistability 
which refers to their capability to operate in two symmet-
ric concave and convex buckled configurations at the same 
values of actuation parameters. Transition between these 
separate configurations is triggered by a precipitate motion 
known as the snap-through. In fact, for sufficiently curved 
beams, bistability occurs under the transverse load between 
two critical points: snap-through and release (snap-back) 
values (Krylov et al. 2008).

Electrostatic force, which is a popular actuation mech-
anism in the field of M/NEMS, enriches dynamics of the 
system by adding deflection-dependent nonlinearity. The 
beam element becomes softer as its deflection increases 
under the electrostatic load; while the load itself increases 
as a function of beam deflection. However, in a criti-
cal loading value, the structure collapses suddenly and 
the electrodes may stick together. This type of instability, 
known as the pull-in, is a characteristic of most of the elec-
trostatically actuated M/NEMS, and is widely discussed in 
the literature. Zhang et al. (2014) have reviewed the exten-
sive research performed for the study of pull-in instability 
in M/NEMS.

Krylov et  al. (2008) and Krylov and Dick (2010) have 
investigated symmetric snap-through and release of the 
arch MEMS triggered by quasi-static or suddenly applied 
DC electrostatic voltages. Zhang et  al. (2007) experimen-
tally and theoretically investigated snap-through and pull-in 
instabilities of a bell-shaped electrostatically actuated arch. 
Das and Batra (2009a) continued the research on the same 

Abstract  We have investigated the size-dependency of 
symmetric and asymmetric buckling in an electrostati-
cally actuated initially curved (arch) stress-free shallow 
nano-beam. Using the double-mode Galerkin projection 
method, we have converted the partial differential equation 
of motion of the arch, given in the framework of Euler–
Bernoulli beam and the strain gradient elasticity, to a two-
degree-of-freedom model which is capable of accounting 
for the symmetric and asymmetric instabilities as well as 
the size-dependencies. Analyzing the bifurcation diagrams 
of the obtained reduced-order model, we have shown that 
the symmetric snap-through, release and pull-in instabili-
ties, as well as the asymmetric buckling of the arch are all 
size-dependent. Our studies show that, as the structure 
scales down, possibility of the snap-through and the sym-
metry breaking reduces. We have derived analytical neces-
sary conditions for prediction of the size-dependent snap-
through and symmetry breaking. We further have shown 
that the sufficient condition for the threshold snap-through, 
during which the asymmetric buckling occurs prior to the 
symmetric snap-through, is also size-dependent.

1  Introduction

Implementation of initially curved (arch) shallow beam ele-
ments in construction of micro/nano-electro-mechanical-
systems (M/NEMS) has been reported by various research 
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system by implementation of finite element numerical 
methods. Other research groups have investigated the snap-
through motion of the arch MEMS resonators. Younis et al. 
(2010) and Tajaddodianfar et al. (2015b) proposed discus-
sions on the study of the nonlinear dynamics in an arch 
MEMS actuated by combined static and harmonic electro-
static actuation. Later, Tajaddodianfar et al. (2014b, 2015c, 
2016a) and Maani Miandoab et  al. (2015b) suggested an 
analytical procedure for the study of nonlinear frequency 
response of the MEMS resonators. Recently, they (Tajad-
dodianfar et al. 2015a, 2016b; Maani Miandoab et al. 2014, 
2015c; Alemansour et  al. 2017) have studied in detail the 
possibility of chaotic vibrations in this type of resonators 
imposed by the snap-through instabilities.

Sufficiently curved beams are also possible to present 
symmetry breaking which refers to appearing of non-sym-
metric buckling modes in their transient motion between 
the stable configurations. Symmetric snap-through and the 
possibility of accompanying asymmetric configurations 
are well-discussed and well-established topics in structural 
mechanics of macro-scaled arches (Seyranian and Elisha-
koff 1989; Simitses 1990; Chen and Chang 2007; Plaut 
2009; Camescasse et  al. 2014; Plaut 2015; Amini Khoiy 
et  al. 2016). In macro scales, these instabilities are fully 
parameterized by the geometry of the arch (Simitses 1990; 
Amini Khoiy and Amini 2016). However, in contrast to the 
macro-scaled arches, it has been shown that the electro-
static force affects both symmetric and asymmetric buck-
ling behaviors of the initially curved micro-beams. Krylov 
et al. (2008) proposed an analytical criterion for the study 
of snap-through instability of the MEMS stress-free bell-
shaped arches which clearly reflected the nonlinearity 
imposed by the deflection-dependent electrostatic load. 
Das and Batra (2009b) numerically investigated the snap-
through and pull-in instabilities, as well as the symme-
try breaking, in an electrostatically loaded shallow micro 
arch. Later, Krylov et al. (2011) and Tajaddodianfar et al. 
(2014a) studied the structural stability of a free-of-pull-in 
initially curved micro-beam actuated by fringing electro-
static fields. They proposed the possibility of appearing 
non-symmetric buckling modes based on their computa-
tional methods. Using reduced order mathematical mod-
els consisting of the first symmetric and asymmetric mode 
shapes, Medina et  al. (2012) explored in detail the struc-
tural stability of stress-free micro-arches actuated by either 
deflection-independent mechanical or deflection-depend-
ent electrostatic loads. Based on the bifurcation study of 
their models, they derived analytical expressions for pre-
diction of the symmetric snap-through and asymmetric 
buckling of the arch, arguing that for sufficiently curved 
beams asymmetric instabilities are possible to occur prior 
to symmetric snap-through. Thus, validity of the reduced 
order models consisting only the first symmetric mode will 

be undermined for the sufficiently curved arches (Medina 
et  al. 2012). Later, they (Medina et  al. 2014b) extended 
their studies of symmetry breaking and snap-through to 
pre-stressed initially curved micro-beams. They (Medina 
et  al. 2014a) also have recently reported experimental 
investigations for symmetric and asymmetric buckling of 
the arch micro-beams.

Various advantages, including higher natural frequen-
cies and faster responses, motivate extensive research for 
scaling down the micro structures and constructing nano-
scaled systems. However, many experimental observa-
tions have shown that, as the smallest dimension of the 
system decreases below a few microns, the conventional 
continuum theories fail to accurately address the non-
linear behavior of NEMS (Wang et al. 2008). For exam-
ple, Namazu et al. (2000) have experimentally observed 
that as the thickness of silicon beams decrease below 
255  nm their bending stiffness increases by a factor of 
four. Also, due to Fleck et al. (1994), torsion stiffness of 
copper wires increase by a factor of three as their diam-
eter decrease from 170 to 12 μm. Based on such obser-
vations, in contrast to classic continuum theories, elastic 
properties of material vary as a function of its size. To 
account for these size-dependencies, non-classic con-
tinuum theories including the strain gradient (Kong et al. 
2009; Mustapha and Ruan 2015), modified couple stress 
(Ghayesh et al. 2013; Akgöz and Civalek 2013; Farokhi 
et al. 2013), surface energy (Fu et al. 2010; Nejat Pishke-
nari et  al. 2015), and nonlocal stress (Reddy 2010) the-
ories have been developed in recent years. In the past 
few years, several investigations have been conducted 
to understand the size-dependent nature of the nano-
beams statics and dynamics (Wang et  al. 2011; Akgöz 
and Civalek 2013). It is worth noting that various strain 
gradient theories are reported in the literature; however, 
throughout this paper, when using the term “strain gra-
dient theory”, we refer to the theory developed by Lam 
et  al. (2003). Recently, Tajaddodianfar et  al. (2015d) 
have proposed a strain gradient continuum model based 
on the Euler–Bernoulli and shallow arch assumptions 
for the study of size-dependent nonlinear phenomena in 
the initially curved nano-beams. They have shown that 
the snap-through and pull-in instabilities in the shallow 
nano-arches are size-dependent, as predicted by the strain 
gradient theory (Tajaddodianfar et al. 2015d). Moreover, 
as the nano-arch scales down the minimum initial rise 
parameter required for the possibility of symmetric snap-
through increases (Tajaddodianfar et al. 2015d).

Benefiting from the combined functional advantages of 
initially curved beams and nano-scale systems motivates 
us to investigate, in this paper, the influence of size on the 
structural dynamics of initially curved shallow nano-beams. 
To the authors’ best knowledge, size-dependent asymmetric 
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buckling of shallow nano-arches has not been thoroughly 
investigated in the literature. We aim in this paper to scruti-
nize the size-dependent snap-through and pull-in instabili-
ties as well as the size-dependent symmetry breaking in the 
stress-free shallow nano-arches. In this regard, this paper 
extends the previous knowledge of the structural stability of 
initially curved beams to the nano-scale where the conven-
tional continuum theories, which have been used so far e.g. 
by Medina et al. (2012), fail to account for size-dependen-
cies. Additionally, this work is an extension to a previous 
work by Tajaddodianfar et al. (2015d) where they have lim-
ited their discussions to the presentation of the strain gradi-
ent model and the corresponding single-degree-of-freedom 
reduced-order model which is capable of accounting only 
for the symmetric instabilities. In summary, in this paper 
we focus on the size-dependent asymmetric structural 
instabilities of the shallow nano-arches.

Toward our aim, we first use the double-mode Galerkin 
projection method to derive the two-degree-of-freedom 
reduced-order strain gradient model which governs the 
transverse motion of the nano-arch. Using three-dimen-
sional bifurcation diagrams, we investigate the symmetric 
and asymmetric buckling of the nano-arch, showing that 
the critical values describing the limit point snap-through, 
release and pull-in, as well as the symmetry breaking, are 
all size dependent. Later, we derive analytical expressions 
for description of the minimum required value for the 

initial curvature to facilitate the size-dependent symmetric 
and asymmetric buckling.

In the rest of this paper, we propose the mathematical 
reduced order models in Sect. 2. Then in Sect. 3 we propose 
our bifurcation studies on the obtained models. In Sect. 4 
we propose our study of the arch’s nonlinear behaviors in 
its parameter space. Derivation of analytical expressions 
and conclusions are given in Sects. 5 and 6, respectively.

2 � Mathematical modeling

An initially curved beam of length L, width w and thickness 
d, clamped at the two ends, is considered under the static DC 
electrostatic load distributed over the beam length, as shown 
in Fig. 1. We suppose that the initial deflection of the beam 
is described by a function w0(x), while the load-dependent 
deflection of it is given by a function w(x), measured from 
the x axis as shown in Fig. 1. Using the parameters given in 
Table 1, and based on the shallow arch and Euler–Bernoulli 
beam assumptions (h0 ≪ L, d ≪ L), the equilibrium equa-
tions of the stress-free arch using the strain gradient elastic-
ity theory are given as (Tajaddodianfar et al. 2015d):

(1)
∂

∂x

[

ẼA
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Fig. 1   Schematics of elec-
trostatically actuated initially 
curved shallow nano-beam 
clamped at both ends
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Table 1   Nomenclature

Symbol Description Unit Symbol Description Unit

b Width m G Shear modulus Pa

g0 Fixed gap between electrodes m l0 Material parameter for dilatation gradients m

h0 Initial elevation m l1 Material parameter for deviatoric stretch gradients m

d Thickness m l2 Material parameter for rotation gradient m

A Cross sectional area m2 ν Poisson’s ratio –

E Young’s modulus Pa V Electrostatic voltage V

Ẽ Effective Young’s modulus Pa
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where:

with Ẽ = E/(1− ν2) and other parameters are given in 
Table 1. Boundary conditions are also given as:

Regarding that the Eq.  (1) implies constant deflection-
dependent axial force along the beam, Eqs. (1) and (2) are 
converted to the following single equation (Tajaddodianfar 
et al. 2015d):

with the boundary conditions (5).
Using the non-dimensional quantities given in Table 2, 

one can convert Eq.  (6) to the following dimensionless 
counterparts:

with the nondimensionalized boundary conditions:
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∂ x̂4
−

d
4
ŵ0
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2.1 � Reduced order model

The Galerkin decomposition is employed to convert the 
governing Eq. (7) to the reduced-order (RO) model which 
will be more convenient for the study of snap-through, 
pull-in and symmetry breaking in the investigated shallow 
nano-arch. The procedure starts with assuming the deflec-
tion of the arch to be approximated by finite-term weighted 
sum of base functions:

where N is the number of considered base functions 
ϕn(x̂) which represent mode shapes of the shallow double 
clamped nano-arch satisfying the boundary conditions (8).

For a straight double clamped strain gradient beam 
(w0 = 0), the mode shapes are obtained as solutions for the 
following Eigen-value problem:

with the boundary conditions (8) and with kn as the n-th 
eigen-value. Maani Miandoab et al. (2015a) have proposed 
discussions on the solution of Eq.  (10) for ϕn(x̂) and kn. 
They have shown that for very small values of θ0, the solu-
tion of Eq.  (10) meets those of the following Eigen-value 
problem which governs the mode shapes of the classical 
double clamped straight beam:

with the first two of boundary conditions (8). However, 
although the solution for (11) does not satisfy the 3rd of 
boundary conditions (8), but the difference between the 
solutions of (10) and (11) is negligible, provided that 
θ0 ≪ 1. For instance, for a typical silicon arch with the 
parameters given in Table  3, θ0 = −4.4× 10−8 is cal-
culated. Thus, implementation of the mode shapes of the 
classical straight beam instead of that of the strain gradi-
ent straight beam is justified for very small θ0. Addition-
ally, due to negligible encountered error, most researchers 
employ the mode shapes of straight beam for the analysis 
of shallow arches (Krylov et  al. 2008; Krylov and Dick 
2010; Younis et  al. 2010). With all these discussions, we 

(9)ŵ(x̂) =

N
∑

n=1

qnϕn(x̂)

(10)θ0
d6ϕn

dx̂6
+

d4ϕn

dx̂4
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(11)
d4ϕn

dx̂4
− knϕn(x̂) = 0,

Table 2   Dimensionless parameters

x̂ = x
L h = h0

g0
d̂ = d

g0

ŵ = w
g0

ŵ0 = w0

g0 θ1 =
Ẽbdg2

2S

b̂ = b
g0

θ0 = −K
SL2 β = ε0bL

4V2

2g3S



4571Microsyst Technol (2017) 23:4567–4578	

1 3

make use of the mode shapes of the classical straight dou-
ble clamped beam, governed by (11), as the base functions 
in Eq. (9):

with Cn as a normalizing coefficient which guarantees 
max{ϕn(x̂)}x̂∈[0,1] = 1.

Supposing the initial curvature of the arch to be given by 
the first mode shape,w0(x̂) = hϕ1(x̂), we substitute (9) in 
(7), multiply both sides by ϕn(x̂) and integrate over the arch 
length. Regarding the orthogonality of mode shapes, and 
setting N = 2, we can obtain the following two degrees-of-
freedom model governing the equilibrium of the strain gra-
dient shallow arch under electrostatic actuation:

where we have:

Using the mode shapes given by (12), the above con-
stants are found as: b11 = 198.463, b22 = 1669.859, 
n11 = −2441.6, n22 = −7692.0, s11 = 4.878, and 

(12)
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i ϕ
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sij =
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0

ϕ′
iϕ

′
jdx̂,

nij =
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0

ϕi
d6ϕj

dx̂6
dx̂

s22 = 20.218. Note that with the assumption θ0 ≪ 1 we 
can replace b11 + θ0n11 and b22 + θ0n22 by b11 and b22, 
respectively. Moreover, since the nonlinear integrals aris-
ing in Eqs. (13) and (14) cannot be treated analytically, we 
Taylor expand them about q2 = 0 up to the first order. This 
yields a simpler form of the reduced order model which 
seems similar to what is already reported by Medina et al. 
(Medina et al. 2012) for the classical arch:

where we have:

Note that Eq.  (16) governs the first symmetric mode 
shape of the arch, while Eq. (17) is associated with the sec-
ond mode shape; therefore, nonzero value for q2 implies 
asymmetric behaviors of the arch. Also, knowing that the 
stretching parameter θ1 and the voltage parameter β are 
both size-dependent, we aim to investigate the size-depend-
ent pull-in, snap-through and symmetry breaking of the 
shallow nano-arch, using Eqs. (16) and (17).

3 � Bifurcation analysis

3.1 � Bifurcation diagrams with the classical theory

As the first step toward the analysis of size-dependent non-
linear behaviors of the investigated nano-arch, we need to 
analyze the bifurcation diagram of the fixed points associ-
ated with the 2-DOF model given by Eqs.  (16) and (17). 
Since the nonlinear integrals do not have closed form solu-
tions, the bifurcation diagrams are plotted numerically. To 
this aim, we first mention that q2 = 0 is a trivial solution for 
Eq. (17); thus, setting q2 = 0 in Eq. (16), prescribing values 
for q1 and solving (16) for β, one can derive the bifurcation 
diagram associated with the first symmetric mode shape of 
the arch (see Fig. 2). Such a bifurcation diagram, which is 
plotted in q2 = 0 plane, is always a solution for the 2-DOF 
model, and governs the symmetric nonlinear behaviors 
including pull-in, symmetric snap-through and symmetric 
release, and has been a subject of various previous studies 

(16)
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0

ϕ1ϕ2
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0

ϕ2

(1+ q1ϕ1)2
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Table 3   Typical values for the material and geometrical parameters 
of the nano-arch

Parameter Value

Young modulus E = 165 Gpa

Poison ratio ν = 0.06

Nano-arch length L0 = 500 μm

Nano-arch width b0 = 30 μm

Nano-arch thickness d0 = 1 μm

Gap between the electrodes g0 = 5 μm
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(Krylov et al. 2008; Krylov and Dick 2010; Tajaddodianfar 
et al. 2015a). As the main results of these previous works, 
we can enumerate some of the bold points which will be 
used later in this paper: 

•	 The electrostatically actuated arch always experience 
the pull-in instability which is represented by a pull-in 
bifurcation point (PI) with the property dβ/dq1 = 0 (all 
curves in Fig. 2).

•	 Provided that the initial elevation of the arch is larger 
than a critical value, hS < h, the arch undergoes sym-
metric snap-through at a bifurcation point (S) with the 
property dβ/dq1 = 0. The symmetric release, or snap-
back, is also represented by a bifurcation point (R) (all 
curves except h = 0.15 in Fig. 2).

For the study of asymmetric behaviors with q2 �= 0 
values, we first solve Eq.  (17) for the nontrivial value of 
q22(q1,β) and substitute it in Eq.  (16); then, with a pre-
scribed value of q1, we solve the obtained equation for β . 
The prescribed value for q1 and the obtained value for β 
is put back into Eq. (17), solving it for q2; a real value of 
which stands for the asymmetric snap-through and release. 
Medina et  al. (2012) have already studied the symmetric 
and asymmetric instabilities of the shallow arch, adding to 
the above points that:

•	 Provided that the initial elevation of the arch is larger 
than another critical value, hS < hAS < h, the asymmet-
ric equilibrium points with the property q2 �= 0 bifurcate 

from the unstable branch of the symmetric bifurcation 
diagram via the bifurcation points AS and AR, associ-
ated with asymmetric snap-through and asymmetric 
release, respectively (curves associated with h = 0.33 
and h = 0.45 in Fig. 2).

•	 For values of the initial elevation parameter larger than a 
third threshold value hS < hAS < hTS < h the asymmet-
ric bifurcation points, AS and AR, move from the unsta-
ble branch to the stable branch of the symmetric bifur-
cation diagram; imposing the asymmetric snap-through 
to take place at the loading values smaller than the cor-
responding loading value associated with symmetric 
buckling. Thus, in this case, the asymmetric points AS 
and AR are the critical instability points (h = 0.45 curve 
in Fig. 2).

Figure 2, displays the equilibrium values of the voltage 
parameter β versus q1 and q2 for several values of the ini-
tial rise parameter h, and for the parameter values associ-
ated with a typical shallow arch given in Table 3. Note that 
Fig. 2 is obtained with the classical theory which implies 
the material length scale parameters equal to zero.

3.2 � Bifurcation diagrams with the strain gradient 
theory

In order to study the size-dependent nature of the described 
bifurcation diagrams based on the strain gradient theory, 
we scale the nano-arch given in Table  3 by several scal-
ing factors. Then, for each scaled nano-arch we compute 

Fig. 2   Bifurcation diagram of 
fixed points, with the clas-
sical theory, for the typical 
parameters given in Table 3 and 
associated with four values of 
the initial rise parameter. Pull-in 
(PI), symmetric snap-though 
(S) and release (R), asym-
metric snap-through (AS) and 
release (AR), as well as the 
stable branches of the diagram 
are pointed in the blue-colored 
diagram. These critical points 
have similar counterparts in 
other diagrams. See the text for 
further discussion (color figure 
online)
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the corresponding size-dependent parameter θ1 and employ 
it for derivation of the corresponding bifurcation diagram. 
We suppose three equal material length scale parameters, 
l0 = l1 = l2 = Cl, taking Cl = 100 nm. Note that as the 
thickness of the nano-arch is varied by scaling, geometrical 
ratios L/d, b/d and g/d are all preserved; thus, the classical 
theory, with zero length scale parameter, yields equal non-
dimensional parameters for all of the scaled nano-arches, 
and results in the same bifurcation diagram regardless of 
the size. However, regarding the nonzero length scale 
parameters, the bifurcation diagrams vary depending on 
the scale and size of the nano-arch. Thus, for each of the 
bifurcation diagrams predicted by the classical theory for 
the given value of the initial rise parameter h, as in Fig. 2, 
the strain gradient theory predicts size-dependent bifurca-
tion diagrams.

Figure  3 describes the size-dependent bifurcation dia-
grams associated with the classical ones shown in Fig.  2. 
The two-dimensional plots in Fig. 3 display the q2 = 0 sec-
tion of the three-dimensional diagram which is also shown 
as the inset in each figure. Figure 3a, with h = 0.15, rep-
resents the case where both the classical and non-classical 
theories predict the pull-in as the only instability of the 
nano-arch. However, as the nano-arch scales down, the non-
dimensional pull-in voltage decreases. For the deeper nano-
arches displaying bistability, as in Fig.  3b with h = 0.28, 
the strain gradient theory predicts reduction in symmetric 
pull-in and snap-through values of β, while the correspond-
ing value for the symmetric release increases. Thus, as the 
nano-arch scales down, its bistable property fades. This is 
more transparent in Fig. 3b for d/Cl = 4 where the strain 
gradient theory predicts an almost zero-width bistable 
interval over the β axis; while the classical theory predicts 
the nano-arch to be bistable.

Figure  3c with h = 0.33 illustrates the case where the 
classical theory predicts emerging of the symmetry break-
ing from the bifurcation points AS and AR. However, the 
strain gradient theory does not predict symmetry break-
ing for the scaled nano-arches in this case. This shows that 
the symmetry breaking behavior of the nano-arch is size-
dependent, as well as the symmetric instabilities of it.

As the initial elevation of the nano-arch increases, the 
bifurcation points AS and AR move toward the stable 
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branches of the bifurcation diagram, and eventually, they 
pass the critical points S and R, where the asymmetric 
instability becomes practically critical. Emerging of the 
bifurcation points AS and AR and their move toward the 
stable branches are all size-dependent. As detectable from 
Fig. 3d for h = 0.39, while the classical theory predicts the 
points AS and AR to be almost coincided with the points 
S and R, respectively, the strain gradient theory predicts 
that for very small scales of the nano-arch, d/Cl = 4, the 
symmetry breaking is still absent. Nevertheless, for larger 
sized nano-arch with d/Cl = 8, the strain gradient theory 
predicts emerging of AS and AR bifurcation points which 
are still located on the unstable branch of the corresponding 
bifurcation diagram.

Plots in Fig.  3 show that, at each case, the classical 
and size-dependent bifurcation diagrams share two inflec-
tion points; each of which located on one of the stable and 
unstable branches of the bifurcation diagram. Moreover, 
Fig.  3d shows that the mathematical surface constructed 
by the asymmetric branches of the classical bifurcation 
diagram and its non-classical counterpart share a gradient 
vector which is also perpendicular to the q2 axis. However, 
our observations proposed in Fig.  3 prove that both sym-
metric and asymmetric behaviors of the nano-arch are size-
dependent. In the next section, we analytically investigate 
the symmetric and asymmetric instabilities of the nano-
arch, as well as the critical values hS, hAS and hTS.

4 � Nonlinear behaviors in parameter space

4.1 � Symmetric behaviors

For the study of the symmetric and asymmetric instabili-
ties, we refer again to the 2-DOF model given by Eqs. (16) 
and (17). Noticing that q2 = 0 is always a solution contrib-
uting to the symmetric behaviors, the first-mode Eq. (16) is 
linearized about q2 = 0 yielding (Medina et al. 2012):

which governs the first-mode bifurcation diagram. Solving 
this equation for β and setting dβ/dq1 = 0, one can derive 
the following equation; the roots of which contribute to the 
pull-in (PI) and symmetric snap-through (S) and release 
(R) points (Medina et al. 2012).

where ()′ denotes differentiation with respect to q1. One 
can obtain the critical pull-in and symmetric snap-through 
and release curves by prescribing values for q1 and solving 
Eq. (20) for h. The set of (q1, h) obtained in this way is fed 
to Eq.  (19) for obtaining the corresponding critical value 

(19)b11(q1 − h)+ θ1s
2
11q1(q

2
1 − h2)+ βI1(q1) = 0,

(20)
θ1s

2

11
q2
1
(I ′
1
q1 − 3I1)+ (I ′

1
q1 − I1)(b11 − θ1s

2

11
h2)− b11I

′
1
h = 0

for β. Note that with the size-dependent nature of param-
eter θ1, this procedure results in various curves associated 
with pull-in, snap-through and release branches at each 
scale. Figure 4a displays the critical values of q1 versus h 
for various scales of the typical nano-arch given in Table 3. 
Also, Fig. 4b depicts the corresponding critical values of β 
versus h.

Noting that Eq.  (20) is quadratic in h, one can find the 
minimum value of the initial elevation parameter, required 
for the possibility of symmetric snap-through and release, 
by solving Eq. (20) for h and differentiating it with respect 
to q1; solving dh/dq1 = 0 and substituting the resulting 
value of q1 back into Eq.  (20), one can obtain the mini-
mum value of h required for bistability of the nano-arch, 
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Fig. 4   a Critical values of q1 associated with pull-in (PI), symmetric 
snap-through (S) and release (R) instabilities versus the initial eleva-
tion parameter h, obtained from Eq. (20) and shown by solid curves, 
together with the critical values of the asymmetric snap-through (AS) 
and release (AR) given by Eq.  (21) and depicted by dotted curves. 
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hS. Regarding the size-dependency of θ1, we can obtain 
hS for each value of the ratio d/Cl, and depict it in Fig. 5. 
Note that, despite the classical theory which predicts a con-
stant value of hS, the strain gradient theory predicts that hS 
increases as the nano-structure scales down.

4.2 � Asymmetric behaviors

Since the asymmetric bifurcation points AS and AR arise 
on the symmetric bifurcation diagram governed by (19), 
these points are obtained by simultaneous solving of 
Eqs. (17) and (19). To this aim, β is found from (19) and is 
substituted in (17) with q2 �= 0. This yields the following 
equation governing the asymmetric critical points:

Prescribing values for q1 and solving Eq. (21) for h, one 
can find the critical values of q1 versus h corresponding to 
the asymmetric bifurcation points AS and AR. Feeding these 
values back into Eq.  (19) one can find the corresponding 
values of β versus h. Additionally, depending on the scaling 
parameter, we expect size-dependent values for the critical 
points AS and AR. This is shown in Fig. 4a and 4b, too.

Regarding Fig. 4a, for finding the minimum value of h 
required for the possibility of symmetry breaking hAS, we 
solve Eq. (21) for h and equate dh/dq1 = 0; substituting the 
obtained value for q1 back into Eq. (21) and solving it for 
h , we find the critical value of hAS. Note again that, while 
the classical value of hAS is constant at all scales, the strain 

(21)

I1(b22 + θ1s11s22(q
2

1
− h2))

+ 2I2(q1 − h)(b11 + θ1s
2

11
q1(q1 + h)) = 0

gradient theory predicts that the value of hAS increases by 
scaling down the nano-structure, as shown in Fig. 5. This is 
also clear in Fig. 4a and 4b.

For finding the critical value of h which brings about 
the AR and AS points to the stable branches of the bifur-
cation diagram, thus making the sufficient condition for 
symmetry breaking, Eqs.  (20) and (21) need to be satis-
fied simultaneously. Based on Fig. 4a, this happens at two 
points where the symmetric and asymmetric critical curves 
intersect. One of these points with positive q1 represents the 
sufficient condition for asymmetric snap-through (TS), and 
the other point with negative q1 stands for threshold asym-
metric release (TR). Figure  4a shows that the normalized 
value of h corresponding to TS point is slightly smaller 
than that contributing to TR (hTS < hTR). Figure 5 displays 
the normalized values of hTS versus various values of the d/
Cl ratio. Corresponding constant classical values of hS, hAS 
and hTS are shown as the inset in Fig. 5.

5 � Analytical criteria

In this section, we aim to provide analytical expressions 
for prediction of the symmetric and asymmetric instabili-
ties of the nano-arch. Referring to Fig. 4a, one can find that 
the critical value of q1 associated with the minimum initial 
rise parameter needed for symmetric buckling,hS, is close 
to zero. Medina et al. (2012) have shown that, for the case 
of an initially curved beam under deflection-independent 
loading provided by elastic foundation, such critical value 
of q1 always equals to zero; but, for the case of deflection-
dependent loading provided by the electrostatic actuation, 
this critical value of q1 is not necessarily zero, while being 
small. Thus, we can make a good approximation for hS 
by analytically solving Eq.  (20) for h and evaluating it at 
q1 = 0. Moreover, using Table 3 and the definition (4) with 
G = Ẽ/2(1+ ν), the size-dependent stretching parameter 
θ1 is given by the following expression:

where d is the non-dimensional thickness given in Table 3, 
and n = Cl/g which reflects size-dependency. However, 
using (22) and following the procedure described above, 
we obtain hS by the following approximation:

with I10 and I ′10 representing the values of I1(q1) and 
its derivative with respect to q1 evaluated at q1 = 0. 
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Equation (23) yields size-dependent values of hS, which are 
in good agreement with the numerically-obtained values 
given in Fig.  5. The ratio of hS/d obtained from (23) for 
various values of d/Cl ratios is depicted in Fig. 6.

We can employ the same procedure for obtaining an 
expression for description of the necessary condition for 
possibility of symmetry breaking. Solving Eq.  (21) for h 
and evaluating the result at q1 = 0, replacing θ1 from (22) 
and using Table 3, we are left with the following expression 
for hAS:

where I20 is the value of I2(q1) given by (18) and evaluated 
at q1 = 0. Other parameters are as before. Values of hAS 
given by (24) are in good agreement with the numerically-
obtained values displayed in Fig. 5. Also, the size-depend-
ent values of hAS/d given by (24) are depicted in Fig. 6 for 
various values of the d/Cl ratio.

For the threshold value of parameter h, representing 
the sufficient condition for symmetry breaking, the ana-
lytical solution for the simultaneous Eqs.  (20) and (21) 
is not available. Thus, for each scaled nano-arch, one can 
numerically solve these two concurrent equations for h, and 
select the smaller of the two obtained results as the thresh-
old value for asymmetric snap-through hTS. We have done 
this in Fig. 6 which illustrates the size-dependent values of 
hTS/d for various values of the d/Cl ratio.

(24)
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2

11
I
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20
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6 � Conclusion

In this paper, we have investigated the size-dependent 
nature of symmetric and asymmetric nonlinear behaviors 
in an electrostatically actuated initially curved stress-free 
shallow nano-beam modeled by the strain gradient theory 
which is a continuum theory capable of incorporating 
with the size-effects. To this aim, we have derived a two-
degree-of-freedom model by application of the Galerkin 
projection method to the partial differential equation given 
by the strain gradient theory. The obtained reduced-order 
model consists of the first symmetric and asymmetric mode 
shapes of the beam, and is capable to account for the beam 
instabilities as well as the size-dependencies.

Using the bifurcation diagrams of equilibrium points of 
the obtained reduced-order model, we have obtained the 
critical size-dependent snap-through, release and pull-in 
values of the DC voltage parameter. Moreover, we have 
obtained the minimum initial elevation parameter which 
is required for the possibility of symmetric or asymmetric 
buckling.

Our investigations show that, despite what is already 
proposed using the classical continuum models, the criti-
cal snap-through, release and pull-in points as well as the 
minimum initial elevation parameters required for the pos-
sibility of snap-through and symmetry breaking are all 
size-dependent. We have shown that as the nano-arch scales 
down, the critical values of the voltage parameter for the 
symmetric snap-through and pull-in decreases, while that 
of the symmetric release increases. Thus, the range of 
bistability shrinks as the nano-arch scales down, and the 
minimum initial elevation parameter required for the pos-
sibility of symmetric buckling increases at smaller sizes. 
Additionally, as the structure scales down, the possibility 
of symmetry breaking reduces, and the minimum initial 
elevation parameter required for the possibility of symme-
try breaking increases. In the same way, the critical thresh-
old value of the voltage and initial elevation parameters, 
which result in the initiation of asymmetric buckling prior 
to the symmetric snap-through, increase as the structure 
scales down. We have derived analytical expressions for the 
size-dependent critical values of initial elevation parameter 
required for symmetric and asymmetric buckling using the 
obtained reduced order model.

Results of this paper provide deep insight into the size-
dependency of nonlinear dynamics in nano-scaled initially 
curved electrostatically actuated beams, and suggest that 
application of the conventional classical continuum models 
for the design of bistable nano-scaled NEMS can provide 
conservative or even inaccurate results. Further experimen-
tal investigations for validation of the obtained results are 
required and are left as future work.
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