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materials are made from the combination of two materials, 
usually metal and ceramics that provides many advantages 
including high-temperature resistance, higher fracture 
toughness, and reduced stress intensity factors. In recent 
years, in order to improve the functionalities of nano-elec-
tro-mechanical systems (NEMS), FGM are broadly spread 
into synthesize these systems (Witvrouw and Mehta 2005; 
Rahaeifard et al. 2009; Fu et al. 2003; Lee et al. 2006). In 
the study of mechanical behavior of micro/nanoplates, the 
effects of structure size play a significant role in the correct 
examination of such structures in small scales. Since the 
classical continuum theory fails to capture the size effect, 
the various non-classical continuum theories, such as cou-
ple surface elasticity theory (Toupin 1962; Mindlin and 
Tiersten 1962), modified couple stress theory (MCST) 
(Yang et  al. 2002), strain gradient elasticity theory (SGT) 
(Aifantis 1999) and nonlocal elasticity theory (Eringen and 
Edelen 1972; Eringen 1972) have been proposed. In these 
theories some additional material constants are employed 
to account the size effects on the mechanical behaviors of 
microstructures. Based on the couple stress theory, two 
additional material constants is considered and strain 
energy is a function of both strain and curvature tensors 
(Akgöz and Civalek 2012). Whereas, according to the 
MCST, an additional length scale parameter is used to pre-
dict size effects in the mechanical properties of nano-struc-
tures. Furthermore, the strain energy is expressed by a 
function of the strain and only the symmetric part of the 
curvature tensor based on the MCST (Yang et  al. 2002). 
Also, based on the SGT, three additional material constants 
exist to capture the size effects of mechanical relations in 
nano-structures and the strain energy is assumed to be a 
function of strain tensor and gradient of the strain tensor 
(Aifantis 1999). The nonlocal elasticity theory is intro-
duced by Eringen (Eringen and Edelen 1972; Eringen 

Abstract  In this article, buckling of functionally graded 
(FG) single-layered annular graphene sheets embedded 
in a Pasternak elastic medium is investigated using the 
nonlocal elasticity theory. The material properties of the 
FG graphene sheets are assumed to vary according to a 
power-law distribution in terms of the volume fractions of 
the constituents. Using the principle of virtual work, the 
governing equations are derived based on first-order shear 
deformation theory and the nonlocal differential constitu-
tive relations of Eringen. Differential quadrature method 
is also utilized to solve the equilibrium equations for vari-
ous combinations of free, simply supported and clamped 
boundary conditions. In order to assure the accuracy of the 
results, convergence properties of the critical buckling load 
are examined in detail. To verify the present study, some 
comparison studies are carried out between the obtained 
results and the available solutions in the literature. A para-
metric study is then conducted to investigate the influences 
of small scale effects, grading index, surrounding elastic 
medium, boundary conditions, buckling mode and geomet-
rical parameters on the critical buckling load.

1  Introduction

Functionally graded materials (FGMs) are the advanced 
materials in the family of engineering composites whose 
composition varies continuously as a function of position 
usually along the thickness of a structure. Typically, these 
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1972). Based on this theory, the stress at a point is a func-
tion of strains at all other points in the domain. The nonlo-
cal elasticity theory contains two additional material length 
scale parameters. Recently, Chen et al. (2004) reported that 
among the size-dependent continuum theories (Micromor-
phic theory, Microstructure theory, Micropolar theory, 
Cosserat theory, nonlocal theory and couple stress theory), 
the nonlocal elasticity theory can achieve a correspondence 
with atomistic lattice dynamics and molecular dynamics. 
Also, Sun et  al. (2007) reported that there is a noticeable 
difference between atomistic simulation and the strain gra-
dient elasticity solution for the bending response of micro/
nano-scale structures. Generally, the nonlocal elasticity the-
ory is simple and quick in contrast to the other non-classi-
cal continuum theories (Chen et  al. 2004; Golmakani and 
Rezatalab 2014). Thus, the nonlocal elasticity theory is the 
most commonly used theory to analyze the mechanical 
behavior of nanostructures such as nano-plates. Peddieson 
et  al. (2003) first used the nonlocal elasticity theory to 
develop a nonlocal Bernoulli/Euler beam model. Sudak 
(2003) considered the column buckling of multi-walled 
carbon nanotubes based on nonlocal elasticity theory and 
Euler–Bernoulli beam model. Lu et al. (2007) proposed a 
nonlocal plate model for bending and free vibration analy-
sis of a rectangular plates with simply supported edges. 
Duan and Wang (2007) obtained a closed form solution for 
the axisymmetric bending of circular nanoplates based on 
nonlocal elasticity theory. Using Navier’s approach, Prad-
han (2009) studied the buckling behavior of SLGS based 
on nonlocal elasticity and higher order shear deformation 
theory. Pradhan and Murmu (2009) investigated the small 
scale effect on the buckling of orthotropic nanoplate under 
biaxial compression. Aghababaei and Reddy (2009) ana-
lyzed the bending and free vibration behaviors of a simply 
supported isotropic rectangular nanoplate based on nonlo-
cal third-order shear deformation theory of Reddy. Radic 
et  al. (2014) studied the buckling of double-orthotropic 
nanoplates based on nonlocal elasticity theory. Farajpour 
et  al. (2011) obtained explicit expressions for buckling 
analysis of the circular graphene sheet under uniform radial 
compression based on nonlocal elasticity theory. Moham-
madi et  al. (2014) presented the closed-form solution to 
study the vibration behavior of annular and circular SLGS 
embedded in an elastic medium under thermal loads. 
Ravari and Shahidi (2013) analyzed the buckling behavior 
of circular and annular nanoplate under uniform compres-
sion using finite difference method and nonlocal elasticity 
theory. According to the literature, some research works 
have been presented for the buckling analysis of isotropic/
orthotropic nanoplates based on nonlocal elasticity theory. 
However, investigations on buckling behavior of function-
ally graded (FG) nanoplates are limited in number. Among 
those, considering surface effects and using Kirchhoff 

hypothesis, Lu et  al. (2009) presented a thin plate theory 
for nano-scaled functionally graded films. Using Navier’s 
procedure, Lei et al. (2013) investigated the static bending 
and free vibration of FG micro-beams by employing the 
strain gradient elasticity theory (SGT) and sinusoidal shear 
deformation theory. Zhang et  al. (2015) studied the free 
vibration analysis of functionally graded cylindrical micro-
shells based on the strain gradient elasticity and a four-
unknown shear deformation theory. Using the Navier’s 
approach, Tadi Beni et al. (2015) studied the free vibration 
analysis of size-dependent FG cylindrical shell based on 
FSDT and modified couple stress theory. More recently, 
Salehipour et  al. (2015) presented a closed-form solution 
for the free vibration of simply supported FG rectangular 
nanoplate. They used the three-dimensional nonlocal elas-
ticity theory of Eringen. Nami and Janghorban (2014) stud-
ied the resonance behaviors of FG micro/nano rectangular 
plate with two size-dependent theory, nonlocal elasticity 
theory and strain gradient theory. They compared each 
results of theories. Using nonlocal elasticity theory, the 
buckling behavior of functionally graded circular/annular 
nanoplates were studied by Bedroud et  al. (2013) for 
clamped and simply supported boundary conditions. Also, 
they presented the analytical approach for buckling behav-
ior of FG annular nanoplates under radial compressive load 
based on nonlocal elasticity theory and FSDT (Bedroud 
et al. 2016). In recent decades, many researchers have pre-
sented various techniques to improve numerical methods 
for structural analysis. Differential quadrature method 
(DQM) was presented by Bellman and Casti (1971) in 
1988 and since then, owing to its low computational cost 
and accuracy, DQM has been widely used and developed in 
many fields of macro and micro/nanoscale structures. For 
example, Striz et al. (1995) presented harmonic differential 
quadrature (HDQ) and this method was used in various 
studies by Civalek (2003, 2004) and Civalek and Ulker 
(2004). Wu and Liu (2000) proposed a generalized differ-
ential quadrature (GDQ). Karami and Malekzadeh (2002) 
presented a new differential quadrature methodology for 
beam analysis. Civalek and his coworkers (Civalek et  al. 
2010) employed the DQM to consider the free vibration 
and bending behaviors of cantilever microtubules based on 
nonlocal continuum model. Danesh et  al. (2012) studied 
axial vibration of a tapered nanorod based on nonlocal elas-
ticity theory and differential quadrature method. Further-
more, similar works have been done to study the mechani-
cal behaviors of micro- and nanoscale structures using 
DQM (Farajpour et  al. 2013; Ke et  al. 2012; Beni and 
Malekzadeh 2012; Janghorban and Zare 2011; Ansari et al. 
2011; Farajpour et al. 2012; Mohammadi et al. 2014). From 
the literature review, despite significant contributions to 
investigation of SLGS buckling behavior in previous years, 
few studies have focused on the elastic buckling of FG 
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nanoplate embedded in an elastic medium. Thus, this work 
focuses on the buckling of FG annular graphene sheets in 
an elastic medium based on nonlocal mindlin plate theory. 
The material properties of the FG graphene sheets are 
assumed to vary in the thickness direction according to a 
power-law distribution in terms of the volume fraction of 
the constituents. The small scale effects are introduced 
using the nonlocal elasticity theory. Both Winkler-type and 
Pasternak-type foundation models are employed to simu-
late the interaction between the graphene sheet and the sur-
rounding elastic medium. Using the principle of virtual 
work, the nonlocal equilibrium equations are obtained for 
axisymmetric FG annular graphene sheets and the stability 
equations are established by using the adjacent equilibrium 
criterion technique. The created eigenvalue problem is then 
solved by the DQM for simply supported, clamped and free 
boundary conditions and various combinations of them. 
The formulation and method of solution are verified by 
comparing the results, in limited cases, with those available 
in the open literature. Excellent agreement between the 
obtained and available results is observed. Finally, the 
influences of the length scale parameter, annularity, elastic 
medium, grading index and boundary conditions are inves-
tigated on the buckling load of FG single-layered annular 
graphene sheets.

2 � Formulation

In this section, the nonlocal governing equations are pre-
sented for the buckling analysis of FG annular graphene 
sheet. Figure 1 shows the FG annular graphene sheet with 
thickness h, inner radius ri and outer radius ro resting on 
Winkler springs (kw), shear layer (kg) and subjected to uni-
form radial compression load N. Considering axial sym-
metry in geometry and loading, the cylindrical coordi-
nates system (r, θ , z) is chosen for deriving the equilibrium 
equations.

The properties of the nanoplate are assumed to vary 
through the thickness of the nanoplate with a power-law 
distribution of the volume fractions of the constituent 
materials. In fact, the top surface (z =  h/2) of the nano-
plate is metal-rich whereas the bottom surface (z = −h/2) 
is ceramic-rich. Poisson’s ratio ν is assumed to be constant 
and is taken as 0.3 throughout the analysis. Young’s modu-
lus is assumed to vary continuously through the nanoplate 
thickness as

where the subscripts m and c represent the metallic and 
ceramic constituents and n is the grading index and takes 
only non-negative values. According to the nonlocal con-
tinuum theory of Eringen (Eringen and Edelen 1972; Erin-
gen 1972) which accounts for the small scale effects by 
assuming the stress at a reference point as a function of the 
strain field at every point of the continuum body, the nonlo-
cal constitutive equations of a Hookean solid can be written 
by the following differential constitutive relation

where σ nl and σ l express the nonlocal stress and local 
(classical) stress tensors, respectively. Also µ = (e0a)

2 is 
the nonlocal parameter, which incorporates the small-scale 
effect (e0a) into the formulation, a is an internal character-
istic length and e0 is Eringen’s nonlocal elasticity constant. 
Wang and Wang (2007) reported that small-scale effect of 
carbon nanotubes (CNTs) must be smaller than 2.0  nm. 
Thus, the value of nonlocal parameter must be less than 
4.0  nm2. Moreover, ∇2 is the Laplacian operator that in 
axisymmetric polar coordinate is given by ∇2 = d2

dr2
+ d

rdr
 . 

The macroscopic (local) stress tensor (σ l) at a given point 
is related to strain tensor of the point by the generalized 
Hooke’s law

(1)E = E(z) = Em + (Ec − Em)

(

1

2
+

z

h

)n

,

(2)(1− µ∇2)σ nl = σ l,

(3)σ l = C : ε,

Fig. 1   A continuum model 
of FG annular nanoplate in an 
elastic medium under uniform 
radial compression
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where C and ε are the stiffness and local strain tensors, 
respectively; and the symbol ‘:’ indicates the double dot 
product. Using Eqs. (1), (2) and (3), the plane stress nonlo-
cal constitutive relation of annular FG nanoplate in polar 
coordinates are expressed by

where the stiffness coefficients for the FG layer are defined 
as bellow

Here, G and ν are the shear modulus and Poisson’s ratio, 
respectively. Furthermore, εr and εθ are normal strains and 
γrz expresses the shear strain. According to the assumption 
of axisymmetric buckling and based on first-order shear 
deformation theory, the displacement field of an annular 
plate is defined as follows

where (U, V, W) are the displacement components of an 
arbitrary point (x, θ, z) of the plate, and u and w are dis-
placements of the mid-plane in the r and z directions, 
respectively. Also, φ is rotation of the middle surface of 
plate in θ direction. Based on the FSDT and nonlinear von 
Karman theory, the strain-displacement relations can be 
written as

The force, moment and shear stress resultants Ni (i = r, 
θ), Mi (i = r, θ) and Qr of nonlocal elasticity defined by

(4)






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θ
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rz


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,

(5)

Q11 =
E(z)

1− ν2
, Q22 =

E(z)

1− ν2
, Q12 =

vE(z)

1− ν2
,

C55 = G(z) =
E(z)

2(1+ ν)
.

(6)

U(r, θ , z) = u(r, θ)+ zφ

V(r, θ , z) = 0

W(r, θ , z) = w(r),

(7)







εr
εθ
γrz







=































du

dr
+

1

2

�

dw

dr

�2

+ z
dφ

dr

u

r
+ z

φ

r

φ +
dw

dr































.

(Nr ,Nθ ,Qr)
nl =

∫ h/2

−h/2

(σr , σθ , k.σrz)
nldz

In which k is the transverse shear correction coefficient 
and taken as 5/6. Using Eqs.  (4), (7), and (8), the stress 
resultants can be written in terms of displacements as

where

Principle of virtual work is used to derive the governing 
equations of an annular nanoplate on an elastic foundation 
under uniform radial compressive load. The principle of 
virtual work can be written as

where Π, U and V are the total potential energy, total strain 
energy and virtual work done by applied forces. Also, δ is a 
variation with respect to r. The variation of the total strain 
energy, δU, is expressed by:
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Also, the variation of virtual work done by applied 
forces is as follows:

Using the principle of virtual work, the following equi-
librium equations can be obtained (Naderi and Saidi 2011; 
Sepahi et al. 2010):

The stability equations are derived from the adjacent 
equilibrium criterion (Naderi and Saidi 2011; Sepahi et al. 
2010; Jones 2006). Let us assume that the state of equilib-
rium of annular nanoplate under loads is defined in terms 
of the displacement components u0, w0 and φ0. The dis-
placement components of a neighboring state of the stable 
equilibrium differ by u1, w1 and φ1 with respect to the equi-
librium position. Thus, the total displacements of a neigh-
boring state can be expressed by:

Substituting the displacement components (15) into rela-
tions (8) yields

By substituting Eqs.  (15) and (16) in Eq.  (14) and per-
forming proper simplifications, the stability equations are 
obtained as (Sepahi et al. 2010; Bedroud et al. 2013)

(13)

δV =
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ri

∫ 2π

0

(kwwδw+ kg
∂w
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δ(
∂w
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))rdθdr

+
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r .

where N0
r  and N0

θ  are pre-buckling in-plane stress resultant 
defined as follows for uniform radial compression:

Thus, the stability equations of axisymmetric nanoplates 
in terms of the displacements can be written as:

The following boundary conditions are employed in this 
study for both inner and outer edges of annular nanoplate 
(Sepahi et al. 2010; Bedroud et al. 2013):Simply supported 
(S): 

Clamped (C): 

Free (F): 
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3 � Solution methodology

In order to solve the equilibrium equations, the differen-
tial quadrature method (Shu 2000) is used. The DQM is a 
numerical technique for the solution of initial and bound-
ary value problems. It follows that the partial derivative of 
a function with respect to a variable is approximated by 
taking a weighted linear sum of the functional values at 
all grid points in the whole domain (Shu 2000). Therefore, 
every partial differential equation system can be simplified 
to a set of linear algebraic equations using DQM. Accord-
ing to the DQ method, the partial derivatives of a function 
f(x) as an example, at the point (xi) can be expressed by 
(Mohammadi et al. 2014):

where N is the total number of grid points in the x-direction 
and Cs

ij represents the weighting coefficient related to the 
sth-order derivative and is obtained as follows (Moham-
madi et al. 2014; Murmu and Pradhan 2009):

where R(x) is defined as:

Also, for higher order partial derivatives the weighting 
coefficients are obtained by:

In order to obtain the suitable number of dis-
crete grid points and a better mesh point distribution, 
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Gauss–Chebyshev–Lobatto technique has been employed 
as follows (Bert and Malik 1996)

Using the DQ method, Eq. (19)

Also, the DQ form of different types of boundary condi-
tions at boundary point i = 1, N can be written as

(25)xi =
1

2

(

1− cos
i − 1

n− 1
π

)

i = 1, 2, . . . ,N .

i = 2, 3, . . . ,N − 1
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n
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n
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n
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C2
ijφj

+ Bri

n
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C1
ijφj

−

(
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1− ν

2

)
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2

N
∑

j=1

C1
ijwj = 0

(26)
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By employing the DQ technique and assembling the 
stability equations and boundary conditions, the differen-
tial equations system has changed to set of linear algebraic 
equations following as (Farajpour et al. 2012; Mohammadi 
et al. 2014; Tornabene et al. 2009)

After implementation of the boundary conditions into 
formulation, the discretized governing Eq.  (18) can be 
expressed by the following matrix form

(N1
r )i = 0− : A

N
∑

j=1

C1
ijuj + Aν

ui

ri
+ B

N
∑

j=1

C1
ijφj + Bν

φi

ri
= 0

(M1
r )i = 0− : B

N
∑

j=1

C1
ijuj + Bν

ui

ri
+ C

N
∑

j=1

C1
ijφj + Cν

φi

ri
= 0

(27)

(P1
r )i = 0 : − Np
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�
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�
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
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�

j=1
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�

j=1

C3
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N
�

j=1

C2
ijwj




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+ Ak(
1− ν

2
)


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

φi +

N
�
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C1
ijwj


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(28)

[

[Kbb] [Kbi]

[Kib] [Kii]

]{

di
db

}

= Np

[

0 0

[KNib] [KNii]

]{

db
di

}

,

(29)

(

[

[KNib][Kbb]
−1[Kbi] + [KNii]

]−1[

−[Kib][Kbb]
−1[Kbi] + [Kii]

]

)

{di}
T − Np[I]{di}

T = 0

([Ktotal] − Np[I]){di} = 0

Np = Eigenvalue.[Ktoal]

di = {w2, . . . ,wn−1,φ2, . . . ,φn−1}

db = {w1,wn,φ1,φn}.

(30)
([Ktotal]− NpI){W} = 0

{W} = [u− φ − w]T ,

where I denotes identity matrix and Np is the critical buck-
ling load which can be calculated from Eq.  (29) using a 
standard eigenvalue solver.

4 � Results and discussion

In this section, the numerical results are presented for inves-
tigating the effects of small scale parameter, grading index, 
surrounding elastic medium and geometrical parameters 
on the buckling behavior of the annular FG nanoplate with 
various boundary conditions, namely clamped–clamped 
(CC), clamped–simply (CS), simply–clamped (SC), sim-
ply–simply (SS), clamped–free (CF) and free–clamped 
(FC) supports at inner and outer edges, respectively. The 
material properties of FG nanoplate are taken as that of 
Em = 70 Gpa, Ec = 380 Gpa, ν = 0.3 (Hosseini-Hashemi 
et al. 2013). The outer and inner radii of the FG nanoplate 
are ro =  20 nm and ri =  0.5ro, respectively, unless stated 
otherwise. The results are defined and presented in terms 
of the following non-dimensional quantities, Ω = Nrr

2
0/D , 

R = ri/ro, Kw = kwr
4
0/D, Kg = kgr

2
0/D which are the criti-

cal buckling load, annularity, Winkler and shear founda-
tions, respectively, and D = Ech

3/12(1− ν2). Moreover, in 
order to measure the influence of small scale effect on the 
buckling behavior, buckling load ratio is defined as:

First, it is required to carry out a convergence test 
because the results of DQ procedure depend on the number 
of grid points. Thus, the non-dimensional buckling loads of 
CC, CS, SC and SS FG annular graphene sheet are tabu-
lated in Table 1 for various numbers of grid points. As indi-
cated in Table 1, ten grid points along the radial direction 
are sufficient to gain converge solution.

In order to verify the accuracy of the formulation and 
results, the DQ solutions are compared with the ones 
reported for the buckling analysis of FG annular macro-
plate (Koohkan et  al. 2010) and also those obtained by 

Buckling load ratio =

Buckling load calculated using nonlocal theory

Buckling load calculated using local theory
.

Table 1   Convergence 
and accuracy of the non-
dimensional buckling load for 
various boundary conditions 
(ro = 10 nm, n = 1, h/ro = 0.1)

Boundary conditions Grid numbers (N)

5 6 8 10 11 13 15

CC 23.19 24.97 22.63 22.31 22.22 22.16 22.14

SC 21.07 19.50 19.26 19.18 19.17 19.15 19.15

CS 19.08 18.15 18.03 18.01 18.03 18.03 18.03

SS 12.97 13.08 13.17 13.16 13.17 13.16 13.16
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(Bedroud et al. 2013) for the buckling of isotropic annular 
nanoplate in Table 2 and Fig. 2, respectively, for different 
boundary conditions, grading indices, annularity and non-
local parameters. As seen in Table 2 and Fig. 2, the present 
results are in excellent agreement with the ones obtained by 
Refs. (Bedroud et al. 2013; Koohkan et al. 2010) and cur-
rent solutions are validated.

Figure 3a–f illustrate the non-dimensional critical buck-
ling load in terms of nonlocal parameters for different val-
ues of annularity (R) and grading index (n) with various 
types of boundary conditions (ro = 20 nm, h = 0.5 nm). As 
seen, with respect to the type of boundary condition, the 
lowest to the highest differences of buckling load caused 
by increasing the nonlocal parameter are as follows: 

CF < FC < SS < CS < SC < CC. Also, it is obvious that 
with increase of grading index the buckling load decreases. 
So that differences of buckling load caused by changing the 
grading index are constant for all types of boundary condi-
tions and annularity ratios in a specified nonlocal parame-
ter. It is also observed that with increase of nonlocal param-
eter from 0 to 4 the differences of buckling loads remain 
constant for isotropic (n = 0) and FG nanoplate in differ-
ent ratios of annularity and boundary conditions. Moreover, 
with decrease of R the difference of buckling loads between 
µ = 0 and µ = 4 decreases as well.

Figure 4 illustrates the non-imensional critical buckling 
load versus grading index in different values of nonlocal 
parameters with and without presence of elastic medium for 
different boundary conditions (R = 0.5, h/ro = 0.1). As seen 
in Fig. 4, the difference of buckling loads caused by chang-
ing the nonlocal parameter decreases by rising the coeffi-
cient of elastic foundation in all values of material grading 
indices. So that, in presence of elastic foundation, the effect 
of increasing nonlocal parameter on the decrease of buck-
ling load varies as follows CF > FC > SS > CS > SC > CC. 
Furthermore, as observed in Fig.  3, it is shown in Fig.  4 
that difference of buckling loads remains constant between 
two values of nonlocal parameter for all grading indices 
and boundary conditions of FG nanoplate without elastic 
foundation. However, in presence of elastic medium this 
behavior is not seen and the difference of buckling load 
caused by changing the nonlocal parameter decreases with 
increase of grading index.

Figure 5 illustrates the buckling load in terms of Winkler 
and Pasternak elastic foundations for SS boundary condi-
tion. As depicted, for all values of grading indices and non-
local parameter, the variation of buckling load caused by 
increasing the Winkler and Pasternak foundations is linear. 
In other words, the effects of elastic foundations on buck-
ling loads are independent of nonlocal parameter and grad-
ing index. Also, as observed in Fig. 5, the effect of grading 

Table 2   Comparison of the DQM results with those calculated by Koohkan and Kimiaeifar (Koohkan et al. 2010) for the buckling of FG annu-
lar plate under uniform compression load

ro/ri n SS CS SC CC

Present Ref. (Koohkan et al. 
2010)

Present Ref. (Koohkan et al. 
2010)

Present Ref. (Koohkan et al. 
2010)

Present Ref. (Koohkan et al. 
2010)

2 0.5 2.310 2.310 4.292 4.286 4.997 4.983 8.925 8.360

2 1.386 1.386 2.575 2.572 3.998 3.990 5.355 5.016

10 0.5 0.039 0.041 0.052 0.050 0.089 0.088 0.114 0.112

Fig. 2   Comparison of the DQM results with those calculated by 
Bedroud et al. (2013b) for the buckling of isotropic annular nanoplate 
under uniform compressive load
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Fig. 3   Non-dimensional critical buckling load in terms of nonlocal parameters, different values of annularity (R) and grading index (n) for (a) 
CF, (b) FC, (c) SS, (d) CS, (e) SC, (f) CC boundary conditions (ro = 20 nm, h = 0.5 nm)
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Fig. 4   Non-dimensional critical buckling load versus grading index with and without presence of elastic medium (Kw, Kg) and different values 
of nonlocal parameters (µ) for (a) SS, (b) CS, (c) SC, (d) CC, (e) CF, (f) FC boundary conditions (R = 0.5, h/ro = 0.1)
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index on buckling load increases when the elastic founda-
tion exists.

Figure 6 shows the variation of buckling load in terms of 
thickness to radius ratio for two cases of with and without 
elastic foundation and all types of boundary conditions. As 

seen, for both cases of with and without elastic medium by 
increasing the thickness-to-radius ratio the buckling load 
raises significantly. Also, comparing the results of Fig. 6a 
and b shows that effects of thickness-to-radius ratio on 
buckling loads are independent of elastic foundation for 

Fig. 5   Non-dimensional critical buckling load of SS annular nano-
plate versus the (a) Winkler module and (b) shear elastic foundation 
(Kw = 50) for different values of grading index (R = 0.5, h/ro = 0.1)

Fig. 6   Critical buckling load of annular FG nanoplate versus the 
(a) Without elastic foundation (b) Elastic foundation (Kw  =  100, 
Kg  =  10) for different boundary condition and different values of 
nonlocal parameter (µ = 1 nm2, R = 0.5, ro = 20 nm)
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all boundary conditions. Furthermore, in specified radiuses 
with increase of the nanoplate’s thickness the difference of 
buckling load between two values of grading index remains 
constant for the nanoplate without elastic foundation. 

However, if the elastic foundation exists, by increasing the 
thickness of the nanoplate the difference of buckling load 
between two values of grading index decreases.

In Fig. 7, the values of buckling load ratio is illustrated 
in terms of grading index for two different values of non-
local parameter and various types of boundary conditions. 
As shown, the buckling load ratio is constant for different 
values of grading indices. Also, by increasing the nonlocal 
parameter the buckling load ratio decreases for all types of 
boundary conditions. Furthermore, with respect to the type 
of boundary condition, the greatest to the lowest differ-
ence of buckling load ratio between two values of nonlocal 
parameter are as follows FC < CF < SS < CS < SC < CC.

Figure 8 shows the effect of outer radius on the buck-
ling load ratio in different values of grading indices for 
CC boundary condition. As seen, in a specified inner 
radius by raising the outer radius the buckling load ratio 
increases. Moreover, in higher values of the outer radius 
the effect of nonlocal parameter on the buckling load ratio 
goes up.

Similar to Fig. 8, the influence of inner radius on the buck-
ling load ratio is considered in Fig. 9 for CC annular FG nan-
oplate with different nonlocal parameters. As indicated, with 
increase of inner radius the buckling load ratio decreases.

Figure  10 shows effect of mod numbers on the non-
dimensional buckling load in different values of nonlocal 

Fig. 7   Buckling load ratio of annular FG nanoplate versus grad-
ing index for different boundary conditions and nonlocal parameters 
(h = 0.5 nm, R = 0.5, ro = 20 nm)

Fig. 8   Buckling load ratio of CC annular FG nanoplate versus grad-
ing index for different values of outer radius and nonlocal parameter 
(ri = 10, h = 0.5 nm)

Fig. 9   Buckling load ratio of CC annular FG nanoplate versus grad-
ing index for different values of inner radius and nonlocal parameter 
(ro = 20, h = 0.5 nm)
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parameters and grading indices for SS and CC boundary 
conditions. It can be inferred that decrease of buckling 
loads caused by increasing the nonlocal parameters from 0 
to 4, goes up by raising the mod numbers. Furthermore, this 

behavior is independent of grading index for all boundary 
conditions.

In Table 3, non-dimensional buckling load is presented 
for different values of outer and inner radiuses of SS annu-
lar FG nanoplate. As indicated, with increase of outer 
radius and decrease of inner radius the difference of buck-
ling load between two values of nonlocal parameter falls. 
In other words, the difference of buckling load between 
two values of nonlocal parameter is dependent to the both 
inner and outer radiuses.

In Tables 4 and 5, the non-dimensional critical buckling 
load is presented for different values of nonlocal parame-
ters and grading indices of FG nanoplate with and without 
presence of elastic medium and various boundary condi-
tions. As observed previously, with increase of nonlocal 
parameter the effect of grading index on the buckling load 
is constant. Also, by increasing the Winkler and Pasternak 
elastic foundations the effect of grading index on the buck-
ling load decreases.

5 � Conclusions

In this study, the axisymmetric buckling of FG annular 
nanoplate embedded in an elastic medium is investigated 
under uniform in-plane loading. The material properties 
of the FG nanoplate are assumed to vary in the thick-
ness direction according to a power-law distribution in 
terms of the volume fraction of the constituents. Using the 
principle of virtual work, the equilibrium equations are 
obtained through Mindlin orthotropic plate models, and 
Eringen nonlocal elasticity theory was applied to consider 
the small scale effect parameter. Differential quadrature 
method is used to solve the governing equations for free, 
simply supported or clamped boundary conditions and var-
ious combinations of them. The presented formulation and 
method of solution are validated by comparing the results 
with those available in the literature. Finally, a detailed 
parametric study is carried out to investigate the influences 
of the length scale parameter, annularity, elastic medium, 
grading index and boundary conditions on the buckling 
load of FG annular nanoplate. Some general inferences are 
mentioned below:

In a specified nonlocal parameter, differences of buck-
ling load caused by changing the grading index are con-
stant for all types of boundary conditions and annularity 
ratios.

Fig. 10   Non-dimensional critical buckling load versus the nonlocal 
parameter in different of buckling mod number (m) and different val-
ues of grading index (n = 2,5) for (a) SS (b) CC boundary conditions 
(R = 0.5, ro = 20 nm)
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The lowest to the highest differences of buckling load 
caused by increasing the nonlocal parameter are related 
to CF < FC < SS < CS < SC < CC boundary conditions.
In presence of elastic medium, the highest and lowest 
effect of increasing nonlocal parameter on the decrease 
of buckling load are related to CF and CC boundary 
conditions, respectively.
Difference of buckling loads remains constant between 
two values of nonlocal parameter for all grading indices 

and boundary conditions of FG nanoplate without elastic 
medium.
For all values of grading indices and nonlocal parameter, 
the variation of buckling load caused by increasing the 
Winkler and Pasternak foundations is linear.
For both cases of with and without elastic medium, by 
increasing the thickness-to-radius ratio of the FG nano-
plate buckling load raises significantly and this increase 
is independent of boundary conditions and grading index.

Table 3   Non-dimensional 
critical buckling load for 
different values of outer and 
inner radiuses of SS annular FG 
nanoplate (n = 1, h = 0.5 nm)

µ (nm2) ri (nm) ro (nm)

15 16 18 20 21 23 25 27 29 30

1 5 10.91 10.56 10.02 9.65 9.51 9.28 9.12 9.00 8.92 8.89

6 12.82 12.20 11.27 10.62 10.37 9.97 9.67 9.45 9.28 9.21

7 15.44 14.43 12.93 11.89 11.50 10.87 10.40 10.05 9.77 9.66

8 19.06 17.45 15.11 13.54 12.95 12.02 11.33 10.81 10.41 10.25

10 31.29 27.38 21.89 18.43 17.17 15.26 13.91 12.91 12.15 11.83

12 55.09 47.11 34.53 26.87 24.23 20.41 17.83 16.00 14.66 14.11

13 70.33 62.67 44.91 33.43 29.56 24.10 20.54 18.08 16.30 15.59

4 5 8.43 8.45 8.45 8.43 8.42 8.40 8.39 8.39 8.39 8.40

6 9.52 9.47 9.31 9.15 9.08 8.95 8.85 8.77 8.70 8.68

7 10.89 10.75 10.41 10.08 9.93 9.67 9.45 9.28 9.14 9.08

8 12.57 12.34 11.78 11.24 11.00 10.57 10.21 9.93 9.69 9.59

10 16.84 16.54 15.51 14.41 13.89 13.00 12.26 11.66 11.17 10.97

12 21.54 21.92 20.89 19.08 18.17 16.55 15.21 14.13 13.26 12.89

13 23.25 24.51 24.21 22.15 21.00 18.89 17.13 15.72 14.59 14.12

Table 4   Non-dimensional 
critical buckling load in terms 
of nonlocal parameters for 
different grading indices (n) and 
various boundary conditions 
with and without Winkler 
elastic medium (R = 0.5 nm, 
h/ro = 0.1)

µ (nm^2) n (kw, kg) = (0, 0) (100, 0)

CC SC CS SS CC SC CS SS

0 0 108.856 78.069 61.431 43.794 110.778 79.488 62.657 44.897

5 35.501 25.465 20.048 14.306 37.410 26.863 21.257 15.403

10 31.063 22.301 17.599 12.617 32.966 23.683 18.804 13.727

1 0 70.183 57.388 48.653 37.473 72.308 59.284 50.413 39.091

5 22.955 18.771 15.916 12.262 25.069 20.651 17.659 13.867

10 20.357 16.651 14.126 10.899 22.470 18.524 15.863 12.506

2 0 60.657 51.268 44.412 35.109 62.784 53.247 46.293 36.876

5 19.841 16.772 14.531 11.490 21.957 18.737 16.396 13.246

10 17.600 14.889 12.908 10.220 19.721 16.855 14.774 11.980

4 0 36.617 33.218 30.392 25.968 39.171 35.760 32.923 28.484

5 12.009 10.894 9.967 8.517 14.562 13.435 12.497 11.032

10 10.786 9.785 8.953 7.650 13.339 12.326 11.482 10.165
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