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Abstract In this research, the shear and thermal buckling

of bi-layer rectangular orthotropic carbon nanosheets

embedded on an elastic matrix using the nonlocal elasticity

theory and non-linear strains of Von-Karman was studied.

The bi-layer carbon sheets was modeled as a double-lay-

ered plate, and van der Waals forces between layers were

considered. The governing equations and boundary condi-

tions were obtained using the first order shear deformation

theory. For calculation of critical temperature and critical

shear load, the equations were divided for two states via

adjacent equilibrium criterion, pre-buckling and stability.

The stability equations were discretized by differential

quadrature method which is a high accurate numerical

method. The equations were solved for various boundary

conditions, such as free edges. Finally, the small scale

parameter effect due to length to the width ratio, stiffness

of elastic medium on the critical load was considered. The

shear buckling results showed that the effect of type of

shear loading on the nonlocal results is more than local

results. Also, in thermal buckling analysis, the most

important results being that whether the boundary condi-

tions have more flexibility, by increasing the dimensions

ratio, the results of critical temperature were tightly close

together in nonlocal and local analysis.

1 Introduction

A Carbon nanosheets (CNSs) is a two-dimensional

nanostructure with special form of carbon that’s an only

single atom thick (Coleman et al. 2011; Shaojun and

Shaojun 2011). CNSs consist of vertically aligned gra-

phene layer stacks, one to multi-layers thick, which can

attain micron-scale lengths (Geim 2009). Graphene layers

have attracted great attention for energy storage applica-

tions. Especially, they have been widely used as catalyst

supports or non-noble catalysts for fuel cells (Zhong et al.

2012).

Besides experimental efforts which may be formidable

and expensive at the nano-scale, there are three main

approaches for modeling of nanostructures: (a) atomistic

modeling, (b) hybrid atomistic-continuum mechanics and

(c) continuum mechanics (Arash and Wang 2012). Both

atomistic and hybrid atomistic-continuum mechanics are

computationally expensive and are not suitable for ana-

lyzing large scale systems. Continuum mechanics approach

is less computationally expensive than the former two

approaches. It has been found that continuum mechanics

results are in good agreement with atomistic and hybrid

approaches (Pradhan and Kumar 2011). In recent years

various size dependent continuum theories such as couple

stress theory (Mindlin and Tiersten 1962; Toupin 1962),

modified couple stress theory (Akgöz and Civalek 2013;

Akgöz and Civalek 2011), strain gradient elasticity theory

(Arani et al. 2012; Eringen 2002), and nonlocal elasticity

theory (Civalek et al. 2010; Mohammadi et al. 2014) are

proposed. These theories are comprised of information

about the inter-atomic forces and internal lengths. Among

these theories, nonlocal elasticity theory of Eringen (Mo-

hammadi et al. 2014a, b; Eringen and Edelen 1972; Xu and

Liao 2001) has been widely applied because of its
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simplicity, high reliability and close agreement with

molecular dynamic simulations for mechanical analysis of

carbon nanotubes and graphene sheets (Eringen and Edelen

1972). The nonlocal elasticity theory assumes that the

stress at a point is a function of strains at all points in the

continuum.

In this way, in the field of nanosheets analysis via

Eringen nonlocal elasticity theory, Mohammadi et al.

(2013) studied the post-buckling analysis of multilayer

graphene sheet under the biaxial compression. They proved

that the nonlocal parameter reduced the post-buckling load

effects. Murmu et al. (2013) conducted buckling analysis

of bi-layer nano graphene in nonlocal theory under biaxial

compression via analytical solution using the classical plate

theory with linear strains. It also demonstrated that non-

local critical load was always less than local critical load.

Anjomshoa et al. (2014) derived mechanical buckling

equations of multi-layers of rectangular graphene sheet

placed on an elastic foundation using the classical plate

theory and finite element numerical method. Radic et al.

(2014) published a study on mechanical buckling of multi-

layers rectangular graphene sheet based on an elastic

foundation and found that the nonlocal effect had great

influence on higher buckling modes. The exact solution for

vibrations and biaxial buckling the multilayers graphene

sheet based on the Winkler elastic foundation were inves-

tigated by Murmu et al. (2014). The presented equations

utilized the classical plate theory and proved that the crit-

ical temperature and natural frequencies were further

affected by reducing the Winkler coefficient in high modes.

Also, in the field of thermal buckling of nanoplates,

Malekzadeh et al. (2011) considered the Small scale effect

on the thermal buckling of orthotropic arbitrary straight-

sided quadrilateral nanoplates embedded in an elastic

medium via classical plate theory. Zenkour and Sobhy

(2013) analyzed the thermal buckling of rectangular nano

graphene sheet based on the Winkler-Pasternak foundation.

The sine function and sinusoidal plate theory was used to

derive the equations. Wang et al. (2013) investigated the

thermal buckling of nanoscale plate via classical and

Mindlin plate theory, using simply supported boundary

condition. Malekzadeh and Alibeygi (2014) analyzed the

thermal buckling of orthotropic single layer graphene sheet

using nonlinear elastic foundation. The classical theory and

differential quadrature method was used, together with the

Winkler elastic foundation which was modeled with the

nonlinear spring. This method serves as a bench mark for

future research.

The comparisons were made with the results of single

layer graphene sheet in other researches in order to verify

the results. The results of shear buckling were compared

with Mohammadi et al. (2014) that were studied the shear

buckling of orthotropic rectangular single layer nanoplate

in thermal environment by classical plate theory. They

showed that the difference between the shear buckling load

calculated by isotropic and orthotropic plates decreases

with increasing nonlocal parameter. Bassily and Dickinson

(1972) who used the Ritz approach for buckling and lateral

vibration of rectangular plates subject to inplane shear

loads. Budiansky and Connor (1948) studied the buckling

stress of clamped rectangular flat plate in shear via

Lagrangian multiplier method. Cook and Rockey (1963)

were investigated the shear buckling of rectangular plates

with mixed boundary conditions using the Ritz method.

Smith et al. (1999) considered the elastic buckling of

unilaterally constrained rectangular plates in pure shear.

They have used the Rayleigh–Ritz method for solved

equations. In all the comparison papers were used classical

plate theory for derived equations.

In this study, the shear and thermal buckling analysis of

bi-layer graphene sheets (BLGs) based on polymer matrix

using the first order shear deformation theory and via the

nonlinear strain of Von-Karman with regard to nonlocal

elasticity theory of Eringen was investigated. The equa-

tions for buckling analysis was derived by adjacent equi-

librium criterion. The obtained equations were discretizing

by differential quadrature method (DQM) which is a highly

accurate numerical method. The DQ method utilized the

nonuniform distribution of Chebyshev-Gauss–Lobatto

method. Finally, the results of critical load changes were

considered with changes in various parameters, such as

nonlocal parameter, the length of plate and elastic stiffness

of foundation.

2 Governing equations

A rectangular graphene sheet is considered to have a

thickness h, length Lx and width Ly as shown in Fig. 1.

Most of the researches that have been conducted in field of

graphene plate analysis via Eringen nonlocal theory are

Lx
h           

Ly

y

x

Fig. 1 Schematic diagram of rectangular graphene sheet
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based on the classical plate theory (CLPT). This theory

makes use of thin plate. In these plates, the ratio of

thickness to the length is small, and the effects of trans-

verse shear deformations being neglected. But this effect

must be considered in the moderately thick plates and thick

plates. To this end, the governing equations are derived

based on the first order shear deformation theory (FSDT)

and Von-Karman strains. According to the FSDT, the

following displacement field can be expressed as:

U x; y; zð Þ ¼ u x; yð Þ þ zu x; yð Þ ð1Þ
V x; y; zð Þ ¼ v x; yð Þ þ zw x; yð Þ ð2Þ
W x; y; zð Þ ¼ w x; yð Þ ð3Þ

where u, v and w, are displacement components of mid-

planes at x, y and z direction. u and w are rotation com-

ponents about of y and x axis. The properties of the plate

considered to be orthotropic and are given as:

Q½ � ¼

Ex

1� mxymyx

mxyEy

1� mxymyx
0 0 0

myxEx

1� mxymyx

Ey

1� mxymyx
0 0 0

0 0 Gyz 0 0

0 0 0 Gxz 0

0 0 0 0 Gxy

2
666666664

3
777777775

ð4Þ

rij
� �

¼ Qijkl

� �
: eklf g ð5Þ

In which Ex and Ey are the Young’s elasticity modulus

along the x and y directions. mxy; myx are the Poisson’s ratios
and Gyz;Gxz;Gxy are the shear modules. To consider, the

von-Karman assumptions the nonlinear strains field are

expressed as follows:

exx ¼
ou

ox
þ z

ou
ox

þ 1

2

ow

ox

� �2

�axxDT ð6Þ

eyy ¼
ov

oy
þ z

ow
oy

þ 1

2

ow

oy

� �2

�ayyDT ð7Þ

cxz ¼
ow

ox
þ u ð8Þ

cyz ¼
ow

oy
þ w ð9Þ

cxy ¼
ou

oy
þ ov

ox

� �
þ z

ou
oy

þ ow
ox

� �
þ ow

ox

ow

oy
ð10Þ

In Eqs. (6) and (7) Ti is initial temperature

[300 K = 27 �C (normal room temperature)] and the

temperature can be uniformly raised to a final value is Tf
(critical temperature).

According to Eringen theory, the local and nonlocal

relations are defined as Eringen (2002)

1� lr2
� �

rNonLocalij ¼ rLocalij ; l ¼ ðe0aÞ2 ð11Þ

In Eq. (11), r2 is the Laplacian operator in Cartesian

coordinates system:

r2 ¼ o2

ox2
þ o2

oy2
ð12Þ

Here e0 is nonlocal elasticity constant proportionate with

every material that is dependent on structure of nano

materials. l is a scale coefficient which describes the small

scale effect for mechanical behavior of nanostructures

[Value of e0 according to Eringen (1983) is 0.39 and

Eringen (1972) is 0.31]. Also (a) is the connection length

of two carbon atoms together (Narendar and Gopalakrish-

nan 2012). e0a Coefficient taken from references is equal to

ð0\e0a� 2 nm) (Duan et al. 2007; Duan and Wang 2007).

In Fig. 2 show BLGs on an elastic foundation. Using the

principle of stationary total potential energy, the governing

equations as well as the related boundary conditions along

the edges of graphene plate can be derived. The equations

of the total potential energy in case of non-local form are

expressed as (Index 1 is for upper layer and index 2 is for

lower layer):

dUk ¼
ZZZ

v

rNonLocalij d eijdV i; j ¼ x; y; z k ¼ 1; 2ð Þ ð13Þ

dX1 ¼
Z Ly

0

Z Lx

0

ko w2 � w1ð Þð Þdw1dxdy ð14Þ

dX2 ¼
Z Ly

0

Z Lx

0

�ko w2 � w1ð Þ þ kGr2w2 � kww2

� �
dw2dxdy

ð15Þ

oNNL
x i

ox
þ
oNNL

xy i

oy
¼ 0 i = 1, 2ð Þ ð16Þ

oNNL
y i

oy
þ
oNNL

xy i

ox
¼ 0 i = 1, 2ð Þ ð17Þ

oQNL
x 1

ox
þ
oQNL

y 1

oy
þ NNL

x 1

o2w1

ox2
þ 2� NNL

xy 1

o2w1

oxoy

þ NNL
y 1

o2w1

oy2
þ ko w2 � w1ð Þ

¼ 0 ð18Þ

oQNL
x 2

ox
þ
oQNL

y 2

oy
þ NNL

x 2

o2w2

ox2
þ 2� NNL

xy 2

o2w2

oxoy

þ NNL
y 2

o2w2

oy2
� ko w2 � w1ð Þ þ kGr2w2 � kww2

¼ 0 ð19Þ

oMNL
x i

ox
þ
oMNL

xy i

oy
� QNL

x i ¼ 0 i = 1, 2ð Þ ð20Þ

oMNL
xy i

ox
þ
oMNL

y i

oy
� QNL

y i ¼ 0 i = 1, 2ð Þ ð21Þ
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kw and kG are the Winkler and Pasternak stiffness

coefficient of elastic matrix and ko represents the van der

Waals interaction bonds between the layers. Also Ni, Mi

and Qi (i = x, y, xy) are nonlocal stress resultants. Also

subscript NL and L denotes the quantities in Nonlocal and

Local, respectively. The stress resultants can be defined by

the following relations:

ðNL
x ;N

L
y ;N

L
xyÞ ¼

Z h
2

�h
2

rx; ry; rxy
� �

dz ð22Þ

ðML
x ;M

L
y ;M

L
xyÞ ¼

Z h
2

�h
2

rx; ry;rxy
� �

zdz ð23Þ

QL
x ;Q

L
y

� 	
¼ ks �

Z h
2

�h
2

rxz; ryz
� �

dz ð24Þ

In Eq. (24) ks is the shear correction factor in the FSDT.

The relations between stress resultants in local and non-

local theories by using Eq. (11) are defined as below:

1� lr2
� �

NNL
j ¼ NL

j ; j ¼ x; y; xy ð25Þ

1� lr2
� �

MNL
j ¼ ML

j ; j ¼ x; y; xy ð26Þ

1� lr2
� �

QNL
j ¼ QL

j ; j ¼ x; y ð27Þ

For converting Eqs. (16)–(21) to local form using

Eq. (25)–(27), the non-linear governing equations can be

defined as (Dastjerdi et al. 2016):

oNL
x i

ox
þ
oNL

xy i

oy
¼ 0 i = 1, 2ð Þ ð28Þ

oNL
y i

oy
þ
oNL

xy i

ox
¼ 0 i = 1, 2ð Þ ð29Þ

oQL
x 1

ox
þ
oQL

y 1

oy
þ 1� lr2
� �

� NL
x 1

o2w1

ox2
þ 2NL

xy 1

o2w1

oxoy
þ NL

y 1

o2w1

oy2

� �

þ l r2NL
x 1

� � o2w1

ox2
þ r2NL

y 1

� 	 o2w1

oy2

�
þ

2 r2NL
xy 1

� 	 o2w1

oxoy

�
þ 1� lr2
� �

ko w2 � w1ð Þ ¼ 0

ð30Þ

oQL
x 2

ox
þ
oQL

y 2

oy
þ 1� lr2
� �

� NL
x 2

o2w2

ox2
þ 2� NL

xy 2

o2w2

oxoy
þ NL

y 2

o2w2

oy2

� �

þ l r2NL
x 2

� � o2w2

ox2
þ r2NL

y 2

� 	 o2w2

oy2

�

þ2 r2NL
xy 2

� 	 o2w2

oxoy

�
þ 1� lr2
� �

�ko w2 � w1ð Þð

þkGr2w2 � kww2Þ ¼ 0 ð31Þ

oML
x i

ox
þ
oML

xy i

oy
� QL

x i ¼ 0 i = 1, 2ð Þ ð32Þ

oML
xy i

ox
þ
oML

y i

oy
� QL

y i ¼ 0 i = 1, 2ð Þ ð33Þ

The local stress resultant in Eqs. (28)–(33) with the help

of Eqs. (22)–(24) are defined:

Nxxi ¼ A11

oui

ox
þ 1

2

owi

ox

� �2
 !

þ A12

ovi

oy
þ 1

2

owi

oy

� �2
 !

� NT
xx i = 1,2ð Þ

ð34Þ

Upper Layer

KO
(Van der Waals interaction bonds)

Lower Layer

KW KG
(Winkler stiffness) (Shear layer modulus)

Fig. 2 Schematic diagram of

BLG sheets embedded on

elastic matrix
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Nyyi ¼ A12

oui

ox
þ 1

2

owi

ox

� �2
 !

þ A22

ovi

oy
þ 1

2

owi

oy

� �2
 !

� NT
yy i = 1,2ð Þ ð35Þ

Nxyi ¼ A66

oui

oy
þ ovi

ox
þ owi

oy

owi

ox

� �
i = 1,2ð Þ ð36Þ

Mxxi ¼ D11

oui
ox

þ D12

owi
oy

i = 1,2ð Þ ð37Þ

Myyi ¼ D12

oui
ox

þ D22

owi
oy

i = 1,2ð Þ ð38Þ

Mxyi ¼ D66

oui
oy

þ owi
ox

� �
i = 1,2ð Þ ð39Þ

Qxi ¼ H55

owi

ox
þ ui

� �
i = 1,2ð Þ ð40Þ

Qyi ¼ H55

owi

oy
þ wi

� �
i = 1,2ð Þ ð41Þ

Here, the quantities NT
xx; N

T
yy are the resultants due to the

applied temperature. Constants Aij (i, j = 1, 2, 6), Dij (i,

j = 1, 2, 6) and H44, H55 in Eqs. (34)–(41) are defined by:

H44 ¼ Gyzh� ks; H55 ¼ Gxzh� ks ð42Þ

Q11 ¼
Ex

1� txytyx
; Q22 ¼

Ey

1� txytyx
; Q12

¼ tyxEx

1� txytyx
; Q66 ¼ Gxy ð43Þ

Aij;Dij

� �
¼
Z h

2

�h
2

1; z2
� �

Qijdz i; k ¼ 1; 2; 6ð Þ ð44Þ

The stability equations of the nanoplate are achieved

using the adjacent equilibrium criterion. We assume u0, v0,

w0, w0, u0, as the rotation and displacement components of

the equilibrium state and u1, v1, w1, w1, u1, as the virtual

rotation and displacements corresponding to a neighboring

state. The rotation and displacement components of the

neighboring state are:

u ¼ u0 þ u1 ð45Þ

v ¼ v0 þ v1 ð46Þ

w ¼ w0 þ w1 ð47Þ

u ¼ u0 þ u1 ð48Þ

w ¼ w0 þ w1 ð49Þ

The deflection and rotations in the pre-buckling con-

figuration are w0 = w0 = u0 = 0. In addition, temperature

at all zones of plate is constant, having no differential in

two x and y directions (Tx ¼ Ty ¼ T), then

NT
xx;x ¼ NT

yy;y ¼ 0. The prebuckling force can be

N0
xx ¼ NM0

xx þ NT0
xx

N0
yy ¼ NM0

yy þ NT0
yy

N0
xy ¼ NM0

xy

ð50Þ

where NM0
xx ; NT0

xx and NM0
xy are mechanical, thermal and

shear prebuckling forces (In this research for shear buck-

ling analysis only considered shear forces and thermal

effects are ignored ðDT ¼ 300kÞ). By using the prebuck-

ling equations, the thermal prebuckling forces are obtained

as:

NT0
xx ¼ � ExhDT

1� txytyx
axx þ tyxayy
� �

NT0
yy ¼ � EyhDT

1� txytyx
ayy þ txyaxx
� � ð51Þ

In the thermal buckling analysis, the shear in-plane

forces NL
xy

� 	
are ignored. Also, the following terms are:

r2NL
xx ¼ r2NL

yy ¼ r2NL
xy ¼ 0 ð52Þ

Also, in shear buckling analysis, we consider the fol-

lowing relation for the shear prebuckling force (Moham-

madi et al. 2014):

NL
xy ¼ p ð53Þ

For shear load on the edges of sheets, we define p1 and

p2. The shear load apply on the upper layer edges is p1, and

likewise p2 is apply on the lower layer edges. k1; k2 define

the direction of shear load on sheets.

p1 ¼ k1 � p ð54Þ
p2 ¼ k2 � p ð55Þ

According to Fig. 3 the positive directions of the p1; p2
on the edges of every layer are shown (Bassily and Dick-

inson 1972). By substituting Eqs. (45)–(51) into Eqs. (28)–

(33) the stability equations of thermal buckling based on

displacement components are expressed as follows:

H55

o2w1
1

ox2
þ ou1

1

ox

� �
þ H44

o2w1
1

oy2
þ ow1

1

oy

� �

� l
o4w1

1

ox2oy2
NT0
xx þ NT0

yy

� 	
þ NT0

xx

o2w1
1

ox2

�
�l

o4w1
1

ox4

�

þ NT0
yy

o2w1
1

oy2
� l

o4w1
1

oy4

� �

þ 1� lr2
� �

� ko w1
2 � w1

1

� �� �
¼ 0

ð56Þ

Microsyst Technol (2017) 23:2973–2991 2977

123



H55

o2w1
2

ox2
þ ou1

2

ox

� �
þ H44

o2w1
2

oy2
þ ow1

2

oy

� �

� l
o4w1

2

ox2oy2
NT0
xx þ NT0

yy

� 	
þ NT0

xx

o2w1
2

ox2

�
�l

o4w1
2

ox4

�

þ NT0
yy

o2w1
2

oy2
� l

o4w1
2

oy4

� �

þ 1� lr2
� �

�ko w1
2 � w1

1

� ��
þ kGr2w1

2�kww
1
2

�
¼ 0

ð57Þ

D11

o2u1
i

ox2
þ D12 þ D66ð Þ o

2w1
i

oxoy
þ D66

o2u1
i

oy2

� H55

ow1
i

ox
þ u1

i

� �

¼ 0 i ¼ 1; 2ð Þ ð58Þ

D22

o2w1
i

oy2
þ D12 þ D66ð Þ o

2u1
i

oxoy
þ D66

o2w1
i

ox2

� H44

ow1
i

oy
þ w1

i

� �

¼ 0 i ¼ 1; 2ð Þ ð59Þ

Also, by substituting Eqs. (45)–(50) and (58) into

Eqs. (28)–(33) the stability equations of shear buckling

based on displacement components can be obtained lead to

Eqs. (60)–(63):

H55

o2w1
1

ox2
þ ou1

1

ox

� �
þ H44

o2w1
1

oy2
þ ow1

1

oy

� �
þ 2� k1 � p

� o2w1
1

oxoy

�
� l

o4w1
1

ox3oy
�l

o4w1
1

oxoy3

�

þ 1� lr2
� �

ko w1
2 � w1

1

� �� �
¼ 0 ð60Þ

H55

o2w1
2

ox2
þ ou1

2

ox

� �
þ H44

o2w1
2

oy2
þ ow1

2

oy

� �

þ 2� k2 � p� o2w1
2

oxoy

�
� l

o4w1
2

ox3oy
� l

o4w1
2

oxoy3

�

� 1� lr2
� �

� ko w1
2 � w1

1

� ��

� kGr2w1
2þkww

1
2

�
¼ 0

ð61Þ

D11

o2u1
i

ox2
þ D12 þ D66ð Þ o

2w1
i

oxoy
þ D66

o2u1
i

oy2

� H55

ow1
i

ox
þ u1

i

� �

¼ 0 i ¼ 1; 2ð Þ ð62Þ

D22

o2w1
i

oy2
þ D12 þ D66ð Þ o

2u1
i

oxoy
þ D66

o2w1
i

ox2

� H44

ow1
i

oy
þ w1

i

� �

¼ 0 i ¼ 1; 2ð Þ ð63Þ

For numerical solution method especially for nanos-

cale problems, it is important to use dimensionless

equations. By introducing the following non-dimensional

parameters:

W1 ¼ w1

Lx
; a¼ Lx

h
; U1 ¼ u1; W1 ¼ w1; n¼ x

Lx
;

g¼ y

Ly
; b¼ Lx

Ly
; C¼ l

L2x
; KG ¼ kG

Gxy � h
; KW ¼ kw � L2x

Gxy � h
;

k2 ¼
H44 � L2x
Gxy � h3

; d1 ¼
D11

Gxy � h3
; d2 ¼

D22

Gxy � h3
;

d3 ¼
D12

Gxy � h3
; d4 ¼

D66

Gxy � h3
; P1 ¼

p1

Gxy � h
; P2 ¼

p2

Gxy � h

T�
Cr ¼ 103axxDTcr; N

T
XX

0� ¼ NT0
xx

Gxy � h
;

NT
YY

0� ¼
NT0
yy

Gxy � h
; KO ¼ ko � L2x

Gxy � h
; k1 ¼

H55 � L2x
Gxy � h3

ð64Þ

Equations (56)–(59) can be rewritten as the following

non-dimensional form:

Fig. 3 Shear loading on bi-layer graphene nanoplate edges
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i
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2 o
2U1

i

og2

� k1
oW1

i

on
þ U1

i

� �

¼ 0 i ¼ 1; 2ð Þ ð67Þ

d2b
2 o

2W1
i

og2
þ d3 þ d4ð Þb o

2U1
i

onog
þ d4

o2W1
i

on2

� k2 b
oW1

i

og
þW1

i

� �

¼ 0 i ¼ 1; 2ð Þ ð68Þ

And, Eqs. (60)–(63) rewritten lead to Eqs. (69)–(72):

k1
a2

o2W1i

on2
þ oU1i

on

� �
þ k2
a2

b2
o2W1i

og2
þ b

oW1i

og

� �

þ 2k1Pb
o2W1i

onog

�
�C

o4W1i

on3og
� b2C

o4W1i

onog3

�

þ 1� C
o2

on2
þ b2

o2

og2

� �� �

� KO W12�W1i
� �

¼ 0 i ¼ 1ð Þ

ð69Þ

k1
a2

o2W1i

on2
þ oU1i

on

� �
þ k2
a2

b2
o2W1i

og2
þ b

oW1i

og

� �

þ 2k2Pb
o2W1i

onog

�
�C

o4W1i

on3og
� b2C

o4W1i

onog3

�

� 1� C
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þ b2

o2

og2

� �� �

� KWW
1i� 1� C

o2

on2
þ b2

o2

og2

� �� �

� KO W1i�W11
� �

þ 1� C
o2

on2
þ b2

o2

og2

� �� �

o2

on2
þ b2

o2

og2

� �
KGW

1i ¼ 0 i ¼ 2ð Þ

ð70Þ

d1
o2U1i

on2
þ d3 þ d4ð Þb o

2W1i

onog
þ d4b

2 o
2U1i

og2

� k1
oW1i

on
þ U1i

� �

¼ 0 i ¼ 1; 2ð Þ ð71Þ

d2b
2 o

2W1i

og2
þ d3 þ d4ð Þb o

2U1i

onog
þ d4

o2W1i

on2

� k2 b
oW1i

og
þW1i

� �

¼ 0 i ¼ 1; 2ð Þ ð72Þ

3 Solving the stability equations

In this paper, in order to solve the equilibrium equations

the differential quadrature method (DQM) was applied.

Differential quadrature is a numerical method which was

proposed for time by Bellman and Casti (1971). The DQ

method is based on the approximation of partial deriva-

tive of a function at a point and is affected by the values

of the function in the whole domain (Bellman et al.

1993). This method is highly accurate compared to many

other numerical methods, such as Finite Difference

method (FD), which is convenient in formulation when

compared with Dynamic Relaxation method (DR), and

compatible for solving the partial differential equations

(Shu 2000). The method can easily and precisely apply a

variety of boundary conditions (Dastjerdi and Jabbarzadeh

2015).

First, with implementation of DQM into the Eqs. (65)–

(68), the upper layers equations can be obtained:
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Then, the lower layer equations will be displayed as

follow:
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The shear buckling stability equations of BLGs, lead to

Eqs. (69)–(72), the upper and lower layers equations can be

obtained:
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4 Boundary conditions

In order to complete the formulation, the stability equations

should be accompanied by a set of boundary conditions.

The following cases of boundary conditions are used in this

study:

Simply supported (S):

W ¼ 0; W ¼ 0; Mn ¼ 0:n ¼ 0; 1

W ¼ 0; U ¼ 0; Mg ¼ 0:g ¼ 0; 1
ð83Þ

Clamped (C):

W ¼ 0; W ¼ 0; U ¼ 0:n ¼ 0; 1

W ¼ 0; W ¼ 0; U ¼ 0:g ¼ 0; 1
ð84Þ

Free edges (F):

Qn¼ 0;Mn¼ 0;Mng¼ 0 :n ¼ 0; 1

Qg¼ 0;Mg¼ 0;Mng¼ 0 :g ¼ 0; 1
ð85Þ

5 Results of Shear buckling

First, in the survey of convergence of the grid points

required on BLGs, the grid points changes are based on the

critical shear load as shows in Fig. 4. As shown in the

figure, with nine nodes in each direction, high accurate and

suitable results are obtained.

In order to validate the numerical results, the results was

obtained using differential quadrature method to compare

the convergence results for simply supported and clamped

boundary conditions with Mohammadi et al. (2014) that is
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based on classical plate theory as shown in Table 1 (In this

reference used DQ method). The results in Table 2 were

compared with Bassily and Dickinson (1972), Budiansky

and Connor (1948), Cook and Rockey (1963) and Smith

et al. (1999) according to Tables 1 and 2 in Mohammadi

et al. (2014a, b). It can be seen that the results herein are in

agreement with the other results reported.

In order to further clarify the convergence of the shear

load, the numerical results in Table 3 were obtained for

orthotropic single-layered graphene sheets (Mohammadi

et al. 2014). Mohammadi et al. (2014) for obtained the

governing equations used the CPLT and the equations were

solved with DQ method. The numerical results (DQ and

Galerkin method results) are listed in Table 3 for various

nonlocal parameters.

Geometrical and material properties of Graphene

nanoplate, elastic foundation properties used in the para-

metric study as follow (Dastjerdi and Jabbarzadeh 2015;

Golmakani and Rezatalab 2015):

Lx

(nm)

Ly

(nm)

Ex

(Gpa)

Ey

(Gpa)

kw
(Gpa/

nm)

kG
(pa.m)

txy tyx h (nm)

10.2 10.2 1765 1588 1.13 1.13 0.3 0.27 0.34

Also for shear correction factor used value 5/6 (Dast-

jerdi and Jabbarzadeh 2015; Golmakani and Rezatalab

2015), and vdW interaction coefficient taken are 45 Gpa/

nm (Pradhan and Phadikar 2009; Farajpour et al. 2013).

Figure 5 shows the critical shear load based on l
parameter for several values of aspect ratio (b). As shown
in the figure, the critical shear load decreases with increase

in nonlocal parameter. Also, the results of the critical shear

load in nanoplate with b greater than one was more than the

nanoplate with b equal to one.

Figure 6 shows the critical shear load based on the small

scale effects of various boundary conditions. As shown in

the figure, whenever there is an increase in the numbers of

free edges adjacent to each other, the effect of nonlocal

parameter on the boundary condition is reduced. Also in

boundary conditions with less flexibility, the shear critical

load increased.

In Fig. 7 the different types of shear loading on the

edges for two boundary conditions is shown. It is obvious

that, due to the behavior of the orthotropic material as a

results of shift in the direction of the load, there was a

change in the results. When the shear load on the edges of

the two layers are in the opposite direction, shear critical

load will reduce as compared with when the loads are in

similar direction.

Figure 8 shows the effect of nonlocal parameter on the

critical load in the three types of loading. Figure 8a plotted

for BLGs on a weak elastic foundation. In the first case,

only the top layer has the shear load, in the second case

only the bottom layer and in the third case, both layers have

the shear load. As demonstrated in the figure, when only

the shear load is located on the edges of the bottom layer,

the critical load becomes higher than other cases. It has

been shown that, in the local analysis (l = 0 nm2), the

difference between the results of cases 1 and 2 is almost

close. In study of the strong foundation (Fig. 8b), the

results of the distances between the two cases were more

than the initial state. But in considering the small scale

effects, by increasing the nonlocal parameter, this differ-

ence increased further. Hence, results show that the change

in loading direction, had little effect on the critical shear

load in local analysis.

Figure 9 shows the nonlocal parameter versus dimen-

sionless ratio (Lx/h) for clamped boundary condition. For

this purpose, the length and width are equal and constant,

but the thickness is variable. By increasing the thickness,

the effect of nonlocal parameter on the results will

increase. Figure 9b indicate the effect of thickness on the

critical shear load in three types of loading. It can be

concluded that, in the analysis of nonlocal graphene sheets

with reduced thickness, the differences in the results of the

three types of loading will increase further.

For comparing nonlocal elasticity theory with local

definition R parameter as a following:

R ¼ Pcritical NL

Pcritical L

ð86Þ

Fig. 4 Critical shear load versus the number of grid points for DQM

domain (k1 = 1, k2 = 1, e0a = 2 nm, b = 1)
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Figure 10 evaluates the results of nonlocal to local for

the two boundary conditions. In this case the width of

nanoplate is constant and the length is variable. As shown

in the figure, when the boundary condition is less flexible,

the difference between the nonlocal solutions to local

becomes closer. Beside, by increasing the aspect ratio, the

results of the two theories become close.

Figure 11 shows the critical shear load results versus

Winkler stiffness for clamped boundary condition. It is

clear that in the low stiffness value of elastic foundation,

Table 1 Convergence study

and minimum number of grid

points (M = N) required to

obtain accurate results for

different boundary conditions

(first mode number)

Boundary condition References Number of grid point

8 10 12 14

CCCC Mohammadi et al. (2014a) 67.3760 66.9746 66.8141 66.8141

Present 67.2135 66.8028 66.8028 66.8028

SSSS Mohammadi et al. (2014a) 55.2532 52.9377 52.9377 52.9377

Present 55.1763 52.9239 52.9239 52.9239

P� ¼ p�Lx2

D11
, KW = 100, KG = 10, b = 1, Ex = 1765 Gpa, Ey = 1588 Gpa, txy = 0.3, tyx = 0.27,

h = 0.34 nm

Table 2 Convergence and

comparison of the buckling

loads with increasing number of

terms taken in the displacement

series

Boundary condition References a/b

1/1 1/2 1/3

CCCC Budiansky and Connor (1948)

Lower bounds 144.5 101.8 94.4

Upper bounds 146 102.3 95.4

Bassily and Dickinson (1972) 144.716 101.276 94.364

Mohammadi et al. (2014a) 144.5109 101.1436 94.0999

Present 144.5095 101.1316 94.0701

CSCS Cook and Rockey (1963) 124.36 99.09 94.85

Bassily and Dickinson (1972) 124.223 98.926 93.770

Mohammadi et al. (2014a) 124.0154 98.7626 93.5795

Present 123.9891 98.7548 93.5629

SCSC Cook and Rockey (1963) 124.36 66.32 60.50

Bassily and Dickinson (1972) 124.223 66.336 58.615

Mohammadi et al. (2014a) 124.0154 66.2213 58.5

Present 123.9891 66.2182 58.4882

SSSS Smith et al. (1999) 92.0291 – 57.6405

Mohammadi et al. (2014b) 92.0297 64.6068 57.6407

Present 92.0115 64.5895 57.6272

N�
xy ¼

Nxy�Lx2

D
, KW = 0, KG = 0, e0a = 0 nm, E = 200 Gpa, t = 0.3

Table 3 Comparison of the DQM results with those of the Galerkin method for nonlocal orthotropic plates

e0a (nm) Galerkin method (number of basic functions), Mohammadi et al. (2014) Mohammadi et al. (2014) Present

4 6 8 10 12

0 19.2686 19.2686 19.2686 19.2686 19.2686 19.2686 19.2574

0.5 18.7818 18.7818 18.7818 18.7818 18.7818 18.7818 18.7702

1 17.4877 17.4876 17.4875 17.4875 17.4875 17.4875 17.4812

1.5 15.7289 15.7289 15.7289 15.7289 15.7289 15.7289 15.7265

2 13.7673 13.7673 13.7673 13.7673 13.7673 13.7673 13.7669

Ex = 1765 Gpa, Ey = 1588Gpa, txy = 0.3, tyx = 0.27, h = 0.34 nm, P� ¼ p�Lx2

D11
; P� ¼ 10; Lx = 10 nm, b = 1, SSSS
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the changes in kw had further effect on the critical load.

Also, by increasing the stiffness of elastic foundation, the

effects of l on the critical load has decrease.

6 Results of thermal buckling

In considering the accuracy of thermal buckling results, the

results with references Zenkour and Sobhy (2013) and

Wang et al. (2013) were compared. Zenkour and Sobhy

(2013) Solved the thermal buckling of single layer nano-

plate resting on the elastic foundation using variety plate

theory via nonlinear strains, and assumed that the graphene

sheet was an isotropic plate (Table 4). Also Wang et al.

(2013) solved the thermal buckling of single layer nano-

plate via linear CLPT and FSDT without considering the

elastic foundation, with the assumption that the graphene

sheet was an isotropic plate. In order to obtain the results in

Table 5, the governing equations in Wang et al. (2013)

were solved.

The coefficient of thermal expansion are considered for

orthotropic graphene sheet, ayy = axx/3 from Mohammadi

et al. (2014) and Benzair et al. (2008) and are taken

axx = 1.1e-6 1/k from Mohammadi et al. (2014, Benzair

et al. 2008) for room temperature.

Figure 12 shows the dimensionless critical temperature

of buckling based on the nonlocal parameter expressed

such that an increase in the nonlocal parameter resulted in a

decrease in the critical temperature. Also, with more flex-

ible boundary conditions, the critical temperature increased

further. As can be seen, in all boundary conditions between

local value (zero) and l = 2 nm2 the slope of the diagrams

is steep and tend downward. But in larger values from

l = 2 nm2, the slope of the diagrams is slower. Also, with

increasing nonlocal parameter, the critical temperature

values in variety of boundary conditions were almost

similar.

Figure 13 displays the dimensionless critical tempera-

ture changes in the dimensionless ratio (Lx/h) in variety of

nonlocal parameter for clamped boundary condition. For

this purpose, the length and width were equal and constant,

but the thickness varied. By increasing the thickness, the

critical temperature increased, and also with increasing

thickness, the effect of nonlocal parameter on the critical

Fig. 5 The effects of length versus the nonlocal parameter (k1 = 1,

k2 = 1, Ly = 10.2 nm)

Fig. 6 The effects of small scale parameter on various boundary

conditions (k1 = 1, k2 = 1, b = 1)

Fig. 7 Types of loading versus the small scale parameter changes

(b = 1)
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temperature increased. In comparing nonlocal elasticity

theory with local, the definition RT parameter is as follows:

RT ¼ TCriticalNonLocal

TCriticalLocal
ð87Þ

Figure 14 shows the changes in parameter RT based on

the parameter b (Lx/Ly).To this end, we hypothesized that

plate length increased and its width was constant. It can be

seen that with increasing b and also boundary condition

being more flexible, the results of two theory were almost

similar. It is noteworthy that in the field of small scale, due

to use of nonlocal elasticity theory for the same aspect ratio

(b) but different sizes, various results were achieved. For

example, for b = 2 the results of critical temperature were

not equal. Meaning that, if the length of plate is selected as

20.4 nm and its width as 10.2 nm and in other state the

length as 10.2 nm and its width as 5.1 nm, various results

for critical temperature will be obtained. This is due to the

effects of dimensions on the results of nonlocal elasticity

theory. In considering this issue, Fig. 15 is presented for

SSSF boundary condition. In the same aspect ratio, the

critical temperature of buckling increased with increasing

plate dimensions.

The effects of coefficient of van der Waals on the results

are investigated in Fig. 16. A discussion concerning two

states of nanoplates buckling will be made here. In the first

Fig. 8 a The effects of loading type on critical load changes (CCCC,

b = 1). b The effects of loading type on critical load changes in

various Winkler stiffness (CCCC, b = 1)

Fig. 9 a The effects of length to thickness ratio on critical shear load

(k1 = 1, k2 = 1, Lx = Ly = 10.2 nm, CCCC). b The effects of length

to thickness ratio on critical shear load (e0a = 1 nm,

Lx = Ly = 10.2 nm, CCCC)
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case, it is assumed that two nanoplates are bonded by an

internal elastic medium (Murmu et al. 2014). In this state

the nanoplates demonstrated buckling in opposite or same

directions, implying that the system is double-nanoplate

and has two single layer with behaviors independent of

each other. In the other case, the buckling of nanoplates is

only in the same direction, resulting in a synchronous

buckling. In this case, two single layers are converted to a

bi-layer sheets (Double-layer). Figure 16 indicates the

critical temperature based on the vdW coefficient in the

Fig. 10 Variations of R ratio versus b parameter (k1 = 1, k2 = 1,

Ly = 10.2 nm, e0a = 2 nm)

Fig. 11 Nonlocal parameter versus Winkler stiffness (CCCC, b = 1,

k1 = 1, k2 = 1)

Table 4 Comparison of dimensionless ratio of length to the width

with Zenkour and Sobhy (2013)

Boundary

condition

Lx/h FSDT

(DQM-

present)

FSDT

(Exact)

CLPT

(Exact)

SSPT

(Exact)

SSSS 5 35.7769 35.76591 35.78655 35.76603

10 8.9945 8.98645 8.99322 8.98647

15 4.0302 4.02736 4.03051 4.02737

20 2.2923 2.29070 2.29247 2.29070

25 1.4870 1.48577 1.48689 1.48578

Lx = Ly = 10 nm, E = 1 Tpa, t = 0.19, h = 0.34 nm, l = 4 nm2,

KW = 100, KG = 100, a = 1.6 9 10-6K-1

Table 5 Comparison of ratio of nonlocal to the local with Wang

et al. (2013)

Boundary

condition

Lx/Ly RT

FSDT

(DQM-present)

FSDT

(Exact)

CLPT

(Exact)

SSSS 1

0.8311

0.8301 0.8351

1.5

0.8721

0.8714 0.8752

3

0.8990

0.8981 0.9012

5

0.9047

0.9041 0.9069

7

0.9066

0.9057 0.9085

9

0.9073

0.9064 0.9092

E = 1.069 Tpa, t = 0.25, h = 0.34 nm, l = 1 nm2, KW = 0,

KG = 0, a = 1.1 9 10-6 K-1

RT Nonlocal critical temperature/local critical temperature

Fig. 12 Effects of small scale parameter on dimensionless critical

temperature changes (b = 1)
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several of nonlocal parameter. The vdW coefficient from

30 Gpa/nm to the next had no effect on the critical tem-

perature in clamped-free boundary conditions. Therefore,

according to Fig. 16, it is obvious that the value of vdW

coefficient in Pradhan and Phadikar (2009) and Farajpour

et al. (2013) are suitable.

Figure 17 displays the plate in two cases, in first case,

the plate is with a foundation and in the other case the plate

is without foundation. In CCCC boundary condition, with

elastic foundation, the difference between the results of two

cases was more, whenever the flexibility of boundary

condition increased, the difference of results reduced in the

two cases.

According to Fig. 18 when plate was on the foundation,

the nonlocal results were closer to the local. Also, with

stronger Winkler foundation, the difference between results

Fig. 13 Effects of length to the thickness ratio on dimensionless

critical temperature changes (CCCC, b = 1)

Fig. 14 Influence of RT on dimensionless critical temperature

changes in rectangular plate (Ly = 10.2 nm = constant, e0a = 2 nm)

Fig. 15 Influence of plate dimensions on RT in rectangular plate

(Ly = 10.2 nm = constant, SSSF)

Fig. 16 Influence of nonlocal parameter on vdW interaction coeffi-

cient changes (b = 1, CCCF)
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in two states reduced. So in plates on the high strength

foundation the small scale effects on the results were

fewer. Hence, it is acceptable to use the local elasticity

theory with a little difference from the real result.

Figures 19, 20 and 21 shows the buckling modes in

several of boundary conditions (respectively SSSF, SSSS

and CCCC). As is clear in boundary condition, with less

flexibility the difference between modes number were

smaller than other boundary conditions. In fact, in the

boundary conditions, with more flexibility, the much more

temperature is needed to attain the next mode.

In Fig. 22, the possibility of replacing the bi-layer

nanoplates with Equivalent Single layer (ES layer) has

been considered. The thickness of ES layer was 0.68 nm

and the BLGs system had a thickness of 0.34 nm for every

layer. It can be concluded that there are some difference

Fig. 17 Comparison of dimensionless critical temperature on plate

with foundation and without foundation (b = 1)

Fig. 18 Effects of Winkler modulus nonlocal parameter (b = 1,

CCCF)

Fig. 19 Effects of nonlocal parameter on dimensionless temperature

modes (b = 1, SSSF)

Fig. 20 Effects of nonlocal parameter on dimensionless temperature

modes (b = 1, SSSS)
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between the results of ES layer versus bi-layer, and in the

same thickness, it is advisable to use BLGs system in place

of ES layer.

7 Conclusion

In this study, the shear and thermal buckling of bi-layer

orthotropic rectangular nanoplate based on a Winkler-

Pasternak foundation was investigated. Equilibrium equa-

tions were obtained using FSDT for orthotropic plate

models, and the nonlocal elasticity theory was applied to

consider the small scale parameter effect. The governing

equations for different boundary conditions were solved

using the DQ method such as free edges. Based on the

results obtained in this study, the following conclusions

have been drawn.

In shear buckling analysis:

• by increasing the thickness, the effect of nonlocal

parameter on the critical shear load increases.

• With reduced length and increased of l parameter, the

effect of the boundary condition on the shear critical

results are reduced.

• The effect of type of shear loading on the nonlocal

results is more than local results.

• Effect of l on the critical shear load in absence of

elastic foundation is more than presence of elastic

foundation.

• For the BLGs, based on the considering of elastic

foundation, the most critical is when the shear load is

only located at the bottom layer.

• In analysis of the BLGs, with reduced thickness, the

type of shear loading will become more significant.

• Whenever there is an increase in the numbers of free

edges adjacent to each other, the effect of nonlocal

parameter on the boundary condition is reduced.

• When the stiffness values of elastic foundation is lower,

it is not important that the shear load located on the

upper layer or the lower layer edges.

• The type of loading found when the BLGs is on the low

strength foundation in local analysis is not important.

In thermal buckling analysis:

• whatever the boundary conditions have more flexibility,

by increasing the dimensions ratio, the results of critical

temperature in nonlocal and local analysis is almost

similar.

• According to references, the correct value of the van

der Waals coefficient is 45 Gpa/nm, resulting in a

synchronous buckling. If smaller values were consid-

ered, layers may be buckle asynchronous.

• When plate embedded on the foundation, the results of

nonlocal analysis is tightly close to local and for plates

on the foundation with high strength can use of local

theory instead of nonlocal theory.

• Whatever the boundary conditions have more flexibil-

ity, the more temperature is needed to attain the next

mode.

• By Comparing in results of bi-layer and equivalent

single layer, different results are obtained and it is

advisable to use bi-layer system in place of ES layer.

• Whatever the boundary conditions have more flexibility,

the difference of results are smaller in two states (The

plate on the elastic foundation and without foundation).

Fig. 21 Effects of nonlocal parameter on dimensionless temperature

modes (b = 1, CCCC)

Fig. 22 Influence of nonlocal parameter on equivalent single layer

(b = 1)
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