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sheet embedded in an elastic medium and determined 
the corresponding natural frequencies and the associated 
modes. Yang and Lim (2009) studied the nonlinear free 
vibrations of a nano-beam with simply supported bound-
ary conditions based on nonlocal elasticity theory. Nonlin-
ear free vibration of single-walled carbon nanotubes based 
on the Timoshenko beam model was studied by Yang et al. 
(2010). Jomehzadeh and Saidi (2011) developed a Navier 
solution for vibration analysis of nano-plates using three-
dimensional nonlocal elasticity theory.

Micro-/nano-structures are extremely small. Under 
external mechanical load, they may experience significant 
deformation. Therefore, the study of large amplitude vibra-
tion of such small structures is necessary. Wang and Wang 
(2012) considered the influence of surface effects for the 
large amplitude vibration of nano scale plates. Ghayesh and 
Farokhi (2015) discussed different response amplitudes of the 
nonlinear dynamics of a micro-plate based on the modified 
couple stress theory. Farokhi and Ghayesh (2015) examined 
the nonlinear dynamical behavior of a geometrically imper-
fect micro-plate based on the modified couple stress theory. 
Asghari (2012) modeled the geometrically nonlinear micro-
plate formulation based on the modified couple stress theory.

On the other hand, large deformation of the micro-/
nano- structures may result in their nonlinear elastic-
ity behavior. For example, Xiao et al. (2004) investigated 
nonlinear elasticity and elastic instability of single-walled 
carbon nanotubes under large-scale axial compression by 
molecular simulations using the second-generation Bren-
ner potential. Recently, Lee et al. (2008) measured the non-
linear elastic stress–strain response and intrinsic braking 
strength of free-standing monolayer graphene membranes 
by nano-indentation experiment. They interpreted that the 
force–displacement behavior is within a framework of sec-
ond order elastic stress–strain response. Cadelano et al. 
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non-linear stress–strain relationship has been considered 
and the Kirchhoff’s hypothesis has been applied on the 
elastic plate. The large deformation during vibration has 
also been considered. By using the Hamilton principle, the 
governing equations of the free vibration of the plate under 
different boundary condition have been obtained. In order 
to get the explicit solutions of the governing equations, 
the Galerkin’s method and the harmonic balance method 
have been utilized. The relationship between the vibration 
frequency and the vibration amplitude has been discussed 
and the vibration frequencies of different shaped plate have 
been compared. It is perceived that the nonlinear elasticity 
has a distinct effect on the free vibration of the plate.

1 Introduction

Plate-like nanostructures are widely applied in biosensors, 
biomechanical organs, micro-actuators, micro-switches 
and vibration sensors (Sahmani and Bahrami 2015; Arani 
et al. 2013; Ansari et al. 2012). They have wide applica-
tions and have attracted many studies for their vibrational 
behavior. Behfar and Naghdabadi (2005) investigated the 
nanoscale vibration behavior of a multilayered graphene 
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(2009) developed the Lee et al.’s second order constitutive 
model, derived the corresponding strain energy function, 
and imposed the symmetry to reduce the number of inde-
pendent fitting coefficients. The approach of Sfyris et al. 
(2014) uses the classical theory of invariant to describe gra-
phene at the continuum level. The work of Wei et al. (2009) 
expands the analysis of Cadelano et al. by using a fifth 
order elasticity framework.

Based on the literature reviewing, we noted that micro/
nano scale plates were not investigated under the consid-
eration of large deformation and nonlinear elasticity. Yet, 
large deformation and nonlinear elasticity can happen 
simultaneously for such small plates. In this paper, the 
effect of nonlinear elasticity on the free vibration of elastic 
plates is evaluated by incorporating the second-order non-
linear stress–strain relationship into the classical Kirch-
hoff plate theory with consideration of large deformation. 
By using the Hamilton’s principle, the governing equations 
of the free vibration of the graphene sheet under different 
boundary condition are obtained. Afterward, the Galerkin’s 
method and the harmonic balance method are employed 
to obtain the explicit solutions of the governing equations 
along with simply supported and clamped edge supports. 
The vibration frequency for different aspect ratio for sim-
ply supported and rigidly clamped graphene sheet has also 
been studied.

2  Theoretical formulation

Shown in Fig. 1 is the geometry of a nano-plate in Carte-
sian coordinates (x, y, z). h denotes the thickness and a, b 
denote the length and width, respectively. The thickness 
of the plate is small compared with the length and width, 
hence Kirchhoff’s hypothesis may be assumed to be valid. 
The displacement components ux, uy, uz are ux = −z ∂w

∂x
, 

uy = −z ∂w
∂y

, uz = w, where w is the transverse deflection at 
z = 0.

To study the nonlinear elasticity of the plate, we approx-
imate the force–deformation relationship as a nonlinear 

phenomena scalar connection between the stress (σ) 
applied and the observed strain (ε), σ = Eε + Dε2, in 
which E and D are Young’s modulus of elasticity’s modu-
lus and an effective non-linear (third-order) of two-dimen-
sional carbon sheets. We follow the stain energy function 
Ue proved by Cadelano et al. (2009) considering the strain 
energy function is invariant under a rotation about the z 
axis of π/3. The expression is as follows:

where E and υ denote the two-dimensional Young’s modu-
lus and Poisson’s ratio, ε is the strain tensor (α β = x, y) 
and Λi (i = 1, 2, 3) are three nonlinear independent elastic 
coefficients, which are given by

where C111,C222,C112 are third-order elastic constants, 
which are defined in crystal elasticity. The elastic moduli in 
two perpendicular orientations of plates are different due to 
armchair or zigzag configurations (Jomehzadeh and Saidi 
2011). However, if exchange x and y in Eq. (1), we find that 
the strain energy remains the same. Therefore the employ-
ment of combining the Kirchhoff hypothesis and the von-
Karman assumption together with Eq. (1) is reasonable on 
the armchair or zigzag direction. Substitute Eqs. (2a–2c) 
into Eq. (1), and expand the last three term of Eq. (1), the 
strain energy function are obtained

We can see that the first two terms of the right hand side 
of above equation implicate the linear stain energy density, 
while the other terms demonstrate the nonlinear behavior. 
According to Von Karman plate theory, the strain yields

(1)
2Ue =

E

1+ υ
εααεββ +

Eυ

1− υ2
ε2αβ

+Λ1

(

ε3αα + ε3ββ

)

+Λ2εααεββεαβ +Λ3ε
3
αβ ,

(2a)Λ1 = C111 − C222,

(2b)Λ2 =
1

4
(C222 − C112),

(2c)Λ3 =
1

12
(2C111 − C111 + 3C112),

(3)

2Ue =
E

1+ υ
εααεββ +

Eυ

1− υ2
ε2αβ

+
1

3
C111ε

3
xx +

1

3
C222ε

3
yy + C112ε

2
xxεyy

+ (C111 − C222 + C112)εxxε
2
yy

+ (3C222 − 2C111 − C112)εxxε
2
xy

+ (2C111 − C222 − C112)εyyε
2
xy.

(4a)εxx = −zw,xx +
1

2
w2
,x ,

Fig. 1  Geometry of a graphene nano-plate
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where (),i denotes the partial differentiation with respect to 
i coordinate. Substitute Eqs. (4a–4d) into Eq. (3) and inte-
grate the strain energy function on the body of the plate, 
and ignore the h3 terms coupling with the nonlinear elastic-
ity, we obtain

The kinetic energy of the plate is given by

where m is the mass density of the plate, and ẇ denotes 
the partial differentiation with respect to time. In order to 
obtain the governing equation for the free vibration of the 
plate, the Hamilton principle is used here. The principle 
takes the following form,

where t0 and t1 are two arbitrary times, and δ denotes the 
variation operator. By substituting Eqs. (5, 6) into Eq. (7), 
we obtain the governing equations

where

(4b)εyy = −zw,yy +
1

2
w2
,y,

(4c)εxy = −zw,xy +
1

2
w,xw,y,

(4d)εxz = εzz = εyz = 0,

(5)

2U =

h
2

∫

− h
2

�
2Uedxdydz =

∫

A

{

Eh

1− υ2

(

1

4
w4
,x +

1

4
w4
,y +

1

2
w2
,xw

2
,y

)

+
Eh3

12(1+ υ)

(

w2
,xx + w2

,yy + 2w,xxw,yy

)

+
Eh3υ

12
(

1− υ2
)

(

w2
,xx + w2

,yy + 2w2
,xy

)

+
h

24
C111w

6
,x +

h

24
C222w

6
,y + (3C222 − 2C111)

h

8
w4
,xw

2
,y

+ (3C111 − 2C222)
h

8
w2
,xw

4
,y

}

dxdy.

(6)V =
�

A

m

2

[

hẇ2 +
h3

12

(

ẇ2
,x + ẇ2

,y

)

]

dxdy,

(7)δ

∫ t1

t0

(V − U)dt = 0,

(8)
A,x + B,y − C,xx −D,yy − F,xy − mhω̈ + m

h3

12
ω̈,xx

+ m
h3

12
ω̈,yy = 0,

(9a)

A =
Eh

2
(

1− υ2
)

(

w3
,x + w,xw

2
,y

)

+ (3C222 − 2C111)h

4
w3
,xw

2
,y

+
h

8
C111w

5
,x +

(3C111 − 2C222)h

8
w,xw

4
,y,

These equations should be solved with the boundary 
conditions of the plates (Ansari et al. 2012):

simply supported edges

 

rigidly clamped edges
 

3  Solution using Galerkin’s method

Equation (8) and the simply supported or rigidly clamped 
boundary condition (10, 11) form a high order ordinary dif-
ferential equation whose exact solution is almost impossi-
ble to obtain. Therefore, the Galerkin’s method is used to 
solve this nonlinear system approximately.

Consider L the nonlinear differential operator (Chia 
1980), whose expression is given by the left hand side of 
Eq. (8), namely

Thus Eq. (8) can be re-written as

The approximate solution of Eq. (13) is taken to be

(9b)

B =
Eh

2
(

1− υ2
)

(

w3
,y + w,yw

2
,x

)

+ (3C111 − 2C222)h

4
w2
,xw

3
,y

+
h

8
C222w

5
,y +

(3C222 − 2C111)h

8
w4
,xw,y,

(9c)C,xx =
Eh3

12(1+ υ)

(

w,xxxx + w,xxyy

)

+
Eh3υ

12
(

1− υ2
)w,xxxx ,

(9d)D,yy =
Eh3

12(1+ υ)

(

w,yyyy + w,xxyy

)

+
Eh3υ

12
(

1− υ2
)w,yyyy,

(9e)F,xy =
Eh3υ

6
(

1− υ2
)w,xxyy.

(10)

w = 0;w,xx + υw,yy = 0; υw,xx + w,yy = 0 at x

= 0, a and y = 0, b,

(11)
w = 0; w,x = 0; w,y = 0 at x = 0, a and y = 0, b.

(12)

L(w) = A,x + B,y − C,xx −D,yy − F,xy − mhω̈

+ m
h3

12
ω̈,xx + m

h3

12
ω̈,yy.

(13)L(w) = 0.

(14)w =
M
∑

m=1

N
∑

n=1

Amn(t)Φmn(x, y),
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where A(t) are variable coefficients to be determined and 
Φ(x, y) are suitably chosen functions which have to satisfy 
the prescribed boundary conditions and be capable of illus-
trating the mode of deformation.

By the use of Galerkin’s method, the following equation 
must hold (Chia 1980),

Simultaneously consideration of geometrically nonlinear 
elasticity and material nonlinearity adds significant difficulty 
in analysis. Therefore, in this paper, we solve the problem by 
one-term approximate, namely M = N = 1. In such case, what 
we obtain is the fundamental frequency for the first mode of 
vibration. The first mode vibration is the most representative 
vibration case, a well cognition of how the material nonlinear-
ity and geometric nonlinearity impact the first mode vibration 
can efficiently explain the effect of nonlinear elasticity and 
nonlinear geometry. Moreover, the first mode is easy to solve. 
Because of the validity and facility, we only considered the 
first mode vibration. The result is instrumental in the further 
study of the vibration behavior of the plates at small scale.

3.1  Simply supported edges

By one-term approximate, let (Wei et al. 2009)

Accordingly, the corresponding deflection is

which obviously satisfies the simply supported edges 
boundary in Eq. (10). Equation (15) can be reduced to

Upon substituting (12) and (16) into (18) and perform-
ing the integration, we obtain

where

(15)

�

A

L(w)Φmn(x, y)dxdy = 0.

(16)Φ11(x, y) = sin
πx

a
sin

πy

b
.

(17)w = A(t) sin
πx

a
sin

πy

b
,

(18)

�

A

L(w)Φ11(x, y)dxdy = 0.

(19)�1Ä+ �2A+ �3A
3 + �4A

5 = 0,

(20a)�1 =
1

4
mh

(

1+
h2

12

π2

a2
+

h2

12

π2

b2

)

,

(20b)�2 =
π4Eh3

48
(

1− υ2
)

(

1

a2
+

1

b2

)2

,

(20c)
�3 =

π4Eh

128
(

1− υ2
)

(

9

a4
+

9

b4
+

2

a2b2

)

,

In Eq. (19), the term �3A3 are caused by the Von Karman 
nonlinear strain, if we do not consider the geometry nonlin-
earity, this term will vanish; the term �4A5 are caused by the 
second order nonlinear elasticity, when C111 = C222 = 0, 
the model reduce to a linear elastic problem.

Equation (19) is a non-linear second-order differential 
equation. It does not admit an exact solution. However, 
we can employ the harmonic balance method to obtain an 
approximate solution. The solution result will be demon-
strated in Sect. 4.

3.2  Rigidly clamped edges

The same procedure with simply supported edges will be 
applied. We let (Jomehzadeh and Saidi 2011)

which obviously satisfies the rigidly clamped edges boundary 
in Eq. (11). The corresponding deformation of the plate is

In this case, Eq. (15) reduces to

Upon substitution of Eq. (12) and (21) into Eq. (23), we 
obtain

where

(20d)

�4 =
π6

h

2048

{

3

a2b2

[(

3

b2
−

2

a2

)

C111 +
(

3

a2
−

2

b2

)

C222

]

+
25

a6
C111 +

25

b6
C222

}

.

(21)Φ11(x, y) = sin
2 πx

a
sin

2 πy

b
,

(22)w = A(t) sin2
πx

a
sin

2 πy

b
.

(23)

�

A

L(w)Φ11(x, y)dxdy = 0.

(24)�1Ä+ �2A+ �3A
3 + �4A

5 = 0,

(25a)�1 =
9

64
mh

(

1+
h2

9

π2

a2
+

h2

9

π2

b2

)

,

(25b)�2 =
π4Eh3

16
(

1− υ2
)

(

1

a4
+

1

b4
+

2

3

1

a2b2

)

,

(25c)�3 =
5π4Eh

2048
(

1− υ2
)

(

21

a4
+

21

b4
+

10

a2b2

)

,

(25d)

�4 =
π6

h

65536

{

1

a2b2

[(

1323

b2
−

882

a2

)

C111 +
(

1323

a2
−

882

b2

)

C222

]

+
1155

2a6
C111 +

1155

2b6
C222

}

.
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The same with simple supported edges, in Eq. (24), the 
term �3A3 are caused by the Von Karman nonlinear strain, 
if we do not consider the geometry nonlinearity, this term 
will vanish; the term �4A5 are caused by the second order 
nonlinear elasticity, when C111 = C222 = 0, the model 
reduce to a linear elastic problem.

Equation (24) has the same form of Eq. (19). The only 
difference is that the coefficients �1, �2, �3, �4 have different 
values. Consequently, the solution of Eq. (24) possesses the 
same form with the solution of Eq. (19), the result will also 
be shown in Sect. 4.

In order to discuss the vibration frequencies of different 
shaped plates, the aspect ratio ξ = a/b and the thickness-
length ratio η = h/a are introduced. Substitute the corre-
sponding values of �1, �2, �3, �4 into Eq. (19) or (24), for 
simply supported edges, the vibration frequency is

(31a)

(

ω2

ω2
0

)

SS

= 1+ ϕSS

(

A0

h

)2

− ψSS

(

A0

h

)4

η2,

(31b)ϕSS =
3

4

3
(

9+ 2ξ2 + 9ξ4
)

8
(

1+ ξ2
)2

,

4  Results and discussions

Graphene is a typically plate-like structure, we use the 
graphene as a case to discuss the result. The full set of 
third-order elastic constants of graphene was reported 
as C111 = −1689.2Nm−1, C222 = −1487.7Nm−1, 
C112 = −484.1Nm−1, C111 is different than C222 while tak-
ing the nonlinear features into account (Jomehzadeh and 
Saidi 2011). In what follows, the method of harmonic bal-
ance (Chia 1980) with one-term approximation

(26)A = A0 cosωt

is employed. As a result,

With the substitution of Eqs. (26, 27) into Eqs. (19) and 
(24), we obtain

According to harmonic balance, by setting the coefficient 
of cosωt equal to zero, Eq. (28) permits the following solution

or

where ω2
0 = �2

�1
 is the free vibration frequency of a linear elas-

tic plate.

(27)Ä = −ω2A0 cosωt

(28)

(

−�1ω
2 + �2 +

3

4
�3A

2
0 +

5

8
�4A

4
0

)

cosωt

+ high order harmonics = 0.

(29)ω2 = ω2
0 +

3

4

�3

�1
A2
0 +

5

8

�4

�1
A4
0,

(30)

ω2

ω2
0

= 1+
3

4

�3

�2
A2
0 +

5

8

�4

�2
A4
0,

(31c)ψSS = −
5

8

3π2
(

1− υ2
){

3ξ2
[(

3ξ2 − 2
)

C111 +
(

3− 2ξ2
)

C222

]

+ 25C111 + 25ξ6C222

}

128E
(

1+ ξ2
)2

,

and, for rigidly clamped edges, the vibration frequency is

(32a)
(

ω2

ω2
0

)

RC

= 1+ ϕRC

(

A0

h

)2

− ψRC

(

A0

h

)4

η2,

(32b)ϕRC =
3

4

5
(

21+ 21ξ4 + 10ξ2
)

128

(

1+ ξ4 + 2
3
ξ2
) ,

(32c)ψRC = −
5

8

π2
(

1− υ2
)

{

ξ2
[(

1323ξ2 − 882
)

C111 +
(

1323− 882ξ2
)

C222

]

+ 1155
2

C111 + 1155
2

ξ6C222

}

4096E
(

1+ 2
3
ξ2 + ξ4

) .

In view of Eqs. (31a) and (32a), the terms ϕSS
(

A0
h

)2

 

and ϕRC
(

A0
h

)2

 are caused by the Von Karman nonlin-

ear strain, and the terms ψSS

(

A0
h

)4

η2 and ψRC

(

A0
h

)4

η2 

are caused by the second order nonlinear elasticity. Con-
sequently, both the geometry nonlinearity and the elastic 
nonlinearity will lead to the dependence of the frequency 
ratio on the amplitude. More specifically, the geometry 
nonlinearity increases the frequency ratio while the elastic 
nonlinearity reduces the frequency ratio. Shown in Table 1 

is the value of ϕSS
(

A0
h

)2

, ϕRC
(

A0
h

)2

, ψSS

(

A0
h

)4

η2 and 

ψRC

(

A0
h

)4

η2 when A0/h = 1, η = 0.1 for varies aspect 

ratios. It is seem that when the aspect ratio is 1, ϕSS
(

A0
h

)2

, 

ϕRC

(

A0
h

)2

, ψSS

(

A0
h

)4

η2 and ψRC

(

A0
h

)4

η2 have their mini-

mum values, ϕSS
(

A0
h

)2

= 1.40625, ϕRC
(

A0
h

)2

= 0.08059 , 
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ψSS

(

A0
h

)4

η2 = 0.57129 and ψRC

(

A0
h

)4

η2 = 0.04581 . 

As the aspect ratio increases over 20, ψSS

(

A0
h

)4

η2 and 

ψRC

(

A0
h

)4

η2 increase sharply, when the aspect ratio is 50, 
those two terms are up to 359.519 and 86.5778, respec-
tively. To conclude, the effect of the nonlinear elasticity on 
the frequency ratio of elastic nonlinearity is smaller than 
that of the geometry nonlinearity when aspect ratio is less 
than 5, while the elastic nonlinearity has a steep increas-
ingly effect than geometry nonlinearity when the aspect 
ratio is larger than 5.

If let C111 = C222 = C112 = 0, we can get the frequency 

of the linear elastic plate 

(

ω2

ω2
0

)

RC

= 1+ ϕRC

(

A0
h

)2

, in 

which we can find that the free vibration frequency ratio 
of the linear elastic plate is independent of thickness-length 
ratio. The free vibration frequency of the square plate can 
be determined by setting ξ = 1.

Comparison of the simply supported boundary 
and the rigidly clamped boundary for square plate for 
υ = 0.3 is shown in Fig. 2. The green and yellow lines 
stand for the simple supported and rigidly clamped lin-
ear elastic graphene sheet, respectively. The relation-
ship between the frequency ratio and the amplitude is 
almost linear. When considering the nonlinear elasticity, 
the frequency ratio has a peak value for both the sim-
ple supported and rigidly clamped graphene sheet, the 
larger the thickness-length ratio is, the smaller the peak 
value is. The values for the particular case are shown in 
Fig. 2.

The vibration frequency for different values of ξ 
for simply supported and rigidly clamped plates for 

Table 1  Value of ϕSS

(

A0

h

)2

, ϕRC

(

A0

h

)2

, ψSS

(

A0

h

)4

η2 and 

ψRC

(

A0

h

)4

η2 when A0/h = 1, η = 0.1 for varies aspect ratio

ϕSS

(

A0

h

)2

ψSS

(

A0

h

)4

η2 ϕRC

(

A0

h

)2

ψRC

(

A0

h

)4

η2

ξ = 0.02 2.52945 0.14381 0.61519 0.03463

ξ = 0.05 2.52006 0.14324 0.61494 0.03464

ξ = 0.2 2.36483 0.13373 0.61068 0.03475

ξ = 0.5 1.81125 0.09700 0.59140 0.03534

ξ = 1 1.40625 0.08059 0.57129 0.04581

ξ = 2 1.81125 0.38800 0.59140 0.14135

ξ = 5 2.36483 3.34328 0.61068 0.86875

ξ = 20 2.52006 57.2968 0.61494 13.8552

ξ = 50 2.52945 359.519 0.61519 86.5778
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Fig. 2  Relationship between vibration frequency and amplitude for 
simply supported (S–S) and rigidly clamped (R–C) plate (υ = 0.3)
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for a 0 < ξ < 70; for b 0 < ξ < 4
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υ = 0.3,A0/h = 1 is shown in Fig. 3a. It is seen that the 
thickness-length ratio has an obvious effect of the vibra-
tion frequency: as the thickness-length ratio increases, the 
frequency ratio decreases. For simply supported plate, the 
frequency ratio has an evident minimal value 

(

ω2/ω2
0

)

m
 

when ξ is approximately equal to 1. The minimum values 
of 

(

ω2/ω2
0

)

m
 and corresponding stagnation points for var-

ies thickness-length ratios when A0/h = 1 are listed in 
Table 2. From Table 2 we can find that the elastic nonlin-
earity will reduce the value of 

(

ω2/ω2
0

)

m
 and the thickness-

length ratio has an influent on such effect: when the thick-
ness-length ratio decreases, 

(

ω2/ω2
0

)

m
 gradually approach 

to the linear elastic plate. On the other hand, for rigidly 
clamped plate, there is no obvious minimal value (see in 
Fig. 3b). It can be checked by finding the stagnation point 

of Eq. (31a) for ξ. By setting ∂
∂ξ

(

ω2

ω2
0

)

SS

= 0, we can easily 
get ξSS =

√
1+ φSS , where

When ξ = 1, φSS is 2.47851
(

A0
h

)2

η2. If the elastic non-
linearity is not considered, the stagnation point is precise 
equal to 1. When thickness-length ratio is 0.1, the stagna-
tion point is 1.012317. Recall thatξ = 1 stand for the gra-
phene sheet is square shaped, we can draw the conclusion 
that if only take the geometry nonlinearity into consider, a 
square plate possesses the lowest free vibration frequency. 
If considering the elastic nonlinearity in the same time, the 
graphene sheet whose aspect ratio is 

√
1+ φSS  possesses 

the lowest free vibration frequency. As the thickness-
length ratio decreases, the aspect ratio of which has the 
lowest free vibration frequency approach to 1 gradually. 
When the thickness-length down to 0.01, the aspect ratio 
is almost 1.

(33a)φSS = −
15π2

(

1− υ2
)

24576E
�SS

(

A0

h

)2

η2,

(33b)

�SS =
(

48ξ2 − 112

)

C111 +
(

18− 42ξ2 + 150ξ4 + 50ξ6
)

C222.

5  Conclusion

In the present work, free vibration of monolayer graphene 
sheet under simple supported and rigidly clamped bound-
ary condition has been carried out with continuum model. 
From the present work following conclusions are drawn:

1. Both the geometry nonlinearity and the elastic nonlinear-
ity will lead to the dependence of frequency ratio on the 
amplitude. The geometry nonlinearity increases the fre-
quency ratio but the elastic nonlinearity reduces the fre-
quency ratio. The elastic nonlinearity has a less effect on 
the frequency ratio than the geometry nonlinearity when 
the aspect ratio of the sheet is less than 5. However, the 
elastic nonlinearity plays a primary role than geometry 
nonlinearity when the aspect ratio is larger than 5.

2. The free vibration frequency ratio of a linear elastic 
graphene sheet has been found to be independent of 
thickness-length ratio of the sheet. However, the thick-
ness-length ratio has an obvious effect on the nonlinear 
elastic behavior of the graphene sheet: as the thickness-
length ratio increases, the frequency ratio decreases. In 
addition, the thickness-length ratio has been observed 
more significant effect on the simple supported plate 
than on the rigidly clamped plate.

3. For linear elasticity and nonlinear geometry mode, a 
square graphene sheet possesses the lowest free vibra-
tion frequency. For nonlinear elasticity and nonlinear 
geometry model, the graphene sheet with a aspect ratio √
1+ φSS possesses the lowest free vibration frequency. 

As the thickness-length ratio decreases, the aspect ratio 
corresponding to the lowest free vibration frequency 
approaches to 1 gradually. When the thickness-length 
decreases to less than 0.01, aspect ratio is almost 1.
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