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actuators (Burg et al. 2006; Kim et al. 2005; Hsu et al. 
2001; Nathanson and Wickstrom 1965; Nathanson et al. 
1967). Examples of these include mass, acceleration, and 
temperature sensors (Burg et al. 2006; Kim et al. 2005; 
Hsu et al. 2001). MEMS devices have several advantages 
that are related to their manufacturing technology allow-
ing them to be compatible with the complementary metal 
oxide semiconductor (CMOS) processes. This resulted into 
lower cost, low power consumption, and an increased reli-
ability and manufacturability. Papers dating back to the 60s 
by Nathanson et al. (1967) and Nathanson and Wickstrom 
(1965) have described the utilization of microbeams as 
MEMS resonators.

Bistable MEMS devices, such as initially curved micro-
beams, have been under increasing interest in the research 
community in recent years. Curved beams refer here to 
beams that are fabricated intentionally to be curved (arches) 
or made curved by buckling straight beams through com-
pressive axial loads (buckled beams). Many groups (Saif 
2000; Masters and Howell 2003; Receveur et al. 2005; 
Charlot et al. 2008; Sulfridge et al. 2004; Vangbo 1998; 
Qui et al. 2004; Han et al. 2002; Seunghoon and Dooyoung 
2008; Ko et al. 2006; Michael and Kwok 2006; Qui et al. 
2005; Casals-Terré and Shkel 2005; Zhang et al. 2007; Kry-
lov et al. 2008; Das and Batra 2009) studied the bi-stability 
behavior of initially curved microbeams, which were found 
to be suitable for applications such as micro-shutter posi-
tioning, micro-valves, and electrical micro-relays. These 
beams have been proposed also as switches and actuators 
based on their snap-through motion. Most of the MEMS 
literature has been focused on utilizing snap-through as 
a static phenomenon due to the actuation of static forces. 
Those forces can be mechanical (Qui et al. 2004), magnetic 
(Han et al. 2002; Seunghoon and Dooyoung 2008; Ko et al. 
2006), thermal (Michael and Kwok 2006; Qui et al. 2005), 

Abstract In this paper, we investigate the effects of elec-
tric fringing-fields on the structural behavior of a MEMS 
shallow arch. We consider the Galerkin method-based 
reduced-order modeling to discretize the governing non-
linear equation and obtain a lumped-parameter model of 
the system. We then assume two most well-known mod-
els for demonstrating the fringing-fields effects, that is the 
Palmer’s and the Mejis-Fokkema models. Using the discre-
tized model, we investigate the system nonlinear behavior 
assuming the two electric fringing-fields models. The pre-
sented results show that for these particular cases of arch 
configuration, fringing-fields effects should be considered 
since it improves the prediction of corresponding volt-
ages for both snap-through and pull-in structural instabili-
ties as well as the overall static deflection of the MEMS 
arch. Comparisons of the acquired numerical results with 
some available experimental data as well as ANSYS® 
based finite-elements simulations confirm that neglecting 
the fringing-fields effects in MEMS arches can represent a 
significant source of error which should be avoided using 
much more accurate modeling techniques.

1 Introduction

Microlectromechanical systems (MEMS) devices have 
been investigated thoroughly in the literature for their 
potential to build more effective and robust sensors and 
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and electrostatic (Casals-Terré and Shkel 2005; Zhang et al. 
2007; Krylov et al. 2008; Das and Batra 2009).

When actuating a curved microbeam by parallel-plates 
electrostatic technique, the stability behavior of the arch 
becomes more interesting. Studies of electrostatically-actu-
ated curved microbeams have shown that they may exhibit 
snap-through buckling or pull-in instability as well as bista-
ble behavior depending on the interaction between mechan-
ical and electrostatic nonlinearities (Casals-Terré and Shkel 
2005; Zhang et al. 2007; Krylov et al. 2008; Das and Batra 
2009). Casals-Terré and Shkel (2005) studied theoretically 
and experimentally the possibility of triggering the snap-
through motion of a bi-stable electrically-actuated beam 
driven dynamically by means of mechanical resonance. 
Zhang et al. (2007) and Krylov et al. (2008) conducted the-
oretical and experimental investigations of initially curved 
clamped–clamped microbeams actuated by DC loads. 
Their simulations were based on the Galerkin method and 
they have shown good agreement among their theoretical 
and experimental results. Das and Batra (2009) conducted 
a transient analysis of curved microbeams using coupled 
finite-element and boundary-element methods. They have 
shown the softening effect of the MEMS arch may be dom-
inant before it experiences its snap-through motion.

To solve the nonlinear differential equation governing the 
structural behavior of MEMS arches, various methods can 
be assumed such as Finite-Element Method (Hung and Sen-
turia 1999), Finite-Difference Method (Najar et al. 2006), 
Shooting Method (Abdel-Rahman et al. 2002; Ouakad and 
Younis 2009), Differential-Quadrature Method (Najar et al. 
2006)…, etc., which are considered to be computationally 
expensive and in some cases unstable since some rely on 
initial guesses. Another powerful technique is the so-called 
Galerkin expansion discretization which is mainly used to 
derive Reduced-Order Models (ROM) from distributed (con-
tinuous) systems. This method is a well-used technique in the 
literature of MEMS devices (Younis 2011). The main prob-
lem with this approach is that the distributed electrostatic 
force comes in an integral form in the resulting ROM equa-
tions, and consequently this collocated arrangement (integral 
with a nonlinear denominator function of the ROM compo-
nents) is not easy to deal analytically due to nonlinearities 
arising from its denominator. As an attempt to overcome this 
challenge, some groups (Zand and Ahmadian 2009; Chao 
et al. 2008) used Taylor-series expansion procedure, which 
brings the nonlinearity to the numerator of the electrostatic 
force and hence simplifies the calculation of nonlinear ROM 
integrals. However, due to neglected higher-order terms in 
the Taylor-series expansion, accuracy of this method is still 
questionable as the system approaches some of its structural 
instability such as pull-in (Younis et al. 2003). Therefore, 
without retaining sufficient number of terms in the Taylor-
series expansion, this approach may give erroneous results.

The other suggested method for dealing with the nonlin-
ear Galerkin integrals is to multiply the whole equation of 
motion by the nonlinear denominator of the electrostatic 
force before performing Galerkin’s expansion technique 
(Younis et al. 2003). This approach prevented initiation of 
the complicated nonlinear integrals and therefore made the 
process of reduced-order modeling simple. Nevertheless, this 
method resulted in non-diagonal mass and stiffness matrices 
in the discretized ROM equations, and hence increased expo-
nentially the computational costs (Younis 2011). In some of 
our previous work (Ouakad and Younis 2014; Ouakad 2013, 
2014), we proposed an alternative approach to deal with 
the complicated integral terms due to the nonlinear forces. 
We suggested evaluating the spatial integrals containing the 
mode shapes numerically simultaneously while solving the 
modal-amplitude equations with respect to time in the Galer-
kin Expansion. Efficiency of this approach for higher mode 
shapes was investigated and results showed excellent agree-
ment with other numerical methods.

Electric fringing-fields have been previously modeled 
and many groups (Zand and Ahmadian 2009; Chao et al. 
2008; Batra et al. 2006a, b, 2008; Ramezani et al. 2007) 
have demonstrated that this component is an important and 
effective nonlinearity in investigating electrostatically-actu-
ated MEMS devices. Two models for the electric fringing-
fields effects, namely the Palmer’s and the Mejis-Fokkema 
models have been suggested and investigated in these 
works: Das and Batra (Batra et al. 2008) have considered 
this effect in their numerical investigations of bistable arch-
shaped MEMS, Krylov et al. (2011) considered this effect 
as a driving actuation for a specific initially curved micro-
beam. In one of our previous numerical investigation of 
MEMS arches (Ouakad and Younis 2010), we assumed the 
Mejis-Fokkema model to account for the electric fringing-
fields effects but we are not able to prove the significance 
of these effects on the structural behavior of MEMS arches. 
Hence, more detailed analysis seems to be essential.

The above few cited investigations reported the derivation 
of the governing equations of motion of MEMS arches, and 
then presented some diagrams to investigate their structural 
behavior while looking at the effects of their various geo-
metrical properties. In this paper, effect of the electric fring-
ing-fields on the structural behavior of a clamped–clamped 
initially curved shallow microbeam is investigated. Contribu-
tions of this work are the following: First, a nonlinear struc-
tural model for a MEMS arch while including the electric 
fringing-fields effects is derived. Second, a Galerkin based 
numerical scheme is implemented to handle the derived 
highly nonlinear beam model in order to calculate numeri-
cally the variation of the MEMS arch deflection and its fun-
damental natural frequency with the applied electric force. 
Third, simulations results demonstrating the influence of con-
sidering the effect of the electric fringing-fields are discussed.



1393Microsyst Technol (2018) 24:1391–1399 

1 3

In the coming sections, the governing equations of the 
proposed actuator are first presented. Then, description of the 
reduced-order model is presented. The static and eigenvalue 
problem of the electrostatic actuator under a DC load and 
with considering the electric fringing-fields effect are solved 
and discussed. Finally, the main results of this theoretical 
investigation are summarized in the conclusion section.

2  Problem formulation

In this section, we present and describe the problem gov-
erning the in-plane structural behavior of an electro-
statically actuated shallow arch. Hereafter, (ˆ) denotes 
dimensional quantities. We consider a flexible doubly-
clamped prismatic microbeam, Fig. 1a, initial shape 
ŵ0(x̂) = bo[1− cos(2π x̂)]/2, where bo is the initial rise, 
actuated by an electrode underneath it with a gap width 
d̂ through a DC electrostatic load, Fig. 1b. Its length is 
L̂ , cross-section area is Â = b̂ĥ, second moment area is 
Î = Iŷŷ = b̂ĥ3/12, where b̂ and ĥ are the width and the 
thickness of the beam, respectively. The beam is assumed 
to be made of homogeneous isotopic elastic material with 
mass density ρ̂, Young’s modulus Ê and Poisson’s ratio ν̂. 
Since the width of microbeam is somehow assumed to be 
larger than its thickness, we assume an effective modulus 
of elasticity Ê′ = Ê/2(1− ν̂2).

In this investigation, we assume a shallow arch, in 
which ŵ′

0 << 1, where the “ ′” denotes the derivative with 
respect to x. Hence, when actuated by electrostatic forces, 
the parallel-plates assumption can be considered valid. 
In another word, the axial component of the electrostatic 
force, due to the upper deformed electrode (the arch), is 
assumed negligible. This assumption however may not be 
valid for deep arches. The shallow arched microbeam is 
free to deflect in the (x̂, ẑ) plane, while its clamped ends 
are constrained in both lateral ẑ and axial x̂ directions by 
unmovable anchors. The beam is actuated by an elec-
trostatic force assumed to have only a ẑ-component by a 
grounded electrode located underneath the beam and with 

an initial gap distance d in the ẑ direction, Fig. 1b. There-
fore, assuming an Euler–Bernoulli beam model, the non-
linear equation of motion governing the transverse deflec-
tion ŵ

(

x̂, t̂
)

 of the arch of width b̂, thickness ĥ, and length 
L̂ is expressed as (Nayfeh 2000)

where the function F̂elect

(

ŵ,VDC

)

 represents the distributed 
electrostatic force per unit length arising between the two 
parallel electrodes, the curved microbeam and its lower 
stationary actuating electrode, respectively. Neglecting the 
electric fringing-fields effect, the electrostatic force per unit 
length of the beam can be approximated as (Batra et al. 
2006a, b)

where Ŵ(x̂, t̂) = d̂ − ŵ0(x̂)− ŵ(x̂, t̂), and where 
ε0 = 8.854× 10−12 F.m−1, is the permittivity of free space 
and VDC is the DC voltage applied between the moving 
arched electrode and the stationary electrode which are ini-
tially separated by a gap distance of d̂ − ŵ0(x̂). Note that 
the subscript “elect_PP” in Eq. (2) denotes the parallel-
plates electric force without considering the fringing-fields 
effects.

To complement the electric fringing-fields effects, a 
correction is to be suggested to the electrostatic equation, 
Eq. (2). Two famous models for this correction are exten-
sively used in the literature: the Palmer and the Mejis-Fok-
kema models. These models adjust the electrostatic force 
for a clamped–clamped microbeam, respectively, as fol-
lows (Batra et al. 2006a):
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Ê

′
Â
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Fig. 1  a 3D schematic and, b in-plane view of the electrostatically-actuated clamped-clamped MEMS arch
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The subscripts “elect_P” and “elect_MF” in Eqs. (3) and 
(4) denote the modified electrostatic force while consider-
ing the fringing-fields effects through the Palmer model 
and the Mejis-Fokkema model, respectively.The boundary 
conditions of the MEMS arch are

For convenience, we introduce the following nondimen-
sional variables:

where T̂  is a time constant defined by T̂ =

√

ρ̂ÂL̂4
/

Ê′Î .
By substituting Eq. (6) into Eqs. (1)–(5), the normalized 

equation of motion and associated boundary conditions for 
the considered clamped–clamped arch are written as

where
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ŵ,VDC

�

=
ε0b̂V

2
DC

2

�
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and where

The solution of the above nonlinear equations, Eqs. (7)–
(10) cannot be calculated analytically in a closed form, but 
will be approximated numerically in the next section.

3  Numerical model

To solve the obtained normalized equations governing the 
in-plane deflection of the curved microbeam, Eqs. (7)–(8) 
along with the respective electrostatic actuating function 
given by Eq. (9), the equations are discretized using the 
Galerkin expansion technique to yield a ROM (Ouakad and 
Younis 2014; Ouakad 2013). Hence, the deflection of the 
actuator is assumed as

where the special functions φi(x) are assumed to be the lin-
ear normalized un-damped mode-shapes of a fixed–fixed 
microbeam and the time varying functions ui(t) are its nor-
malized modal amplitude coordinates.

To get the ROM, we substitute Eq. (11) into Eqs. (7)–(9) 
and Eq. (8), multiply by φi(x), use the orthogonality con-
ditions of the normalized un-damped mode-shapes, and 
then integrate the resultant equations from 0 to 1. The out-
come is a set of differential equations function of the modal 
amplitudes ui(t).

It is worth to mention here that, in the process of get-
ting the ROM equations, the mode-shape functions φi(x) 
will remain embedded inside the denominator of the elec-
trostatic force approximated expression, Eq. (9), in the 
ROM (Ouakad 2014). To deal with the complicated result-
ing integral terms due to that nonlinear electric force, we 
simultaneously evaluate the spatial integrals containing 
the space-dependent mode-shape functions φi(x) numeri-
cally while integrating the differential equations with 
respect to the time-dependent modal amplitude functions 
ui(t).

Since we are considering here to solve for the static 
behavior of the arched microbeam under the fringing-fields 
electrostatic force, we calculate its deflection by setting all 
time-dependent terms in the ROM differential equations 
equal to zero. Then the modal amplitudes ui(t) are replaced 
by unknown constant quantities ai. This results in a system 
of nonlinear algebraic equations in terms of those coeffi-
cients. The system is then solved numerically using the 
Newton–Raphson method.
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2Î
= 6

(

d̂

ĥ
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ui(t)φi(x),
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4  The eigenvalue problem

To investigate the eigenvalue problem of the MEMS arch, 
we propose to calculate the variation of its natural frequen-
cies under the effect of the applied DC voltage. To this end, 
we consider the ROM modal amplitudes discretized equa-
tions, which can be written in a state-space form as:

where

is the arch normalized modal coordinates vector and R(U) 
is a right-hand side vector representing its stiffness coef-
ficients. Note that the vector R(U) is a nonlinear function 
of the modal amplitudes functions ui(t). We considered in 
this particular problem the symmetric and anti-symmetric 
mode-shapes in the ROM to get all the possible natural 
frequencies of the actuator. Next, we split U into a static 
part us, representing the equilibrium position due to the DC 
actuation, and a dynamic part η(t) representing the dynamic 
perturbation around the equilibrium position, that is:

Then, substituting Eq. (14) into Eq. (12), using a Tay-
lor-series expansion assuming small perturbation η(t), then 
eliminating the higher-order components, and using the 
fact that R(us) = 0, we get the following equation:

where J(us) represents the Jacobian matrix of the curved 
microbeam evaluated at its equilibrium points (Nayfeh and 
Balachandran 1995).

(12)U̇ = R(U),

(13)U = [u1, u2, . . . , un]
T ,

(14)U = us + η(t),

(15)η̇(t) = J(us)η(t),

To get the natural frequencies of the MEMS arch at a 
given DC voltage, we substitute the static solution us into 
the matrix J and then find its corresponding eigenvalues 
which are calculated by solving numerically the below 
characteristic equation for the eigenvalue �, that is:

where I represents the identity matrix and “det” refers to 
the determinant operator. Then each eigenvalue represents 
a particular natural frequency of the arched microbeam.

5  The static response

As a case study, we consider the fabricated clamped–
clamped shallow arch made of silicon of Krylov et al. 
(2008) of L̂ = 1000 µm, ĥ = 2.4 µm, b̂ = 30 µm, 
d̂ = 10.1 µm, and initial rise bo = 3.5 µm. First, we examine 
the static bifurcation diagram of the shallow arch. Figure 2 
shows the maximum static deflection (the mid-deflection) 
of the shallow arch when using one up to ten mode shapes 
in Eq. (11) while varying the DC load. As shown in the 
figure, for relatively small DC load, only one stable fixed 
point exists. This stable branch ends with a point for which 
a small increase in the applied DC voltage results in an 
instability; simply called the snap-through instability, and 
after which another stable fixed point is born if the applied 
DC load is increased further. We can also see that there is 
an interval of DC loads representing the possibility of hav-
ing two co-existing stable solutions. This interval is called 
the bi-stability band (also called snap-through band). The 
stable branch that initiates after this band ends with another 
structural instability: the so-called pull-in instability where 

(16)det(J(ws)− �I) = 0,

Fig. 2  Comparison between 
the variation of the static 
deflection of the shallow arch 
with the DC voltage with and 
without including the effect of 
the electric fringing-fields of 
the electrostatic force, and with 
experimental data of Krylov 
et al. (2008)
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the arched moving electrode touches its lower stationary 
actuating electrode.

In the same figure we demonstrate the difference in the 
static response of the MEMS arch with and without con-
sidering the electric fringing-fields effect. It is noted from 
the displayed results that assuming either models (the 
Palmer and the Mejis-Fokkema models) the values of volt-
ages at which the shallow arch is undergoing snap-through 
and pull-in are different from the parallel-plates model 
only. We can clearly see that the shallow arch undergoes 
a snap-through motion near VDC = 90 V and then a pull-in 
instability near VDC = 113 V, while neglecting the fringing-
fields effects. Whereas, these values were around 80–83 
and 102–105 V, respectively, when we considered the effect 
of the electric fringing-fields.

In the same figure, we validate the results using the ten 
modes of the ROM for the clamped–clamped arch by com-
paring them with the experimental data of Krylov et al. 
(2008). In order to compare all the assumed models results 
obtained numerically assuming the ROM with the experi-
mental data available in the literature for the snap-through 
buckling instability. As a comparison criterion, we use the 
static deflection value of each assume model for several 
DC voltages of the actuating distributed force and com-
pare them with the measured experimental value reported 
in Krylov et al. (2008). The comparison is illustrated in 
Table 1. It is clear that the experimental data and the ROM 
results are in good agreement while considering the electric 
fringing-fields effects in the ROM equations.

In Fig. 3, the effect of the initial rise on the static deflec-
tion of the arch is presented while considering only the 
electric parallel-plates model. For the cases of bo = 2.5 µm 
and bo = 3.5 µm, the arch undergoes a snap-through first 
and then it pulls-in while increasing the applied DC load. 
However, for the case of bo = 4.5 µm the arch undergoes 
immediate pull-in without snap-through. The figure shows 
that the snap-through voltage increases and the pull-in volt-
age decreases when increasing the initial rise value of the 
shallow arch. This indicates that the stiffness of the shallow 

arch increases before snap-through and then decreases 
in the buckled position with the increase of its initial rise 
parameter bo.

Figure 4a, b show the effect on the static deflection 
of the arch for two different values of initial rise while 
neglecting and then considering the effect of the electric 
fringing-fields. We assumed for both figures the Mejis-
Fokkema model. Comparing the two models confirms 
that electric fringing-fields effect is mainly substantial to 
be included in any analysis of the structural behavior of 
MEMS arches. We calculated a maximum of 12 % rela-
tive error in the prediction of static deflection of the MEMS 
arch when neglecting this effect. Also we found a relative 
error of almost 22–25 % in predicting the snap-through as 
well as the pull-in voltages, respectively.

In order to validate the obtained ROM based results, com-
parison with the finite-elements (FE) software ANSYS are 
also shown. The ANSYS model shown in Fig. 4c consists 
of a coupled electrostatic-structural element (TRANS126 
elements) to model the electrostatic coupling between the 
curved microbeam (moving electrode) and a grounded gate 
(the lower stationary electrode). The assumed element is a 
two-node element which has one structural degree of free-
dom and an electrical potential between the nodes. One end 
of each element is held fixed, while the other is coupled to a 
structural node in the upper electrode. A voltage difference 
is applied across the TRANS126 element, which creates an 
attractive force that is resisted by the stiffness of the mov-
ing electrode. The comparison shows excellent agreement 
among the ROM nonlinear beam model and the nonlinear 
finite-element model.

Table 1  Relative error (%) at different DC voltages between the 
ROM with and without including the effect of the electric fringing-
fields of the electrostatic force in comparison with experimental data 
of Krylov et al. (2008)

A zoomed view showing the second static stable branch
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Krylov et al. (2008)
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Fig. 3  Variation of the static deflection of the shallow arch with the 
DC voltage for various values of initial rise bo and with considering 
the electric parallel-plates model
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Fig. 4  a, b Variation of the 
static deflection of the shallow 
arch with the DC voltage for 
two values of initial rise bo with 
and without considering the 
electric fringing-fields effect. 
c The finite-elements method 
model in ANSYS®

(a) 3.5 ob m (b) 4.5 ob m

(c) The ANSYS® Model
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Fig. 5  Variation of the fundamental natural frequency with the DC voltage of the shallow arch for various values of initial rise bo with and with-
out considering the electric fringing-fields effect
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6  The fundamental frequency under dc load

Next, we show the effect of the initial rise on the funda-
mental natural frequency of the MEMS arch with (when 
considering the Mejis-Fokkema model) and without 
(while assuming the Parallel-Plates model) consider-
ing the electric fringing-fields effect, Fig. 5a, b. For the 
first case of bo = 3.5 µm, the natural frequency drops 
to zero when the DC load is close to the snap-through 
instability value, Fig. 5a. Beyond this critical value, the 
curves in Fig. 5a show an increase of the natural fre-
quency followed by a sudden drop to zero when the DC 
voltage reached the pull-in voltage. For the second case 
where bo = 4 µm, Fig. 5b, the arch undergoes imme-
diate pull-in without snapping-through if the DC load 
is increased continuously. In this case, the softening 
effect of the electrostatic force is always dominant. As 
seen in the same figures, including the electric fringing-
fields effect caused a significant change in the values of 
the calculated fundamental natural frequency for both 
cases.

7  Conclusions

In this paper, an investigation into the nonlinear structural 
behavior of an electrically actuated clamped–clamped shal-
low MEMS arch under distributed DC electrostatic actua-
tion was presented. An Euler–Bernoulli continuous beam 
model was adopted while considering the nonlinear electric 
fringing-fields effects. Two models of the electric fringing-
field effects (the Palmer’s model and the Mejis-Fokkema 
model) were adopted in this regards. The derived nonlin-
ear differential equation was discretized using a ROM 
obtained through a Galerkin expansion technique and then 
solved numerically assuming Newton–Raphson method. 
First, the numerical static deflection results of a MEMS 
arch were compared with and without considering the two 
fringing-fields effect models. The comparison to previously 
reported experimental data showed excellent agreement 
when compared to the models where the fringing-fields 
effects were included. Then, calculation of the normalized 
fundamental natural frequency of the MEMS arch with and 
without considering these effects confirmed the significant 
change in this fundamental frequency. Further, the results 
discussed in this paper showed that neglecting electric 
fringing-fields effects caused significant errors in modeling 
the resultant electrostatic actuating force and consequently 
in estimating accurately the structural parameters of the 
MEMS arch such as: its static deflection (6–10 % error), 
its snap-through and pull-in voltages (12–25 % error), and 
its fundamental natural frequency. Therefore, the electric 

fringing-fields effects should not be neglected in modeling 
the structural behavior of MEMS arches if accurate estima-
tions of all its structural parameters are needed.
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