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1  Introduction

Because of good thermal conductivity and unique electri-
cal properties, carbon nanotubes (CNTs) are known as very 
attractive nano-scale materials with a wide variety of indus-
trial applications. CNTs play significant roles in the design 
and fabrication of nano-devices such as switches and sen-
sors (Li et  al. 2008), nano-tweezers (Nakayama 2002), 
mass-detectors (Li and Chou 2004) and etc. Due to their 
tiny size, these nano-structures show distinctive mechani-
cal properties such as ultra-low mass and high resonance 
frequency that make them promising devices in nanotech-
nology and biotechnology. Likewise, their excellent elec-
tromechanical properties can make them very good can-
didates to fabricate the nano-electromechanical systems 
(NEMS). Mahar et al. (2007) discussed the electromechan-
ical properties of CNTs and reviewed a range of nanotube-
based sensors, focusing on mechanical pressure actuators 
and strain actuators. Ke et  al. (2005) presented the elec-
tromechanical behavior of CNT-based NEMS applying 
a theoretical study by employing small deformation and 
finite kinematics regimes. They analyzed their experi-
ment outcomes using energy-based theoretical approaches 
and predicted the deflection as well as the pull-in voltage 
of the nano-switches. The investigation on the static and 
dynamic behavior of CNT-based actuators was performed 
by Dequesnes et  al. (2004) using combined MD/contin-
uum mechanics approach. They predicted the pull-in volt-
age of a CNT-based actuator suspended over a fixed elec-
trode with the consideration of van der Waals attraction. 
Desquenes et al. (2002) proposed parameterized continuum 
models in order to investigate the pull-in characteristics of 
carbon nanotube switches subject to electrostatic actuation. 
Nonlinear dynamics and pull-in behavior of electrically 
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actuated carbon nanotubes including geometric nonlinear-
ity was investigated by Ouakad and Younis (2008) using 
reduced order method. They also determined the nonlin-
ear resonance frequency of CNT sensors under alternating 
current (AC) voltage. More findings on pull-in characteris-
tics of the CNT-based nano-switches can be found in refs. 
(Loh and Espinosa 2012; Koochi et al. 2014; Sedighi and 
Daneshmand 2014; Farrokhabadi et al. 2014).

The electromechanical and pull-in behavior of CNT 
structures can be examined by several approaches. Molec-
ular mechanics modeling may be employed to model the 
mechanical characteristics of CNTs (Kang et  al. 2006; 
Hwang and Kang 2005; Gupta and Batra 2008; Sears and 
Batra 2006; Dequesnes et  al. 2002). However molecular 
mechanics/dynamics is very time-consuming and are not 
easily applicable in analyzing nano-systems with extremely 
large number of atoms. In this regard, most of theoretical 
researchers have preferred continuum beam models for 
simulation of the pull-in instability of CNT-based NEMS. 
However, conventional beam theories are not able to model 
all deformation modes such as rippled configuration. Rip-
pling is the wavelike deformation/distortion on the inner 
arc of the bent nanotubes. Note that CNT is exceptionally 
flexible in bending and can undergo large elastic defor-
mation without rupture failure. The structural characteris-
tics and the resonant frequencies of CNTs are influenced 
by rippling deformation and cause the bending moment 
to be a non-linear function of deformation (Soltani et  al. 
2012). Therefore, in studying the dynamic pull-in behav-
ior of vibrating CNTs, instantaneous curvature of nanotube 
including rippling effect should be taken into considera-
tion. Arroyo and Belytschko (Arroyo and Belytschko 2003) 
developed a nonlinear local quasi-continuum approach to 
analyze the effective modulus of multiwalled CNTs under-
going rippling phenomenon. They demonstrated that the 
predicted effective stiffness of the structure in bending and 
torsional deformations were much smaller than those pre-
dicted by classical elasticity theory. With this distinct prop-
erty, CNT shows local deformation i.e. formation of ripples 
under sever bending. Wang et  al. (2005) used experimen-
tal techniques to infer the bending modulus of cantilevered 
CNTs. They found that the rippling phenomenon results in 
reduction of effective bending modulus of large diameter 
nanotubes. In another research, Wang and Wang (2004) 
numerically investigated the bending mechanical property 
of carbon nanotubes and developed a non-linear bending 
moment–curvature relation for rippled nanotubes of various 
sizes. This relation has been used by few researchers for 
modeling vibration of rippled CNTs using modified beam 
models (Mehdipour et  al. 2012). The rippling morphol-
ogy of a CNT changes the structural characteristics, hence, 
the bending stiffness depends on the bending deformation 
and the curvature of CNT. Since the rippling deformation 

induces nonlinearity, the linear Euler–Bernoulli beam the-
ory might not be reliable for analysis of CNT actuators. 
One of the main goals of the present work is to incorpo-
rate the nonlinear effect of the rippling deformation in the 
theoretical beam model used for pull-in analysis of CNT 
actuator.

Besides the rippling, the charge distribution along the 
cantilever CNT is another important issue in precise mod-
eling of the actuators via using beam models. One of the 
key features is the concentration of charges at the cantilever 
CNT end which originates from the constant electrostatic 
potential along conductive nanotubes. It was demonstrated 
that the longer nanotubes show greater charge enhancement 
at the end for a specific charge density (Jackson 1975). 
Keblinski et al. (2002) presented the comprehensive study 
to investigate the behavior of voltage-induced carbon nano-
tubes with finite-size employing density-functional analysis 
together with the traditional electrostatics modeling. Their 
findings revealed that the electrostatic force can be mod-
eled using the classical distribution in conjunction with 
the charge accumulation at the nanotube end. Wang (2009) 
studied the impacts of external electric field on the distri-
bution of charge density in CNT actuators. They found 
that the charge concentration is less important as the die-
lectric constant of ground plane increases or the nanotube 
becomes closer to the fixed electrode. Ke and Espinosa 
(2005) computed the charge induced on a conductive nano-
tube with finite length on the basis of classical electrostatic 
theory. They presented a formula to predict the charge 
distribution including end charge effects using parametric 
analysis. In present study, we use their proposed formula-
tion to incorporate the CNT tip charge concentration in the 
governing equation of the cantilever nanotubes.

Basically, when the electronic and mechanical sys-
tems are fabricated at nano-scale size, some new phenom-
ena originated from the nano-size quantum effects have 
become increasingly important and the motion of nano-
tube-based structure is affected by the small-scale quantum 
electrodynamical interactions such as vacuum fluctuations. 
The effect of vacuum fluctuation forces can be modeled 
through the Casimir attraction which is the dominant phe-
nomenon in sub-micron separations (Farrokhabadi et  al. 
2014). By integrating a force-sensing micromechanical 
beam and an electrostatic actuator on a single chip, Zou 
et  al. (2013) demonstrated the Casimir effect between 
two micromachined silicon components on the same sub-
strate. Lombardo et  al. (2008) numerically evaluate the 
Casimir interaction energy for configurations involving 
two perfectly conducting eccentric cylinders and a cylin-
der in front of a plane. Emig et al. (2006) found the exact 
Casimir force between a plate and a cylinder by assuming 
an intermediate geometry between parallel plates and the 
plate-sphere. Bordag et  al. (2001) provided a review of 
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both new experimental and theoretical developments in the 
Casimir effect. They demonstrated that the Casimir force 
strongly depends on the shape, size, geometry and topol-
ogy of the boundaries. Therefore, many investigations have 
been conducted to compute the Casimir attraction for dif-
ferent geometries including parallel plates (Casimir 1948; 
Guo and Zhao 2004; Lin and Zhao 2005), plate-sphere 
(Casimir and Polder 1948), parallel cylinders (Teo 2011) 
and plate-cylinder (Teo 2011). A nano-scale device might 
adhere to its substrate due to Casimir force, if the minimum 
gap between the flexible beam and the substrate is not con-
sidered. Besides interfering with the stability of vibrating 
nanostructures, the Casimir force can also induce undesired 
adhesion during the fabrication stages.

The motivation behind this research is to examine the 
nonlinear influence of the rippling deformation, Casimir 
attraction and concentrated charge effects on the dynamic 
behavior and instability analysis of CNT actuators. While 
the impacts of various physico-mechanical properties on 
the electromechanical instability of CNT actuators have 
been explored in depth, the roles of rippling deformation 
and charge concentration on the instability characteristics 
have received much less attention. The precise simulating 
of dynamic behavior of CNTs under more realistic condi-
tions is very crucial. Nevertheless, the impact of rippling 
deformation together with the concentrated charge effect on 
the dynamic and instability behavior of CNT actuators has 
not been addressed, yet. The present study intends to exam-
ine the dynamic pull-in instability of cantilever CNT actua-
tor considering rippling and charge concentration phenom-
ena as well as the Casimir force and mechanical damping. 
The influence of the rippling and the charge concentration 
on the dynamic pull-in value and pull-in time of CNT-
based actuators are presented. The stability of the actuator 
is examined by plotting the phase diagrams. Accuracy of 
the present analysis is assessed by comparison between the 
obtained results and the reported results by experimental 
data and molecular dynamics.

2 � Mathematical formulation

In this section, the vibrational governing equation for car-
bon nanotubes under suddenly applied voltage with the 
consideration of Casimir force by incorporating the rip-
pling deformation and concentrated charge effects is pre-
sented. As illustrated in Fig.  1, a nanotube is suspended 
over graphite sheets under electrical actuation voltage 
(V). The electrical force together with the intermolecular 
attraction between the electrodes causes the CNT to deflect 
towards the ground plate. The CNT has mean radius Rw, 
length L and multiwall nanotube layers of Nw. The initial 
gap between nanotube and the ground electrode is D.

Figure 2 illustrates a high-resolution TEM image of rip-
pled configuration in a bent nanotube which reveals a local 
buckling distortion along the inner arc of the nanotube 
(Farrokhabadi et al. 2014).

The equation of transverse vibration for CNT by consid-
ering rippling deformation and concentrated charge effects 
is governed by:

where M(x, t) is the bending moment, w(x, t) is the beam 
deflection, c denotes the damping coefficient and q(x, t) is 
the applied distributed load per unit length of nanotube by 
electrical actuation and interatomic attraction. The distrib-
uted force q are given by:

in which Fcas represents the Casimir attraction. For the case 
of conducting parallel flat plates, the Casimir energy per 
unit area separated by a distance D is (Bordag et al. 2001):

where c is the light speed and h̄ is Planck’s constant. It 
should be noted that, this formula can be obtained with 
the consideration of the electromagnetic mode structure 

(1)
∂2M

∂x2
+ c

∂w

∂t
+ ρA

∂2w

∂t2
= q(x, t)

(2)q(x.t) = Fcas + Fe

(3)Epp(D) = − π2hc

720D3

Fig. 1   Schematic representation of cantilever CNT suspended over 
graphite sheets

Fig. 2   A TEM image of rippled configuration in a bent nanotube 
(Wang et al. 2005)
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between the two plates in comparison with the free space 
by assigning a zero-point energy to each electromagnetic 
mode (Lamoreaux 2005). Proximity force approximation 
(PFA) fundamentally uses the relation described in Eq. (3) 
to predict the Casimir force in the case of small separation. 
Based on PFA approach, the interaction between any other 
surfaces is modeled through a summation of infinitesimal 
parallel plates (Bordag et al. 2001). For small separations, 
the correct zeroth order approximation for the Casimir 
energy is given by:

in which, S is one of the two surfaces restricting a gap. It 
should be emphasized that for large separation as well as 
non-smooth surfaces the PFA cannot be used. Therefore, 
another approach should be employed to model the Casimir 
attraction force for the case of larger separations. In order 
to appropriate modeling of Casimir energy in large sepa-
rations, a path integral representation (Chan et al. 2008) is 
used. To this end, the electrodynamic Casimir energy of 
two disconnected metallic surfaces using Dirichlet mode 
definition at zero temperature is determined (Li and Kardar 
1998; Buscher and Emig 2005). The Casimir energy of this 
mode and at zero temperature is expressed as:

in which

where the matrix M12 represents the geometry of the sur-
faces 1 and 2, M−1

∞  is the functional inverse of matrix M 
at infinite surface separation, si(u) is a vector referring to 
the ith surface parameterized by the surface vector u and 
G0 denotes the free space Green function (Rahi et al. 2008). 
Based on the PFA (for small separations), the Casimir 
energy can be obtained as:

where R denotes the radius of nanotubes and D is the gap 
distance. Therefore, the Casimir force for small separation 
approximation (SSA) can be obtained by differentiating the 
energy with respect to D as:

(4)EPFA =
∫

s

EPP(D)dS = −π2hC

720

∫∫

dS

D3

(5)ED = h̄c

2π

∞
∫

0

Tr ln(MM−1
∞ )dq0

(6)

M12

(

u, u′; q0
)

= G0

(

s1(u)− s2
(

u′
)

; q0
)

,

G0

(

x, x
′ ; q0

)

= e−q0|x−x′|
4π |x − x′|

(7)EPFA = −π3h̄cL

960

√

R

2D5

(8)fcas = −∂E(D)

∂D
= 1

768
π3h̄cL

√

2R

D7

Otherwise, for the case of cylinder-plate geometry with 
large separation gap, i.e. D ≫ R, the approximate expres-
sion for the attractive Casimir energy is written as (Bulgac 
et al. 2006):

thereby, the Casimir force for large separation approxima-
tion (LSA) can be expressed as:

Furthermore, Fe in Eq. (2) denotes the distributed elec-
trostatic force. The capacitance model is used to describe 
the electrostatic force. The capacitance per unit length of 
CNT denoted by C and the electrical force can be expressed 
as Hayt and Buck (2001):

in which V denotes the applied voltage and ε0 is the permit-
tivity of vacuum (ε0 =  8.854 ×  10−12  C2N−1m−2). How-
ever, Ke and Espinosa (2005) demonstrated that except for 
the tube ends, the electrostatic charge distribution applied 
on the cantilevered CNTs can be expressed by Eq.  (11b). 

(9)ED = − h̄cL

D2

1

16π ln
(

D
R

)

(10)fcas =
h̄cL

D3

1

8π ln
(

D
R

) + h̄cL

D3

1

16π ln2
(

D
R

)

(11a)C = 2πε0

cosh−1
(

D−w
Rw

)

(11b)

Fe =
d
(

1
/

2CV2
)

d(D)
= πε0V

2

√
(D− w)(D− w+ 2Rw)

(

cosh
−1

(

D−w
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))2

0 0.01 0.02 0.03 0.04 0.05 0.06
0

2

4

6

8

10

12
x 10

8

Bending Curvature (κ)

Be
nd

in
g 

M
om

en
t (

M
(x

,t)
)

FEM Results of Wang et al.
Fitting Curve

Fig. 3   The relation between bending moment and curvature of CNT 
for two different L/Dw (Wang et al. 2005)
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They clearly showed that the impact of tip-charge concen-
tration on the deformation of cantilever is considerable. 
Therefore, the expression of the electrostatic force is com-
posed of two terms which accounts for the influence of the 
classical charge density distributed along the cantilevered 
nanotube and the impact of the concentrated charge on the 
tube end. Thus, the corrected electrostatic load per unit 
length of nanotubes can be written as follows:

where δ(x) is the Dirac delta function. As mentioned earlier, 
while a nanotube bends, the rippled configuration happens 
especially for the relatively and locally large deformations. 
It was demonstrated that the traditional linear bending-cur-
vature relation cannot be used anymore. Instead, as can be 
observed in Fig.  3, the nonlinear relation calculated from 
FEM simulations should be employed. Therefore, the fol-
lowing polynomial equation was adopted to account for the 
rippling deformation (Wang et al. 2005):

where Dw and κ represent mean diameter and bending cur-
vature of CNT and a3 = 1.755 × 103, a5 = 2.0122 × 106, 
a7 = 1.115 × 109, a9 = 2.26610 × 1011. Using the above-
mentioned relation and the following relationship between 
the curvature κ and beam deflection w as:

the second partial derivative of the bending moment 
neglecting the higher order terms can be obtained as:

Substituting Eqs. (12) and (15) into Eq. (1), the non-linear 
governing equation for vibrating CNTs including rippling 
deformation and tip-charge concentration effects can be 
expressed as:

(12)Fe,c = Fe

{

1+ 0.85
[

Rw(D+ Rw)
2
]1/ 3

δ(x − L)

}

(13)M(x, t) = EIκ

(

1− a3D
2
wκ

2 + a5D
4
wκ

4 − a7D
6
wκ

6 + a9D
8
wκ

8
)

(14)

κ(x, t) = w′′(x, t)
[

1+ w′(x, t)2
]3/ 2

= w′′
[

1− 3

2

(

w′)2 + 15

8

(

w′)4 − . . .

]

≈ w′′(x, t)

[

1− 3

2

(

w′(x, t)
)2

]

(15)

M ′′(x, t) = EI

[

w(4) − 3a3D
2
w

(

2w′′(w′′)2 +
(

w′′)2w(4)
)

−3

2

(

2
(

w′′)3 + 6w′w′′w′′′ +
(

w′)2w(4)
)

]

(16)

EIw,xxxx + cw,t + ρAw,tt

= EI

[

3a3D
2
w

(

2w,xx

(

w,xxx

)2 +
(

w,xx

)2
w,xxxx

)

+3

2

(

2
(

w,xx

)3 + 6w,xw,xxw,xxx +
(

w,x

)2
w,xxxx

)

]

+ Fe

{

1+ 0.85

[

Rw(D+ Rw)
2
]1/ 3

δ(x − L)

}

+ fcas

The governing equation is subjected to four kinematic 
boundary conditions:

and the following initial conditions:

The non-dimensional variables are introduced as:

thereby, the nonlinear vibrational equation of motion in 
non-dimensional form can be expressed as:

for SSA approximation and:

for LSA approximation, in which r = 1.5 and

where prime and dot denote the derivatives with respect 
to ξ and τ, respectively. By applying the initial conditions 

(17a)

w(0, t) = 0, w,x(0, t) = 0, w,xx(L, t) = 0, w,xxx(L, t) = 0,

(17-b)w(x, 0) = 0, w,t(x, 0) = 0,

(18)

τ =

√

EI

ρAL4
t, W =

w

D
, ξ =

x

L
, k =

D

Rw

,

V̄ =
πε0V

2L4

EID2
, f =

C6σ
2π2NwL

4

dEID4
,

ĉ = cL2

√

1

ρAEI
, DL =

D

L
, γ =

h̄cL4

8πD4EI

(19-a)
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4
L

k2
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(
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L
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2
(
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(

W ′)2W (4)
]
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(

1+ 0.85DL

k
(1+ k)2/ 3δ(ξ − 1)

)

+ π4γ
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√

2

k(1−W)7
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W ′′)2W (4)
]

+ rχD2

L

[

2
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+ F̄e

(
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k
(1+ k)2/ 3δ(ξ − 1)
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(1−W)3

1

ln(k(1−W))
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1

2(ln (k(1−W)))2

(20)

F̄e =
V̄2
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(1−W)
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1−W + 2
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k
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0 without rippling effect
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to Eq. (19-a, 19-b), the dynamic displacements at all time 
steps can be obtained.

3 � Numerical approach for the non‑linear problem

Owing to the nonlinear nature of electric and Casimir 
forces, applying the Galerkin-based reduced order model 
(ROM) to transform the dynamic governing Eq. (19-a, 19-b)  
to the coupled ordinary differential equations results is com-
plicated and time consuming computations (Abbasnejad 
et al. 2013). In order to solve this nonlinear equation, one 
can change the governing equation into coupled linear ones. 
It should be noted that the electrostatic and intermolecular 
forces are depend on the CNT deflection and increase by 
increasing the nanotube deflection. To this end, a step-by-
step simulation procedure is conducted and the nonlinear 
term is considered as a forcing term which should be calcu-
lated using the initial conditions at each time step. Then by 
applying the Galerkin decomposition method on the govern-
ing equation, coupled linear ordinary differential equations 
is achieved. It should be emphasized that the electrostatic 
and Casimir forces are updated during the analysis. Choos-
ing small enough time steps leads to accurate numerical 
solution. As a result, at each time step, a system of linear 
differential equations can be obtained and integrated over 
time domain by any integration scheme such as Rung-Kutta 

method. Therefore, the initial conditions for the next time 
step are obtained and the above procedure will be repeated 
for all time steps.

To obtain an approximate Reduced-Order-Model 
(ROM), the non-dimensional deflection are assumed as 
W(ξ , τ ) =

∑N
j=1 qj(τ ) φj(ξ), where N is the number of 

considered modes, qj(τ ) denotes the time dependent gen-
eralized coordinate of the system and φj(ξ) is the jth mode 
shape of nano-structure which can be expressed as:

in which ε0 = 0.4 is the jth eigenvalue of the characteristic 
equation. Substituting Eq. (14) into Eq. (19-a, 19-b), multi-
plying by each mode shape and integrating from µmc = 2 to 
µmc, results in the following linear differential equations as:

in which Mij, Cij and Kij are the elements of the effective 
mass, damping and stiffness matrices, respectively and �C 
describes the nonlinear terms which are given by:

(21)

φj(ξ) = cosh
(

�jξ
)

− cos
(

�jξ
)

−
cosh

(

�j

)

+ cos
(

�j

)

sinh
(

�j

)

+ sin
(

�j

)

(

sinh
(

�jξ
)

− sin
(

�jξ
))

(22)

N
∑

j=1

Mijq̈j(τ )+
N
∑

j=1

Cijq̇j(τ )+
N
∑

j=1

Kijqj(τ ) = Fi

(23-a)Mij =
∫ 1

0

ϕiϕjdξ

(23-b)Cij = ĉ

∫ 1

0

ϕiϕjdξ

(23-c)Kij =
∫ 1

0

ϕiϕ
(iv)
j dξ

Table 1   Pull-in voltages computed by different approaches

Method Present  
analysis

Experimental 
data (Ke et al. 
2005)

Finite kinematics  
regime  
(Ke et al. 2005)

Pull-in voltage 
(V)

47.5 48 47.8

Fig. 4   Comparison between 
molecular dynamics and present 
analysis
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for LSA approximation. Equation (22) is a system of linear 
ordinary differential equations which can be integrated over 
time domain by any integration scheme such as Rung-Kutta 
method.

4 � Results and discussion

4.1 � Validation of present modeling

In order to check the soundness of present modeling to pre-
dict the pull-in behavior of CNT-based NEMS, two com-
parisons have been carried out with the experimental data 
reported by Ke et al. (2005) and molecular dynamics (MD) 
results (Dequesnes et al. 2004). In Table 1, the pull-in volt-
ages of cantilevered CNT actuator in the presence of tip-
charge concentration computed by different approaches 
are compared. The parameters used for this example are: 
nanotube length, L = 6.8 µm; initial gap between nanotube 
and electrode, D = 3 µm; R = Rext = 23.5 µm; modulus of 
elasticity E = 1 TPa. As can be clearly observed, the value 
of predicted pull-in voltage agrees well with the reported 
results by experiments and finite kinematics regime (Ke 
et al. 2005).

As another comparison, the variation of predicted 
gap between the nanotube and bottom electrode for can-
tilever carbon nanotube of radius R  =  0.68  nm, length 
L = 20.7 nm and initial gap D = 3 nm is compared with 
the published results using molecular dynamics (Dequesnes 
et  al. 2004) (see Fig.  4). For this analysis, the number 
of graphene sheets is N =  40 and the product EI extract 
from MD has been estimated to be 22.5 ×  10−26  Pa  m4 
(Dequesnes et al. 2004). According to this figure, one can 
see that excellent agreement in comparison with molecular 
dynamics simulations are obtained when the rippling defor-
mation is included by employing the non-linear bending-
curvature relation described in Eq. (8).

4.2 � Charge effect

As mentioned earlier, charge accumulation at nanotube ends 
called charge concentration (enhancement) has been demon-
strated by Ke and Espinosa (2005) using density-functional 
theory and verified by FEM simulations and experimental 
results (Ke et al. 2005). In order to examine the influence of 
tip charge concentration on the instability behavior of nano-
tubes, variations of tip deflection, dynamic pull-in voltage 
and pull-in time affected by this phenomenon are presented. 

for SSA approximation and:

(23-d)

Fi =
�

1

0

ϕi







12a3γD
4

L

k2






2





N
�

j=1

ϕ′′
j qj









N
�

j=1

ϕ′′′
j qj





2

+





N
�

j=1

ϕ′′
j qj





2



N
�

j=1

ϕ
(4)
j qj











+rχD2

L






2





N
�

j=1

ϕjqj





3

+ 6





N
�

j=1

ϕ′
jqj









N
�

j=1

ϕ′′
j qj









N
�

j=1

ϕ′′′
j qj



+





N
�

j=1

ϕ′
jqj





2



N
�

j=1

ϕ
(4)
j qj
















dξ

+
�

1

0

ϕi









V̄2

�

�

1−
�N

j=1
ϕjqj

��

1−
�N

j=1
ϕjqj + 2

�

k
��

cosh
−1

�

1− k
�

�N
j=1

ϕjqj − 1

���2

�

1+ 0.85DL

k
(1+ k)2/ 3δ(ξ − 1)

�









dξ

+ π4γ

96

�

1

0

ϕi

�

�

�

�

2

k
�

1−
�N

j=1
ϕjqj

�7
dξ

(23-e)

Fi =
�

1

0

ϕi







12a3γD
4

L

k2






2





N
�

j=1

ϕ′′
j qj









N
�

j=1

ϕ′′′
j qj





2

+





N
�

j=1

ϕ′′
j qj





2



N
�

j=1

ϕ
(4)
j qj











+rχD2

L






2





N
�

j=1

ϕjqj





3

+ 6





N
�

j=1

ϕ′
jqj









N
�

j=1

ϕ′′
j qj









N
�

j=1

ϕ′′′
j qj



+





N
�

j=1

ϕ′
jqj





2



N
�

j=1

ϕ
(4)
j qj
















dξ

+
�

1

0

ϕi









V̄2

�

�

1−
�N

j=1
ϕjqj

��

1−
�N

j=1
ϕjqj + 2

�

k
��

cosh
−1

�

1− k
�

�N
j=1

ϕjqj − 1

���2

�

1+ 0.85DL

k
(1+ k)2/ 3δ(ξ − 1)

�









dξ

+ γ

�

1

0

ϕi







1

(1−
�N

j=1
ϕjqj)3







1

ln

�

k(1−
�N

j=1
ϕjqj)

� + 1

2

�

ln

�

k(1−
�N

j=1
ϕjqj)

��2












dξ



2182	 Microsyst Technol (2017) 23:2175–2191

1 3

Figure  5 depicts the variation of initial gap between the 
nanotube and substrate versus the applied voltage. It is 
shown that the initial gap decreased by increasing the actua-
tion voltage up to the occurrence of pull-in instability where 
the free end of the nanotube suddenly diverges to the sub-
strate. According to this figure, it is clearly observed that 
the effect of charge concentration is to reduce the dynamic 
pull-in voltage of CNT actuators. In addition, the variation 
of pull-in voltage as a function of parameter k is plotted in 
Fig. 6. As illustrated in this figure, the dynamic pull-in volt-
age increases by increasing this non-dimensional parameter. 
Furthermore, one can observe that the dynamic pull-in value 
shifts downward as the charge concentration of tube end is 
included in the simulation.

The time taken for CNT to pull-in and touches the fixed 
plate starting from initial state is called the pull-in time in 
the MEMS literature. The effect of charge concentration 
on the dynamic response of actuated CNTs is displayed in 

Fig. 7a, b. It is shown that in the presence of charge effect, 
the pull-in time of nanotube is decreased and the pull-in 
deflection is slightly decreased due to reduction of dynamic 
pull-in voltage.

4.3 � Rippling deformation effect

For the case of CNTs, it has been experimentally reported 
that the rippling phenomenon can significantly affect the 
bending behavior of such structures. Its influence on the 
dynamic instability of actuated CNTs is addressed in this 
section. The variation of non-dimensional gap versus the 
applied voltage is displayed in Fig. 8. One can observe that 
as the effect of rippling deformation is included in the gov-
erning equation, the nanotube collapses onto the fixed sub-
strate at lower value of dynamic pull-in deflection. In addi-
tion, it is clearly inferred that the rippling phenomenon 
substantially decreases the pull-in voltage of the structure.

Fig. 5   Non-dimensional gap as 
a function of applied voltage: 
charge concentration effects

Fig. 6   Dynamic pull-in voltage 
versus the geometrical param-
eter k: charge concentration 
effects
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Fig. 7   The influence of charge 
concentration on a time history 
and b phase diagram of CNT-
based NEMS

Fig. 8   Non-dimensional gap as 
a function of applied voltage: 
rippling formation effects



2184	 Microsyst Technol (2017) 23:2175–2191

1 3

Fig. 9   Dynamic pull-in voltage 
versus the geometrical param-
eter k: rippling formation effects

Fig. 10   The influence of 
rippling formation on a time 
history and b phase diagram of 
CNT-based NEMS
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To achieve a more quantitative investigation, compari-
sons between the dynamic pull-in values for two stud-
ied cases are presented in Fig. 9. It can be seen that the 

dynamic pull-in voltage remarkably reduces if the rippling 
effect is taken into consideration. In addition, the differ-
ence between the predicted pull-in voltages is increased 

Fig. 11   Time histories and 
phase portrait of actuated CNT; 
a, c in the absence and b, d in 
the presence of damping effects
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by increasing the geometry parameter k. To study the 
effect of rippling deformation on the pull-in time and pull-
in deflection of CNT NEMS, the time history and phase 
diagram are shown in Fig.  10. One can conclude that 
with the consideration of rippling formation, the pull-in 
time which is one of the key features in NEMS switches 
increases while the value of pull-in deflection is decreased 
considerably with respect to the case in which the clas-
sical beam theory is considered. Based on the reported 
results, it is noticeable that the rippling influences on the 
dynamic instability characteristics of the studied structure 
are remarkable with respect to the consideration of con-
centrated charge effects.

4.4 � Damping effects

To investigate the impact of damping parameter on the 
nonlinear behavior of considered CNT, time responses 

and phase portraits of the system are illustrated through 
Fig.  11a–d for different values of actuation voltage. The 
damping which has a significant effect at the nano-scale 
devices is not considered in Fig. 11a. One can observe that 
in the absence of damping effect, the system exhibits peri-
odic oscillations before the occurrence of pull-in instability. 
The period of harmonic motions increases by increasing the 
actuation voltage. When the actuation voltage approaches 
to the dynamic pull-in value, a little increase in the voltage 
converts the stable behavior of nano-switch to the unstable 
one where the periodic motions vanish and CNT diverges 
to the bottom plate. On the other hand, with consideration 
of damping effects, as indicated in Fig. 11b, the amplitude 
of vibration damps with the time and the structure con-
verge to the stationary state. However, by increasing the 
applied voltage, the CNT collapses into contact with the 
fixed substrate. The corresponding trajectories in the phase 
portrait for the considered situations are shown in Fig. 11c, 

Fig. 11   continued

Fig. 12   Non-dimensional gap 
as a function of applied voltage: 
damping effects
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Fig. 13   Dynamic pull-in 
voltage versus the geometrical 
parameter k: damping effects

Fig. 14   The influence of damp-
ing parameter on a time history 
and b phase diagram of CNT-
based NEMS
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d. It is observed that, in the absence of damping parameter 
and before pull-in point, there exist limit cycle trajecto-
ries around the stable center point. When pull-in instabil-
ity occurs, the unstable saddle node appears in the phase 
portrait which is corresponded to the time when the CNT 
touches the bottom electrode. In addition, in the presence 
of damping effect, the periodic trajectories are replaced by 
the spiral motions around the stable focus point; by increas-
ing the damping parameter, the position of the focus point 
moves to the right until it becomes an unstable saddle node 
at dynamic pull-in state.

The variation of the non-dimensional gap versus the 
applied voltage for different values of damping parameter 
ĉ is illustrated in Fig.  12. As it can be realized from this 
figure, the magnitude of the damping parameter has a great 
effect on the instability behavior of the nanotube actuators. 

It is observed that with the consideration of damping effects 
the dynamic pull-in voltage is increased. Figure  13 indi-
cates the relationship between the dynamic pull-in voltage 
and geometry parameter k which is plotted for various val-
ues of parameter ĉ. It is clearly concluded that the influence 
of damping is to increase the dynamic pull-in voltage. It is 
inferred that as the damping parameter equals to ĉ = 0.5,  
the dynamic pull-in value increases by about 7  % with 
respect to the case in which the damping effects is ignored.

Finally, the significant effect of this parameter on the 
pull-in time values at the corresponding dynamic pull-in 
voltages are presented in Fig. 14a and b. Numerical results 
reveal that the pull-in time of CNT increases as the damp-
ing ratio increases. Furthermore, the normalized pull-in 
deflections effectively decrease by increasing the damping 
parameter ĉ.

Fig. 15   Impact of Casimir 
parameter on the instability 
characteristics of nanotubes for 
SSA model, a time history b 
phase portrait
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4.5 � Casimir force effect

The plot of time responses and phase portraits of the free-
standing Casimir-induced nanotubes may be of interest. To 
this end, the influence of Casimir force on the instability 
characteristics of nanotubes is investigated through Figs. 15 
and 16 for the case of SSA and LSA models, respectively. 
According to illustrated results in Figs.  15a and 16a, one 
can observe that the nanotube deflection and time period of 
vibrating nanotubes under the influence of Casimir force, 
is increased by increasing parameter γ up to the adhesion 
time. On the other hand, in the vicinity of adhesion state, 
any increase in the Casimir parameter changes the dynamic 
behavior of the system and causes the nanotube to drop to 
the fixed plate.

As can be observed in Figs.  15b and 16b, at lower 
values of Casimir parameter, the system exhibits the 

periodic motions around the stable center point. When the 
dynamic instability occurs at critical Casimir value (here 
γcr = 67.0171 for SSA and γcr = 137.0981 for LSA mod-
els), homoclinic orbit appears in the phase plane which 
separates periodic solutions from the unbounded non-
periodic trajectories around an unstable saddle node. The 
homoclinic orbit starts from the unstable branch of saddle 
node and return to it via the stable one. In addition, one can 
conclude that the free-standing Casimir-induced nanotube 
collapses to the bottom plate beyond the unstable saddle 
node.

5 � Conclusion

1.	 The significant influences of concentrated charge, 
rippling deformation and Casimir attraction on the 

Fig. 16   Impact of Casimir 
parameter on the instability 
characteristics of nanotubes for 
LSA model, a time history b 
phase portrait
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instability characteristics of CNT-based NEMS were 
addressed in this paper. To this end, the non-linear gov-
erning equation of vibrating CNTs including Casimir 
attraction was derived and solved using a step-by-step 
numerical approach. The influence of different param-
eters on the pull-in behavior of actuated nanotubes was 
also discussed. It was concluded that:

2.	 The pull-in voltage decreases with the consideration of 
concentrated tip charge and rippling formation effects.

3.	 Based on the reported results, it was inferred that the 
rippling influences on the dynamic instability behavior 
of the system are remarkable with respect to the con-
sideration of concentrated charge effects.

4.	 The effect of rippling deformation is to increase the 
pull-in time and decrease the pull-in deflection

5.	 If the damping effects are included in the governing 
equation, the stable center point becomes the stable focus 
point. It means that the periodic motions are replaced by 
convergent spiral trajectories in the phase plane.

6.	 With the consideration of damping effect, the pull-in 
time increases while the pull-in deflection of the sys-
tem decreases.
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