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main methods of modeling nanomaterials. These are exper-
iment, atomistic modeling, hybrid atomistic–continuum 
mechanics and continuum mechanics model. At nano-scale, 
experimental efforts may be formidable and the cost of 
experiments is tremendous. Continuum mechanical mod-
eling is less computationally expensive than both atomis-
tic modeling and hybrid atomistic–continuum mechanics 
methods. Therefore, continuum mechanical modeling has 
been employed as a useful way of simulating mechanical 
behaviors of nanostructures, such as buckling (Wang et al. 
2005; Duan et  al. 2010), bending (Wang et  al. 2015) and 
free vibration (Karimi et al. 2015; He et al. 2005). As the 
sizes of structures reduce to nano-scales, the classical con-
tinuum models can not explain the small scale effect dis-
covered in experiments and molecular dynamics (MD) sim-
ulations (Lu et al. 2007). Size-dependent continuum models 
have attracted significant attention in simulating mechani-
cal behaviors of nano-structures and devices. Among these, 
nonlocal elasticity theory developed by Eringen (1983, 
2002) has received wide acceptance. In this theory, small 
scale effect is introduced by a spatial integral constitutive 
relation, and the stress at a given reference point depends 
on the strains at every point in the elastic body.

Due to nano-switches have excellent on–off current 
characteristics (such as, an abrupt switching and an essen-
tially zero off current), they have been predicted to have 
an ability for solving some difficulties in complementary 
metal–oxide–semiconductor devices, such as parasitic leak-
age currents, short-channel effects (Meindl et al. 2001) and 
power dissipation. In generally, a nano-switch consists of 
two parallel electrodes. One is movable electrode which 
can be modeled as a beam or plate. The other is fixed elec-
trode. When applied voltage across the two electrodes, the 
movable one will deflect, due to electrostatic force. As the 
applied voltage reaches a critical value, the upper movable 

Abstract  In this paper, the small scale effect on the pull-
in instability and frequency of graphene sheets subjected to 
electrostatic and van der Waals forces is studied. Eringen’s 
nonlocal elasticity theory is used to account for the small 
scale effect, and the graphene sheet is modeled as a nonlo-
cal plate. Reduce-order model incorporating nonlocal effect 
and van der Waals force is derived. Results show that non-
local elasticity reduces the pull-in voltages and fundamen-
tal frequencies. The effect of nonlocal parameter on pull-
in voltages and fundamental frequencies is more obvious 
if the size of nanoplate is smaller. In addition, an empiri-
cal formula for pull-in voltage is explored. The form of 
the empirical formula is relatively simple, therefore is con-
venient for engineers to indicate an experimental method to 
determine the nonlocal parameters of the materials and to 
design nano-switches.

1  Introduction

Nanoelectromechanical system (NEMS) is a rapidly grow-
ing research field with great potential for future applica-
tions (Craighead 2000). Many nanomaterials, such as car-
bon nanotubes and graphene sheets, have been applied in 
NEMS with much successfully (Rueckes et al. 2000; Tom-
bler et  al. 2000). Therefore, it is important to understand 
their mechanical and physical properties. There are four 
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electrode will be unstable and collapses to the fixed elec-
trode. This phenomenon is called as pull-in instability. The 
critical value of applied voltage is called as pull-in volt-
age. Size-dependent continuum models have been used to 
investigate the pull-in instability of nano-switches (Yang 
et al. 2008; Taghavi and Nahvi 2013; Mousavi et al. 2013; 
Sahmani and Bahrami 2015; Arani et  al. 2013; Ansari 
et al. 2012). For examples, Yang et al. (2008) and Taghavi 
and Nahvi (2013) studied the pull-in instability of nano-
switches subjected to an electrostatic force and intermo-
lecular force by using nonlocal elasticity theory. Later, 
Mousavi et  al. (2013) investigated the pull-in instability 
of nonlinear nano-switches based on nonlocal elasticity 
theory.

On the other hand, graphene sheets have great poten-
tial in designs of sensors, mass detection, gas detection, 
switches and actuators, due to their superior mechanical 
(Lee et al. 2008, 2009), optical (Nair et al. 2008), electri-
cal and thermal (Balandin et al. 2008) properties. Nonlocal 
elasticity theory has been widely used to study the buckling 
and vibrational behaviors of graphene sheets (Pradhan and 
Murmu 2009, 2010; Murmu and Pradhan 2009; Pradhan 
and Kumar 2010, 2011; Mandal and Pradhan 2014; Zhang 
et  al. 2015a, b; Arani and Jalaei 2015). In these studied 
grapheme sheets are modeled as nonlocal plates. Recently, 
nano-switches based on graphene sheets have been fabri-
cated (Milaninia et al. 2009; Shi et al. 2012). There are a 
few works which focus on mechanical behaviors of nano-
switches based on graphene sheets. For examples, Rokni 
and Lu (2013) investigated the pull-in instability of curved 
multilayer graphene/substrate microcantilever electrostatic 
actuators. Later, they investigated pull-in behavior of gra-
phene nanoribbon electrostatic actuators with consideration 
of interlayer shear and surface energy effects (Rokni and 
Lu 2013). It is noted that previous studies about the pull-
in behaviour of nano-switches, are limited to one dimen-
sional nanoswitches (the moveable electrode is modeled as 
an elastic beam). So far, they are no studies on the pull-in 
instability of 2D graphene sheets nanoswitches (the move-
able electrode is modeled as an elastic plate) with consider-
ation of nonlocal effect. In this paper, we study the pull-in 
behavior of a clamped rectangular graphene sheets sub-
jected to electrostatic and van der Waals forces.

The rest of the present paper is organized as follows. In 
Sect. 2, based on nonlocal elasticity theory, the governing 
equation for a rectangular graphene sheets in presence of 
electrostatic and van der Waals forces is derived. In Sect. 3, 
the reduced-order model is derived and the procedure for 
solving the governing equations of the reduced-order 
model is given. In Sect. 4, the effects of nonlocal parameter 
and van der Waals forces on the pull-in instability and the 
fundamental frequency of the rectangular nano-plate are 
investigated. Conclusions are summarized in Sect. 5.

2 � Problem statement

Figure  1 shows a rectangular graphene sheets (modeled 
as nonlocal plate) with length l, width ηl (0 < η ≤ 1) and 
thickness h. The initial gap g0 between the two sheets 
(plates) and the thickness h are much smaller than its length 
l. According to nonlocal elasticity theory (Eringen 1983, 
2002), the stress–strain relationship can be represented by.

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
; τij is the nonlocal stress tensor; 

µ and � are Lame constants. The nonlocal parameter e0a 
shows the effect of small scale on the responses of the 
structure, and can be obtained by MD simulations and 
matching against experiments (Duan et al. 2007).

For thin plate theory, the displacement field is

where uα (α = 1, 2) and u3 are, respectively, displacement 
components along x-axis, y-axis, and z-axis. The strains are 
expressed as εij = (ui,j + uj,i)/2.

The equation of motion for the plate can be represented 
by σij,j = ρ ∂2ui

∂t2
, where ρ is the mass density of the plate. 

This equation can be expressed in the following forms by 
multiplying them by zdz and integrating through the thick-
ness direction of the plate:

Neglecting fringing fields, the electrostatic distributed 
force per unit area is (Pelesko 2002)

(1)[1− (e0a)
2∇2]τij = 2µεij + �εkkδij

(2)uα = −zw,α and u3 = w (x, y, t)

(3)N3α,α − q =
∫ h

2

− h
2

ρü3

(4)Mαβ,β − N3α = 0

(5)Fe =
ε0V

2

2(g0 − w)2

V 

x 

z 

yo 

van der Waals force

Fig. 1   Sketch of the electrostatically actuated device
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where ε0 and V are the dielectric constant in vacuum and 
the applied voltage, respectively. For the gap between the 
two plates smaller than the retardation length or the wave-
length of the virtual transitions responsible for the quantum 
dipole fluctuations (Bordag et al. 2001), the intermolecular 
forces can described by van der Waals force. The van der 
Waals distributed force per unit area is (Israelachvili et al. 
1991).

where A is the Hamaker constant.
Multiplying Eq.  (1) by zdz and integrating through the 

thickness direction of the plate, we obtained.

Using Eqs. (3)–(7), we obtained.

where D = Eh3/[12(1− v2)] is the bending rigidity of 
the plate, and E and υ are, respectively, the Young’s mod-
ulus and Poisson’s ratio. It can be seen that Eq.  (8) can 
be reduced to the classical governing equation by setting 
e0a = 0. The boundary conditions for a clamped plate are:

(a)	 At x = 0 and x = l, w = 0, w,x = 0,
(b)	 At y = 0 and y = lη, w = 0, w,y = 0.

We introduce the non-dimensional parameters x̄ = x
l
, 

ȳ = y
l
, w̄ = w

g0
, α = e0a

l
, K = ε0V

2l4

2Dg3
0

, ξ = Al4

6πDg4
0

, τ 2 = ρhl4

D
 

and t̄ = t
τ
. The non-dimensional form of Eq. (8) is

It should be noted that K and ξ are indicators of the elec-
trostatically actuated nanoplate stiffening due to coulomb 
force and van der Waals force, respectively. The associated 
non-dimensional boundary conditions are

(6)FvdW =
A

6π(g0 − w)3

(7)[1− (e0a)
2∇2]Mαβ =

h3

12
(2µw,αβ + �w,kkδαβ)

(8)

D∇4w− [1− (e0a)
2∇2]

[

ε0V
2

2(g0 − w)2
+

h̄cπ2

240(g0 − w)4

]

= [1− (e0a)
2∇2]ρhẅ

(9)

(1− α2∇2) ¨̄w+∇4
w̄

−
{

(1− α2∇2)

[

K

(1− w̄)2
+

ξ

(1− w̄)4

]}

= 0

(10a)w̄ = 0 and w̄,x̄ = 0 at x̄ = 0, 1

(10b)w̄ = 0 and w̄,ȳ = 0 at ȳ = 0, η(η ∈ [0, 1])

3 � Reduced‑order model

3.1 � Governing equations of the reduced‑order model

Getting a closed-form solution for the nonlinear equation 
Eq. (9) and boundary condition Eq. (10a, 10b) is difficult. 
Therefore, an approximated solution for the transverse dis-
placement w is constructed as

where w̃n and χn are, respectively, the orthogonal basis 
functions and amplitude parameters for the transverse dis-
placement w. The basis functions for the transverse dis-
placement can be expressed as (Batra et al. 2008a)

where �n (n  =  1,…, N) is the nth root of the equation 
cosh� cos� = 1. Since the basis functions are sym-
metric about x̄ = 1/2 and ȳ = η/2, only the odd number 
term of the basis functions should be considered (Batra 
et al. 2008a). Multiplying Eq. (9) with W, and substituting 
Eq. (11) into the result equation, the reduced-order model 
can be obtained

Using the divergence theorem and imposing boundary 
conditions, we obtained

where

(11)w̄(x̄, ȳ, t̄) =
N
∑

n=1

w̃n(x̄, ȳ)χn(t̄) = W
T
χ(t)

(12)

w̄n = χn

(

cosh(�nx̄)− cos(�nx̄)

cosh(�n)− cos(�n)
−

sinh(�nx̄)− sin(�nx̄)

sinh(�n)− sin(�n)

)

×
(

cosh(�nȳ/η)− cos(�nȳ/η)

cosh(�n/η)− cos(�n/η)
−

sinh(�nȳ/η)− sin(�nȳ/η)

sinh(�n/η)− sin(�n/η)

)

(13)

�
W(1− α2∇2)WT χ̈dxdy +

�
W∇4

W
T
χdxdy

− K
�

W(1− α2∇2)
1

(1−WTχ)2
dxdy

− ξ
�

W(1− α2∇2)
1

(1−WTχ)3
dxdy = 0

(14)mχ̈ + D1χ− Kfe(χ)− ξ fv(χ) = 0

(15)m =
�

WW
Tdxdy + α2

�
W,x̄βW

T
,x̄β

dxdy

(16)D1 =
�

∇2
W∇2

W
Tdxdy
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From Eqs. (15), (17) and (18), it is found that the nonlo-
cal parameter increased the equivalent mass, coulomb and 
van der Waals forces. In other words, the nonlocal param-
eter makes the plate softer.

3.2 � Extraction of pull‑in parameters from the static 
problem

Neglecting the inertia term in Eq. (14), the governing equa-
tion for static problem can be expressed as

The tangent stiffness matrix of the system is

where

When pull-in instability occurs, the system’s tangent 
stiffness matrix D(χ,β, �,µ) becomes singular. Therefore, 
at the onset of instability, the system satisfies Eq. (19) and 
the condition det[D(χ,β, v, ξ)] = 0.

Following the procedure as Ref. (Batra et al. 2008a), the 
displacement iteration pull-in extraction (DIPIE) algorithm 
(Bochobza-Degani et  al. 2002) is used to solve Eq.  (19). 
The complete bifurcation path is constructed by driving 
the system through the transverse displacement of a pre-
chosen point (x̄, ȳ) (it is noted that we chosen x̄ = 1/2 and 
ȳ = η/2 , in this paper), and regarding the load parameters 
(either K or ξ) as unknown.

Introducing a parameter s which is the deflection at the 
point (1/2, η/2) and regarding s as a function of both K and 

(17)fe(χ) =
�

W− α2∇2
W

(1−WTχ)2
dxdy

(18)fvdW (χ) =
�

W− α2∇2
W

(1−WTχ)3
dxdy

(19)D1χ− Kfe(χ)− ξ fv(χ) = 0

(20)D(χ,α, �,µ) = D1 − K
dfe(χ)

dχ
− ξ

dfvdW (χ)

dχ

(21)
dfe(χ)

dχ
= 2

� (W− α2∇2
W)WT

(1−WTχ)3
dxdy

(22)
dfvdW (χ)

dχ
= 3

� (W− α2∇2
W)WT

(1−WTχ)4
dxdy

ξ. Once the solution (χi−1,Ki−1) for WT (x̄, ȳ)χi−1 = si−1 is 
obtained, the solution (χi,Ki) = (χi−1,Ki−1)+ (�χi,�Ki) 
for si = si−1 +�si can be found by solving the following 
equations

It is noted that Eqs. (23) and (24) composed a set of non-
linear equations. Solutions of the set of nonlinear equations 
can be found by using Newton’s iterations. The jth iteration 
is listed as (Batra et al. 2008a)

where (�χ
j
i, �K

j
i) is the jth solution increment; (χj

i, K
j
i) are 

the updated solution at the (j − 1)th iteration.

The iterations are preformed until max(|�χ
j
i|,�K

j
i ) ≤ 10−7 .

3.3 � Frequencies of the electrostatically actuated 
nano‑plate

The frequencies of a deflected nano-plate at a given solu-
tion (χ,α,K , ξ) can be found through the following pro-
cedure. If perturbing equilibrium state χ with a harmonic 
term eiwt (i =

√
−1) as χ+ χ̄eiwt(|χ̄ | << |χ |). Substituting 

χ+ χ̄eiwt into Eq. (14) and retaining terms linear in χ, we 
obtain (Batra et al. 2008a) 

When the pull-in occurs, the tangent stiffness matrix sat-
isfies det[D(χ,α,K , ξ)] = 0. This means that at least one 
natural frequencies of the plate is zero, when the pull-in 
occurs. This is an alternative method of finding the pull-in 
parameters of the nanoplate.

(23)D1χi − Kife(χi)− ξifvdW (χi) = 0

(24)W
T (x̄, ȳ)χi = si

(25)

[

D(K
j
i , ξ

j
i ,χ

j
i) −fe(χ

j
i)

W
T (x̄, ȳ) 0

]

[

�χ
j
i

�K
j
i

]

= −
[

D1χ
j
i − K

j
i fe(χ

j
i)− ξ

j
i fvdW (χ

j
i)

W
T (x̄, ȳ)χ

j
i − si

]

(26)K
j
i = Ki +

j−1
∑

n=1

�Kn
i and χ

j
i = χi +

j−1
∑

n=1

�χ
n
i

(27)det(D(χ,α,K , ζ )− ω2
m) = 0

Table 1   The nondimensional 
pull-in parameters of a square 
nanoplate for different number 
of basis functions used to 
approximate the transverse 
deflection

e0a/l = 0 e0a/l = 0.1 e0a/l = 0.2

N wPI (1/2, η/2) KPI wPI (1/2, η/2) vPI wPI (1/2, η/2) KPI

1 0.472 171.5 0.440 151.1 0.377 114.4

3 0.472 171.5 0.440 151.1 0.377 114.4

5 0.442 171.5 0.440 151.1 0.377 114.4
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4 � Numerical results and discussions

4.1 � Pull‑in parameters from the static analysis

Table  1 lists pull-in parameters extracted for a square 
clamped plate (η = 1) with ξ = 0 (no van der Waals force) 
and varying N in the Eq.  (12). It is found that convergent 
solutions for pull-in parameters of the rectangular clamped 
nanoplate are obtained for N = 1.

Figure 2 shows the critical van der Waals force param-
eters ξcr with variation of the aspect ratio η. It is found that 
the critical van der Waals force parameters ξcr decrease 
rapidly as the aspect ratio η increases. The critical van der 
Waals force parameters ξcr decrease with increasing non-
local parameters. The reason for this is that the nonlocal 
effect makes equivalent force matrix large (i.e. Eq.  18), 
and then makes the plate softer. The effect of nonlocal 
parameter on the critical van der Waals force parameters 
ξcr decreases with increasing aspect ratio η. Figure 3 plots 
the variation with nonlocal parameters of the critical van 
der Waals force parameter ξcr. It is noted that ξ0cr is the 
critical van der Waals force parameter obtained by clas-
sical theory (without nonlocal effect). The van der Waals 
force parameters ξcr decrease with increasing nonlocal 
parameters, once again, due to the fact that nonlocal effect 
makes the plate softer. It is also found that the influence 
of nonlocal parameter on the critical van der Waals force 
parameters ξcr becomes more significant if the aspect ratio 
is smaller.

Figure  4a, b plot the pull-in voltage parameters KPI 
and pull-in deflection wPI (x̄ = 1/2 and ȳ = η/2) versus 
the van der Waals force parameters ξ for a square plate, 

respectively. The pull-in voltage parameters data (points in 
Fig. 4a) are fitted with a function which is composited of 
a one order polynomial in ξ and a two order polynomial in 
(e0a/l)

2:

The from of Eq.  (28) is relatively simple. Therefore, it 
is convenient to be used to the design of nano-switches. 
In addition, Eq.  (28) indicates another way to measure 
the nonlocal parameters of nanomaterials by experiments. 
It can be seen that the pull-in voltage parameters KPI 
decreases from its max values Kmax

PI  to zero as the van der 
Waals force parameters ξ increases from zero to its max 
values ξcr. The pull-in voltage parameter KPI decreases 
with increasing nonlocal parameter. As the van der Waals 
force parameter ξ increases, the pull-in deflection wPI 
decreases from its maximum value to its minimum value. 
The pull-in deflection decreases with increasing nonlocal 
parameter. The influence of nonlocal parameter on pull-in 
voltage parameter KPI and pull-in deflection wPI depends 
on the size of the plate, and it becomes more significant for 
a smaller size plate. If e0a/l → 0 (the length of the plate l 
is more lager than the nonlocal parameter e0a) the effect 
of nonlocal elasticity on the pull-in parameters can be 
neglected.

Figure  5a, b plot the pull-in voltage parameters KPI 
and pull-in deflection wPI versus the van der Waals force 
parameters ξ for a rectangular plate (η = 1/2), respectively. 
The pull-in voltage parameters data (points in Fig. 5a) are 
fitted with a function which is composited of a one order 
polynomial in ξ and three order polynomial in (e0a/l)2:

(28)
KPI = −1.4ξ + 18067

(e0a

l

)4

− 2130

(e0a

l

)2

+ 171.5
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The similar conclusion as that of Fig.  4 can be drawn. 
Comparing Figs.  4 with Fig.  5, it is found that the effect 
of nonlocal parameter is more obvious for a smaller aspect 
ratio η.

Figure 6 plots the variation with the nonlocal parameter 
e0a/l of the pull-in voltage parameter KPI for ξ = 0. Here 
K0
PI is the result of the model without considering nonlocal 

effect and van der Waals force. In Fig. 6, the blue lines are 

(29)

KPI = −1.4ξ − 9367100

(

e0a

l

)6

+ 926500

(

e0a

l

)4

− 39100

(

e0a

l

)2

+ 1274.3

given based on Eqs.  (28) and (29), the red points are the 
results of present model. It can be seen the blue lines match 
well with the red points. In other words, the accuracy of 
Eqs. (28) and (29) is great. It is also found that the pull-in 
voltage parameter KPI decreases with increasing nonlocal 
parameter, and the influence of nonlocal parameter on the 
pull-in voltage parameter KPI becomes more significant if 
the aspect ratio is smaller.

4.2 � Fundamental frequency of a deformed nanoplate

Figures 7 and 8 display the fundamental frequencies ω of 
the deflected nano-plate versus the parameter K for a square 
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Fig. 5   Pull-in voltage parameter KPI and pull-in deflection wPI versus van der Waals parameter ξ for a rectangular plate with η = 0.5



2039Microsyst Technol (2017) 23:2033–2041	

1 3

(η = 1) and a rectangular nanoplate (η = 0.5), respectively. 
The fundamental frequencies are normalized with respect 
to the value ω0 corresponding to the nano-plate with 
e0a/l = 0, ξ = 0 and K = 0. The values of fundamental 
frequencies ω0 obtained by the present model are shown in 
Table 2. From Table 2, it is observed that when e0a/l = 0 , 
ξ = 0 and K = 0, the fundamental frequencies obtained by 
present model match well with the available results pro-
vided by Arenas (2003). Moreover, the results including 
the effect of van der Waals force parameter (ξ = 0.3ξcr ) 
are also compared with the available results provided 
by Batra et  al. (2008b), it is found that the fundamental 

frequencies obtained by present model match well with 
the available results provided by Batra et al. (2008b). The 
results of Figs. 7 and 8 suggest that the nonlocal parameter 
reduces the fundamental frequencies. This phenomenon 
can be explained by the fact that the nonlocal parameter 
enlarge the equivalent mass, as shown in Eq. (15). On the 
other hand, neglecting van der Waals force will result in a 
higher prediction of the fundamental frequencies. Compar-
ing Figs. 7 and 8, it is found the similar conclusions as that 
from Fig. 2 can be obtained. Such as, the effect of nonlocal 
parameter on the fundamental frequencies of the nanoplate 
is more significant if the aspect ratio is smaller. It is noted 
that the parameter K corresponding to ω = 0 is the pull-
in voltage parameter KPI. This agrees well with the pull-
in voltage parameter KPI from Figs. 4a and 5a. This is an 
alternative way of finding the pull-in voltage.
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parameters
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Fig. 7   Normalized fundamental natural frequency versus K for a 
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Fig. 8   Normalized fundamental natural frequency versus K for a rec-
tangular plate with η = 0.5

Table 2   Values of the fundamental frequencies ω0(e0a/l = 0 and 
K = 0)

η = 1 η = 1/2

ξ = 0

 ω0 obtained by  
present model

36.1 98.6

 ω0 reported  
in Ref.  
(Arenas 2003)

36.1 98.6

ξ = 0.3 ξcr
 ω0 obtained  

by present model
34.264 93.556

 ω0 reported in Ref.  
(Batra et al. 2008b)

34.2 93.4
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5 � Conclusions

The influences of nonlocal effect and van der Waals force 
on the pull-in instability and fundamental frequency of 
graphene sheets are investigated. On the basic of nonlocal 
elasticity theory, the grapheme sheet is modeled as a non-
local plate. The reduced-order model incorporating nonlo-
cal effect and van der Waals force is derived and solved 
numerically. Results show that pull-in parameters and 
frequencies of graphene sheets are size-dependence. The 
pull-in voltage, pull-in deflection and frequencies decrease 
with increasing nonlocal parameter, thanks to the contribu-
tion of nonlocal parameter to the reduction of plate stiff-
ness. The influence of nonlocal parameter on the pull-in 
voltage, pull-in deflection and frequencies is more obvi-
ous for smaller aspect ratio and size of the sheet (plate). 
Neglecting the effect of van der Walls force, the pull-in 
voltage and frequency are overestimated. Moreover, the 
effect of nonlocal parameter on the critical van der Waals 
force parameters decreases with increasing aspect ratio of 
the sheet (plate). In addition, a useful equation is devel-
oped to describe the relations between pull-in voltage, 
van der Waals force and nonlocal parameters. This equa-
tion indicates another experimental method to measure the 
nonlocal parameters.
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