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frequency stability occurs. The results are expected to be 
beneficial for the evaluation of operational parameters of 
nano devices under the influence of van der Waals force.

1  Introduction

Micro and nano electromechanical systems (MEMS 
and NEMS) are gaining considerable attention of many 
researchers due to their advantages and technological 
developments. Structural elements of microns and sub-
microns scale, such as plates and beams are used in devices 
like micro and nano-mirrors, micro switches and nano-
switches, micro actuators and nano-actuators (Moeenfard 
and Ahmadian 2012; Sadeghian et al. 2007; Lin and Zhao 
2005; Kuang and Chen 2004; Soroush et al. 2010). There 
are many applications of these devices in various fields 
such as automobile, biomedical and electronics.

A typical arrangement of electrostatically actuated 
device is comprised of deformable structure suspended 
above a fixed electrode. An applied voltage between the 
two members when increases beyond a certain point, elas-
tic force which restores the deformable structure to its orig-
inal position cannot balance applied electrostatic force and 
the deformable structure collapses on to the fixed electrode. 
This instability is described as ‘pull-in instability’ and is 
a significant phenomenon related with electrostatically 
actuated devices. (Abdel-Rahman et  al. 2002; Joglekar 
and Pawaskar 2011; Tahani and Askari 2014). The study 
of pull-in instability with very less gap between deform-
able structure and fixed electrode requires consideration of 
intermolecular forces at nano scale (Yang et al. 2008). At 
such scale, the functions of MEMS and NEMS devices are 
significantly influenced by intermolecular forces (Mousavi 
et al. 2013). In addition, free vibration characteristics offer 
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an important information for the design of electrostatically 
actuated devices with better performance (Jia et al. 2010). 
It is also helpful to determine residual stress by identifying 
the important dynamic parameter like natural frequencies 
(Soma and Ballestra 2009). Further, it should be noted that 
the axial force due to residual stress is a significant param-
eter which influences the pull-in instability and free vibra-
tion characteristics of electrostatically driven devices (Sad-
eghian et al. 2007; De Pasquale and Soma 2010).

At submicrometer scale, there is necessity to consider 
fluctuation induced electromagnetic forces for evaluating 
the operational factors of MEMS and NEMS (Gusso and 
Delben 2008). Based on the operative regime, these forces 
are recognised with different names such as van der Waals 
(vdW) force, Casimir-Polder force and more commonly, 
Casimir forces (Rodriguez et  al. 2011). Both these forces 
initiate from the same source associated with fluctuating 
currents in macroscopic bodies were first recognised by 
Lifshitz (1956). The fluctuating currents between interact-
ing bodies induce the electromagnetic field. At very small 
separation of a few nanometres, one can neglect retardation 
of electromagnetic interaction and the resulting interaction 
is termed as vdW force, while at larger distance where the 
retardation becomes significant, the same force is termed as 
Casimir force (Svetovoy and Palasantzas 2015). The vdW 
force and Casimir force cannot be considered at the same 
time as they define common physical phenomenon at dif-
ferent regime (Batra et al. 2008). Various studies investigat-
ing the effect of intermolecular forces on pull-in instability 
and free vibration of electrostatically actuated devices are 
available (Ramezani et al. 2007; Jia et al. 2011; Batra et al. 
2008).

Internal axial stress or residual stress is commonly 
developed in fixed–fixed beam structures due to micro 
machining processes, variation of temperature during 
application of device and mismatch of thermal expan-
sion coefficient of materials used for beam and other 
elements of device (Elata and Abu-Salih 2005; Tilmans 
and Legtenberg 1994). Several methods are described in 
literature for measurement of residual stress in micro-
beam such as using frequency shift with changes in DC 
voltage, from best fit of modelled and measured deflec-
tion curves and based on measured natural frequencies 
of the lowest few Eigen modes (De Pasquale and Soma 
2010; Baker et  al. 2002; Tung et  al. 2013). The MEMS 
and NEMS resonators are greatly influenced by change 
in temperature during application. The change in tem-
perature develops axial stress which in turn alters the 
frequency characteristics of resonators. The effect of 
axial stress on frequency characteristics is investigated 
for micro/nano resonators through various experimen-
tal and theoretical studies (De Pasquale and Soma 2010; 

Bhushan et  al. 2011). Temperature sensitivity can be 
reduced in fixed–fixed beam resonators with different 
approaches discussed in published literature (Melamud 
et al. 2007; Salvia et al. 2010).

Resonance frequency tuning is a required property to 
improve performance of MEMS and NEMS devices such 
as energy harvesters (De Pasquale and Soma 2010), mass 
sensor (Ilic et al. 2004), pressure sensor (Southworth et al. 
2009) etc. The resonant frequency tuning of mechanical 
structure of these devices is normally adopted to increase 
operative regime (Pandey 2013). In order to tune the fre-
quency characteristics of these devices, internal axial stress 
can be developed intentionally in the micro/nano-beams. 
The internal axial stress is introduced using resistive heat-
ing for tuning resonant frequency characteristics (Syms 
1998). The tensile stress is made adjustable through large 
scale chip bending to obtain exceptionally high frequency 
tunability, which allows to use the resonators as variable 
frequency reference (Verbridge et al. 2007).

In some of the previous studies, effect of intermolec-
ular forces are investigated; however the effect of axial 
force was not considered (Lin and Zhao 2005; Yang et al. 
2008; Mousavi et al. 2013; Dequesnes et al. 2004). Some 
studies consider the effect of axial force while deal-
ing with geometric nonlinearity (Jia et  al. 2010, 2011). 
To the best of authors’ knowledge, no earlier work in 
open literature is reported which discusses the effect of 
vdW force on resonant frequency stability and frequency 
tuning characteristics of nano-beam. The objective of 
the current work is to study the effect of vdW force on 
pull-in parameter and free vibration characteristics for 
beam under axial load. The reduced order model (ROM) 
is obtained for static analysis and linear free vibration 
characteristics to study the effect of vdW force on pull-
in instability, resonant frequency tuning as well as fre-
quency stability characteristics for electrostatically actu-
ated beam.

2 � Theoretical formulation

Shown in Fig.  1 is electrostatically actuated beam with 
fixed–fixed end condition. The beam of length L̂, width b̂ 
and thickness ĥ is suspended above a fixed electrode plate 
with an initial gap ĝ. This arrangement functions as a par-
allel plate capacitor when potential difference is applied 
between the beam and fixed electrode. The applied voltage 
between beam and fixed electrode results in an electrostatic 
force F̂e. The combined effect of electrostatic force and 
vdW force F̂3 causes the beam to deflect towards fixed elec-
trode. It is observed that the results from continuum model 
agree well with molecular dynamic simulation results 
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for nanostructure (Dequesnes et  al. 2004; Ouakad and 
Younis 2010). Therefore in the current study, Euler–Ber-
noulli beam theory is used instead of molecular dynamic 
approach for modelling nano-beam including vdW force. 
The governing equations for displacement ŷ

(
x̂, t̂

)
 of 

clamped–clamped beam is as follows (Zand and Ahmadian 
2010; Rasekh et al. 2010):

the boundary conditions used for the above equation are:

where, Â, Î , Ê and ρ̂  are cross section area, moment of 
inertia about the neutral axis, effective modulus and den-
sity of the beam respectively. In case of narrow beams 
(b̂ < 5 ĥ) the effective modulus Ê = E(Young’s modulus) 
whereas for wide beams (b̂ ≥  5 ĥ), the effective modu-
lus Ê = E/

(
1− ν2

)
, where ν represents the Poisson’s 

ratio. N̂  is the axial force due to residual stresses of the 
beam. The beam is subjected to viscous damping with a 
damping coefficient ĉ . The integral term in the govern-
ing Eq.  (1) takes into account the non-linear mid-plane 
stretching of the beam. F̂e is the electrostatic force per 
unit length of the beam due to an applied voltage V̂ . For 
parallel beam configuration and considering first order 
fringing field correction, the F̂e is given as (Huang et al. 
2001)

where, ε0 is permittivity of vacuum. Applied voltage V̂  con-
sists of DC component V̂DC superimposed to an AC har-
monics of amplitude V̂AC and excitation frequency ω̂f .

(1)

ÊÎ
∂4ŷ

∂ x̂4
+ ρ̂Â

∂2ŷ

∂ t̂2
+ ĉ

∂ ŷ

∂ t̂
=

[
ÊÂ

2L̂

∫ L̂

0

(
∂ ŷ

∂ x̂

)2

dx̂ + N̂

]
∂2ŷ

∂ x̂2
+ F̂e + F̂3

∂ ŷ

∂ x̂

∣∣∣∣
x̂=0

=
∂ ŷ

∂ x̂

∣∣∣∣
x̂=L̂

= ŷ
∣∣
x̂=0

= ŷ
∣∣
x̂=L̂

= 0

(2)F̂e =
ε0b̂

(
V̂DC + V̂AC cos

(
ω̂f t̂

))2

2
(
ĝ− ŷ

)2

(
1+ 0.65

(
ĝ− ŷ

)

b̂

)

When the separation between two parallel plates is typi-
cally smaller than 20 nm (Serry et al. 1995), the vdW force 
per unit length of the beam as a function of separation dis-
tance is (Israelachvili 1992)

where, A is the Hamaker constant which takes into account 
the material properties of the plates.

For convenience, Eq. (1) is expressed in terms of dimen-
sionless variables as,y = ŷ

ĝ
, x = x̂

L̂
 and t = t̂

T̂
, where, time 

constant, T̂ =

√
ρ̂ÂL̂4

ÊÎ
.

Substituting dimensionless variables and Eqs.  (2) and 
(3) into (1), the obtained governing equation is,

Note that in Eq.  (4), V = VDC + VACcos
(
ωf t

)
 and 

ωf = ω̂f T̂ .
The dimensionless forms of the boundary conditions are:

The various dimensionless parameters appearing in 

Eq.  (4) are as follows:where, α = 6

(
ĝ

ĥ

)2
, β = ε0b̂L̂

4

2ĝ3ÊÎ
, 

γ3 =
Ab̂L̂4

6π ĝ4ÊÎ
, N = N̂L̂2

ÊÎ
, c = ĉL̂4

ÊÎ T̂
, f = 0.65

ĝ

b̂
.

The superscript prime and over dot indicate the partial 
derivatives with respect to spatial coordinate x and time t 
respectively. In Eq. (4), the applied voltage (V) is in dimen-
sional form and the γ3 represents dimensionless vdW force 
parameter.

3 � Solution using ROM

3.1 � ROM for static analysis

ROM based on Galerkin method is used to discretise the 
governing differential equation for static and linear free 
vibration analysis of nano-beam. The overall deflection of 
the beam y(x, t) is assumed as consisting of static compo-
nent ys(x) due to DC voltage together with vdW force and 
dynamic component yd(x, t) due to the AC voltage that is 
y(x, t) = ys(x)+ yd(x, t). All time derivative terms and var-
iable forcing terms are set to zero in Eq. (4) yielding equa-
tion to simulate the static behavior as,

(3)F̂3 =
Ab̂

6π
[
ĝ− ŷ

]3

(4)

y′′′′ + ÿ + cẏ =

(
α

∫
1

0

y′2dx + N

)
y′′

+
βV2

(1− y)2
+ f

βV2

(1− y)
+

γ3

(1− y)3

y|x=0 = y|x=1 = y′
∣∣
x=0

= y′
∣∣
x=1

= 0

Fig. 1   Schematic diagram of fixed–fixed electrostatically actuated 
beam



1258	 Microsyst Technol (2017) 23:1255–1267

1 3

In Eq.  (5), βV2
DC represents dimensionless voltage 

parameter. To develop the ROM based on Galerkin method, 
the linear undamped normalised mode shape ∅i of straight 
beam is used as spatial basis function. Hence, the solution 
of Eq. (5) is assumed as,

where, ai is scalar constant to be evaluated. The modes 
∅i(x) are normalised such that 

∫ 1

0
∅2i dx = 1 and determined 

from the equation (Bokaian 1988)

the boundary conditions for above equation are

To analyse the static behavior, the ROM is obtained by 
substituting Eqs. (6) into (5), using condition for orthogo-
nality of mode shape and the Eq.  (7), multiplying it with 
∅n and integrated over the beam length. The ROM—repre-
senting set of algebraic non-linear equations—obtained is 
as follows:

where, n =  1, 2…m. The static deflection of the beam is 
obtained from solution of Eq. (8) using MATLAB software. 
In Eq. (8), the mode shape ∅i can be obtained from Eq. (7). 
The analytical solution of Eq.  (7) provides characteristic 
equation to obtain natural frequencies at undeflected state 
under axial load as

(5)

y′′′′s =

(
α

∫
1

0

y′2s dx + N

)
y′′s

+
βV2

DC

(1− ys)
2
+ f

βV2

DC

(1− ys)
+

γ3

(1− ys)
3

(6)ys(x) =

m∑

i=1

ai∅i(x)

(7)∅′′′′ = N∅′′ + ω2∅

∅|x=0 = ∅|x=1 = ∅′
∣∣
x=0

= ∅′
∣∣
x=1

= 0

(8)

ω2

nan =



α

m�

i,j,k=1

aiajak

�
1

0

∅
′

i∅
′

jdx

�
1

0

∅
′′

k∅ndx





+ βV2

DC

�
1

0

1
�
1−

�m
i=1

ai∅i
�2 ∅ndx

+ f βV2

DC

�
1

0

1�
1−

�m
i=1

ai∅i
�∅ndx

+ γ3

�
1

0

1
�
1−

�m
i=1

ai∅i
�3 ∅ndx

(9)ω − ωcos�3cosh�1 +
N

2
sin�3sinh�1 = 0

where, �1 =

√√
N2

4
+ ω2 + N

2
 and �3 =

√√
N2

4
+ ω2 − N

2
.

The solution of (7) also provides expression for the 
mode shape ∅i as,

where, equations for the �1i and �3i are same as mentioned 
above for �1 and �3 respectively, corresponding to ωi (ith 
natural frequency of the beam) obtained by solving tran-
scendental Eq.  (9). Single mode ROM is used for static 
analysis as it gives sufficiently accurate result (Tahani and 
Askari 2014; Bhushan et  al. 2011; Ouakad and Younis 
2010). The single mode ROM resulting from Eq.  (8) by 
substituting m = 1 is,

Equation  (11) is solved iteratively for a1 till the pull-
in is occurred. Note that integrals 

∫ 1

0
∅1

1

(1−a1∅1)
2 dx, ∫ 1

0
∅1

1
(1−a1∅1)

dx and 
∫ 1

0
∅1

1

(1−a1∅1)
3 dx are estimated numer-

ically for each iteration.

3.2 � ROM for free vibration characteristics

ROM is also obtained to analyse the linear free vibration 
about its static equilibrium position at deflected state of 
the beam. For this, deflection of the beam is assumed as 
consisting of static component ys(x) and dynamic compo-
nent yd(x, t). Hence, the solution of Eq. (4) is assumed as,

The static component of deflection ys(x) is decided by elec-
trostatic actuation due to DC voltage together with vdW 
force, while the dynamic component yd(x, t) is due to the 
AC voltage. It is assumed that magnitude of dynamic com-
ponent of deflection yd(x, t) and AC voltage is very small 
compared to magnitude of ys(x) and DC voltage respec-
tively. The linear equation of motion for free vibration at 
the deflected state is obtained by substituting Eqs.  (12) 
into (4), expanding the forcing terms of Eq.  (4) about 
yd(x, t) = 0, incorporating static deflection Eq.  (5), then 

(10)

∅i = (cosh�1ix − cos�3ix)+

[
cos�3i − cosh�1i

�3isinh�1i − �1isinh�3i

]

× (�3isinh�1ix − �1isin�3ix)

(11)

ω2

1
a1 + α

(∫
1

0

∅′2
1
dx

)2

a
3

1

= βV2

DC

∫
1

0

∅1
1

(1− a1∅1)
2
dx + f βV2

DC

∫
1

0

∅1
1

(1− a1∅1)
dx

+ γ3

∫
1

0

∅1
1

(1− a1∅1)
3
dx

(12)y(x, t) = ys(x)+ yd(x, t)
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neglecting the terms of higher order, damping, forcing and 
retaining linear terms in yd only.

The obtained free vibration equation is,

The solution of (13) is obtained by separation of vari-
ables method. For this, yd(x, t) is expressed as

Substituting Eqs.  (14) into (13) and rearranging yields 
two uncoupled ordinary differential equation. Differential 
equation in spatial coordinate gives natural frequencies and 
mode shapes at deflected state. The differential equation in 
spatial coordinate is,

Equation  (15) is a characteristics equation, where ωdf  
and ∅df  are natural frequency and mode shape at deflected 
state respectively. To obtain the ROM, the solution of (15) 
is assumed as

Substituting Eqs.  (16) into (15), using the condition for 
orthogonality of mode shape, then by multiplying the result 
with ∅n and integrating over the beam domain yields ROM as,

where, n = 1, 2…m. Equation (17) provides natural frequen-
cies and mode shapes of undamped free vibration at deflected 
state. Equation  (17) is solved using MATLAB software for 
free vibration analysis with single mode ROM. The single 
mode ROM obtained from (17) by substituting m = 1 is,

(13)

y′′′′d + ÿd =

(
α

∫
1

0

y′2s dx + N

)
y′′d

+

(
2α

∫
1

0

y′sy
′
ddx

)
y′′s + 2βV2

DC

1

(1− ys)
3
yd

+ f βV2

DC

1

(1− ys)
2
yd + 3γ3

1

(1− ys)
4
yd

(14)yd(x, t) = ydt(t)∅df (x)

(15)

∅′′′′df −

(
α

∫
1

0

y′2s dx + N

)
∅′′df −

(
2α

∫
1

0

y′s∅
′
df dx

)
y′′s

− 2βV2

DC

1

(1− ys)
3
∅df − f βV2

DC

1

(1− ys)
2
∅df

− 3γ3
1

(1− ys)
4
∅df − ω2

df ∅df = 0

(16)∅df =

m∑

i=1

bi∅i

(17)

bnω
2

n −

m∑

i=1

bi

(
α

∫
1

0

y′2s dx

∫
1

0

∅′′i ∅ndx + 2α

∫
1

0

y′s∅
′
idx

∫
1

0

y′′s ∅ndx

)

−

m∑

i=1

bi

(
2βV2

DC

∫
1

0

1

(1− ys)
3
∅i∅ndx + f βV2

DC

∫
1

0

1

(1− ys)
2
∅i∅ndx

)

−

m∑

i=1

bi

(
3γ3

∫
1

0

1

(1− ys)
4
∅i∅ndx

)
= bnω

2

df

where, ωdf  and ω1 are first natural frequencies at deflected 
state ys(x) = a1s∅1 and undeflected state respectively. 
Equation (18) is solved iteratively for a1s till the pull in is 
occurred. Note that here also integrals 

∫ 1

0
∅21

1

(1−a1s∅1)
3 dx , 

∫ 1

0
∅21

1

(1−a1s∅1)
2 dx and 

∫ 1

0
∅21

1

(1−a1s∅1)
4 dx are estimated 

numerically for each iteration.

(18)

ω2

df
− ω2

1
= 3α

(∫
1

0

∅′2
1
dx

)2

a
2

1s

−

(
2βV2

DC

∫
1

0

∅2
1

1

(1− a1s∅1)
3
dx

+ f βV2

DC

∫
1

0

∅2
1

1

(1− a1s∅1)
2
dx

)

− 3γ3

∫
1

0

∅2
1

1

(1− a1s∅1)
4
dx

a

b

Fig. 2   Comparison of a voltage parameter at pull-in 
(
βV2

DC

)
PI

 ver-
sus non-dimensional van der Waals force parameter γ3 for N = 0 and 
α = 0 b ratio of dimensionless first natural frequency at deflected 
state ωdf  and at un-deflected state ω1 versus applied voltage VDC
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4 � Numerical results and discussion

4.1 � Result validation

The validation of present methodology is shown in Fig. 2a 
for pull-in voltage against the differential quadrature method 
(DQM) based numerical results of Mousavi et al. (2013) for 
various values of γ3 and with the experimental results of 
Tilmans and Legtenberg (1994) in Fig.  2b for the ratio of 
dimensionless first natural frequency at deflected state ωdf  
and at un-deflected state ω1 versus applied voltage VDC. 
Further comparisons are shown in Tables 1 and 2 with the 
published numerical results of Kuang and Chen (2004) and 
Tahani and Askari (2014) as well as with the experimental 
results of Tilmans and Legtenberg (1994). The geomet-
ric and material properties of the beam for the comparison 
shown in Table 1 and Fig. 2b are as follows: b̂ = 100 µm, 
ĥ  =  1.5  µm, Ê  =  151  GPa, and ν  =  0.3 (Tilmans and 
Legtenberg 1994). The validation shown in Table 2 is with 
the following properties of the beam: L̂ = 5 µm, b̂ = 1 µm, 

Table 1   Comparison of pull-in voltage with the measured and calculated results for g = 1.18 µm

L̂ (µm) Pull-in voltage (V)

Tilmans and Legtenberg (1994) Kuang and Chen (2004) Tahani and Askari (2014) Current work

 210 27.95 ± 0.05 28.10 28.00 28.22

 310 13.78 ± 0.03 14.00 13.97 14.12

 410 9.13 ± 0.02 8.90 8.85 8.91

 510 6.57 ± 0.02 6.40 6.35 6.38

Table 2   Comparison of pull-in voltage results for various values of 
axial-stress σr incorporating vdW force

g (nm) σr (MPa) Pull-in voltage (V)

Tahani and Askari (2014) Current work

15 0 0.43 0.44

10 0.49 0.50

20 0.54 0.55

20 0 1.11 1.12

10 1.17 1.18

20 1.22 1.23

25 0 1.69 1.70

10 1.76 1.77

20 1.83 1.84

50 0 5.06 5.07

10 5.24 5.25

20 5.42 5.43

a

b

Fig. 3   a Variation of voltage parameter βV2

DC with mid-point deflec-
tion ymid for two different situations, one ignoring the effect vdW 
force (i.e. for γ3 = 0) depicted with hollow symbols and the other 
considering the effect vdW force (i.e. for γ3 = 10) depicted with 
filled symbols, for values of axial force varying from compressive 
to tensile, where Nbuc is dimensionless buckling load b Variation 
of electrostatic force Fβ, electrostatic force along with vdW force 
Fβ + FvdW and elastic restoring force Fr with mid-point deflection 
ymid for βV2

DC = 30
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ĥ = 100 nm, Ê = 80 GPa, and ν = 0.42 (Tahani and Askari 
2014). The Excellent agreement between present and pub-
lished numerical and experimental results found in all the 
cases mentioned above, shows robustness of the present 
model for micro/nano beam.

4.2 � Static pull‑in instability analysis

The static deflection of the beam subject to electrostatic 
and vdW force is studied till pull-in instability point. The 
relationship between voltage parameter βV2

DC and mid-
point deflection ymid of the beam when mid-plane stretch-
ing parameter α =  30 and vdW force parameter γ3 =  10 
is shown in Fig.  3a. The results are obtained for various 
values of axial force representing tensile to compressive. 
Also comparison of the results with and without vdW force 
is shown the figure. Zand and Ahmadian (2010) reported 
the similar behavior between the voltage parameter and 
mid-point deflection for different values of γ3. Zand and 
Ahmadian (2010) obtained the solution using finite ele-
ment method. It is interesting to note that neglecting vdW 
force results in considerable higher pull-in voltage spe-
cifically at high axial compressive force. The difference 
becomes smaller as the axial force changes to tensile from 
compressive.

The effect of vdW force under axial load is explained  
with a parametric study using single mode ROM. Single  
mode ROM Eq.  (11) is consisting of three parts. The first  
part due to electrostatic actuation force including first  
order fringing field correction Fβ = βV2

DC

∫
1

0
∅1

1

(1−a1∅1)
2
dx

+f βV2

DC

∫
1

0
∅1

1

(1−a1∅1)
dx, second part due to vdW force 

FvdW = γ3
∫ 1

0
∅1

1

(1−a1∅1)
3 dx and third part due to elastic 

restoring forces Fr = ω2
1a1 + α

(∫ 1

0
∅21dx

)2
a31.

Figure  3b shows the relationship of Fr, Fβ + FvdW 
and Fβ versus mid- point deflection ymid for three values 
of axial force at βV2

DC =  30 (shown with dashed line in 
Fig.  3a). The curves of Fr and Fβ intersect at two points 
when mid-point deflection varies from 0 to 1. These inter-
sections of curves—depicted with unfilled symbols—are 
static solution neglecting vdW force. Similarly, intersec-
tions of curves Fr and Fβ + FvdW—depicted with filled 
symbols—provide static solution considering the vdW 
force. Fr and Fβ curves intersect first at lower value of 
mid-point deflection is stable solution and the second 

intersection at higher value of mid-point deflection is unsta-
ble solutions. Likewise, there are stable and unstable solu-
tions from the intersections of curves Fr and Fβ + FvdW. It 
can be seen that there is negligible difference in Fβ curves 
for different value of axial force and the same can also be 
observed for Fβ + FvdW curves. This is due to non-depend-
ency of Fβ and FvdW directly on axial force. Fr increases 
as axial force becomes tensile from compressive because 
first natural frequency of undeflected beam ω1 increases 
with axial force (refer Table 3). Fr and Fβ curves intersect 

Table 3   Dimensionless first natural frequency (ω1) normalised with dimensionless first natural frequency at zero axial force (ω01) for normal-
ised axial force varying from compressive to tensile

N
Nbuc

−1 −0.6 −0.3 0 0.3 0.6 1
ω1

ω01
0 0.638 0.840 1.000 1.135 1.254 1.396

a

b

Fig. 4   Effect of vdW force on voltage parameter at pull-in 
(
βV2

DC

)
PI

 
considering different values of axial force for mid-plane stretching 
parameter α = 30



1262	 Microsyst Technol (2017) 23:1255–1267

1 3

first at lower value of mid-point deflection, therefore stable 
solution decreases with increase in value of axial force at 
a particular value of voltage parameter. Fβ + FvdW curves 
are always above the Fβ curves when mid-point deflection 
increases from 0 to 1 and hence, stable solution considering 
vdW force is always at higher value of mid-point deflection 
than that of stable solution neglecting vdW forces.

The effect of vdW force on voltage parameter at pull-
in 

(
βV2

DC

)
PI

 and mid-point deflection at pull-in (ymid)PI 
of fixed–fixed nano-beam is presented in Figs.  4 and 5 
respectively for different values of axial force. It can 
be seen from Fig.  4 that with increase in γ3, the voltage 
parameter at pull-in decreases. The increase in γ3 specifies 
the increase in vdW force (increase in interaction force), 
which in turn leads to decrease in pull-in voltage. When 
the separation distance of the beam and fixed electrode is 
very much less than width of the beam (g ≪ b), the influ-
ence of fringing field can be ignored. Hence, g

b
∼ 0 indi-

cates that the effect of fringing field is neglected. How-
ever, when the separation distance of the beam and fixed 
electrode is comparable to beam width, it is important to 
take into account the effect of fringing field as with the 
increase in g

b
, the effect of fringing field becomes stronger, 

thus affecting the pull-into occur at lower applied voltage. 
The results presented for voltage parameter at pull-in are 
without and with consideration of fringing field effect in 
Fig. 4a, b respectively.

Figure  5 shows that the mid-point deflection at pull-in 
decreases with increase in γ3. The effect of axial load on 
pull-in parameters 

(
βV2

DC

)
PI

 and (ymid)PI of fixed–fixed 
nano-beam for different values of γ3 is shown in Figs.  6 
and 7 respectively. The effect of vdW force on mid-
point deflection of fixed–fixed beam at pull-in (ymid)PI is 

Fig. 5   Effect of vdW force on mid-point deflection at pull-in (ymid)PI 
considering different values of axial force for α = 30

a

b

Fig. 6   Effect of axial force on voltage parameter at pull-in 
(
βV2

DC

)
PI

 
for different values of γ3 and α = 30

Fig. 7   Effect of axial force on mid-point deflection at pull-in (ymid)PI 
for different values of γ3 and α = 30
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presented in Fig. 5. As discussed earlier, the increase in γ3 
indicates the increase in interaction force (i.e. vdW force), 
causes the pull-into occur earlier and hence mid-point 
deflection at pull-in decreases, which can be observed from 
Fig.  5. It can also be concluded that as the tensile axial 
load induces in the beam, the structure’s capacity to resist 
the applied forces increases. As a result, the deflection at 
pull-in decreases (Figs. 5, 7) and pull-in voltage increases 
(Fig. 6). It is observed from Figs. 6 and 7 that presence of 
high axial compressive force leads to significant decrease 
in pull-in voltage and increase in the mid-point deflection 
of the fixed–fixed nano-beam. The results of the current 
work for N = 0 is compared with the results of Tahani and 
Askari (2014) in Figs.  4 and 6. The result of the present 
work shows good agreement with the reported results. Note 
that Tahani and Askari (2014) obtained the solution using 
single mode ROM.

4.3 � Free vibration characteristics

Linear free vibration at deflected position of the beam is 
analysed to obtain the variation of first natural frequency 
versus voltage parameter. Figure  8 shows the variation 
of dimensionless first natural frequency at deflected 
state of the beam 

(
ωdf

)
 with applied VDC for two differ-

ent situations, one ignoring the effect vdW force (i.e. for 
γ3 = 0) depicted with hollow symbols and the other con-
sidering the effect vdW force (i.e. for γ3 = 10) depicted 
with filled symbols. The general behavior of ωdf  is non-
monotonous except at high tensile force. It is interesting 

to note that, neglecting vdW force results in higher value 
of ωdf  for tensile force. However, the difference is more 
pronounced at higher voltage parameter. Moreover, with 
compressive force, the tunability of ωdf  increases remark-
ably. It is evident from Fig. 8 that neglecting vdW force 
for the beam with high compressive force results in 
overestimation of tunability value of ωdf . For compres-
sive force equals to −0.9 Nbuc considering vdW force, 
ωdf  of the beam for βV2

DC = 0 is 13.58 and at βV2
DC = 36 

it reaches to 25.95. While neglecting vdW force, ωdf  of 
the beam for βV2

DC =  0 is 7.1914 and at βV2
DC =  54 it 

reaches to 28.56.
The behavior of ωdf  considering vdW force can be 

described using single mode ROM. Left hand side of the 
single mode ROM Eq.  (18) represents difference of the 
square of first dimensionless natural frequency at statically 
deflected position of the beam and square of first dimen-
sionless natural frequency of undeflected beam. Right side 

Fig. 8   Variation of dimensionless first natural frequency at deflected 
state of the beam 

(
ωdf

)
 with applied VDC for two different situations, 

one ignoring the effect vdW force (i.e. for γ3 = 0) depicted with hol-
low symbols and the other considering the effect vdW force (i.e. for 
γ3 = 10) depicted with filled symbols when α = 30

a

b

Fig. 9   Variation of parameters Wm, Wβ and Wβ +WvdW with mid-
point deflection ymid for a compressive axial force (−0.9 Nbuc) and b 
tensile axial force (0.9 Nbuc) when α = 30
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of the Eq.  (18) consists of three terms. First term defined 
as Wm = 3α

(∫ 1

0
∅′21 dx

)2
a21s represents increase in natural 

frequency due to mid-plane stretching, the second term 

Wβ = 2βV2
DC

∫ 1

0
∅21

1

(1−a1s∅1)
3 dx + f βV2

DC

∫ 1

0
∅21

1

(1−a1s∅1)
2 dx 

and the third term WvdW = 3γ3
∫ 1

0
∅21

1

(1−a1s∅1)
4 dx with neg-

ative sign represent decrease in natural frequency due to 
electrostatic force and vdW force respectively.

Figure  9a, b show the variation of parameters Wm , 
Wβ, and Wβ +WvdW as a function of mid-point deflec-
tion ymid for axial force equals to −0.9 Nbuc and 0.9 Nbuc 
respectively. These curves are plotted for βV2

DC =  9 and 
βV2

DC =  45. The curves of Wm and Wβ as well as curves 
of Wm and Wβ +WvdW intersect at two points. The ymid 
solutions are depicted in Fig.  9a for both βV2

DC =  9 and 
βV2

DC =  45, which lie between first and second intersec-
tion of curves Wm and Wβ, and between these intersec-
tion points Wm is always above Wβ. In a similar manner, 
ymid solutions for both βV2

DC = 9 and βV2
DC = 45 also lie 

between the first and second intersection of curves Wm and 
Wβ +WvdW, and between these intersection points Wm is 
always above Wβ +WvdW. This indicates the dominance of 
non-linearity due to mid-plane stretching over electrostatic 
force and vdW force. Therefore, ωdf  is greater than ω1 for 
both values of βV2

DC (refer Fig.  8 for N = −0.9 Nbuc ). 
From the ymid solution depicted in Fig. 9a, it can be seen 
that difference in parameters Wm and Wβ is less than Wm 
and Wβ +WvdW for βV2

DC =  9. This indicates the domi-
nance of vdW force over electrostatic force. Therefore at 
βV2

DC =  9, ωdf  considering vdW force is more than that 
neglecting vdW force. While at βV2

DC = 45 difference in 
parameters Wm and Wβ is more than Wm and Wβ +WvdW, 
which indicates the dominance of electrostatic force over 
vdW force, Hence, ωdf  considering vdW force is less than 
that neglecting vdW force.

In Fig. 9b, the ymid solutions are depicted for βV2
DC = 9 

and βV2
DC = 45 with axial force equals to 0.9 Nbuc. In this 

case, both ymid solutions lie before the first intersection of 
curves Wm and Wβ, and in this region Wβ remains above Wm . 
In a similar manner, both ymid solutions considering vdW 
force also lie before the first intersection of curves Wm and 
Wβ +WvdW, where Wβ +WvdW remains above Wm. This 
indicates the dominance of electrostatic and vdW force 
over mid-plane stretching. Therefore, ωdf  is less than ω1 
for both voltage parameters (refer Fig. 8 for N = 0.9 Nbuc). 
The magnified view of detail at ‘A’ shows that difference in 
parameters Wm and Wβ is less than Wm and Wβ +WvdW for 
ymid solutions depicted for βV2

DC = 9 and βV2
DC = 45. This 

indicates the dominance of vdW force over electrostatic 
force. Therefore, difference between ωdf  and ω1 consider-
ing vdW force is higher than ignoring vdW force. Hence, 
ωdf  considering vdW force is less than that ignoring vdW 

force. In this case, ωdf  decreases monotonously with an 
increase in βV2

DC.
While Fig. 8 shows variation in ωdf  with applied VDC for 

γ3 = 0 and γ3 = 10 at five different values of N, Fig.  10a 
shows the variation in ωdf  with applied VDC for N = −0.9 
Nbuc and five different values of γ3. It is found from Fig. 10a 
that the tunability of ωdf  decreases with increase in value 
of γ3. Figure  10b shows the effect of mid plane stretch-
ing parameter on ωdf  for N = −0.9 Nbuc. It is found from 
Fig.  10b that the tunability of ωdf  increases with increase 
in value of α. These results indicate that frequency can be 
tuned to some hundred percent with proper combination of 
α and γ3. The same can be observed from Fig. 10b for value 
of α = 40 and γ3 = 10. Further as described earlier, Fig. 10a 
shows that the increase in γ3 (increase in vdW force) 
strengthen the pulling forces which result in the decrease in 
pull-in voltage, whereas, Fig.  10b shows that the increase 

a

b

Fig. 10   Variation of dimensionless natural frequency at deflected 
state ωdf  for a different values of γ3 and b different values of α
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in α (due to increase in gap between beam and fixed elec-
trodes) in turn decreases the electrostatic force which delays 
the pull-in and hence pull-in voltage increases.

4.4 � Frequency stability characteristics

Figure  11 shows the relationship of ωdf  with variation 
of axial force ranging from compressive to tensile. The 
change in temperature develops axial stresses which result 
in change in natural frequency as described earlier (refer 
Table 3). Note that the range of deviation of ωdf  owing to 
change in axial load N at specific value of VDC reduces as 
the applied DC voltage increases (Fig. 11). This indicates 
that sensitivity of ωdf  to axial load reduces at deflected 
position of the beam in relation to undeflected position 

of the beam (also refer Fig.  8). Moreover, Fig.  11 shows 
that frequency stability is observed at βV2

DC = 63 without 
considering vdW force, but it is interesting to note that the 
frequency stability is achieved at βV2

DC =  45 considering 
vdW force. This important observation shows that ignoring 
vdW force may lead to wrong estimation voltage parameter 
at which frequency stability can be achieved.

Similar to discussion for static analysis and frequency 
characteristic mentioned in previous sections, here also 
frequency stability is explained with single mode ROM 
(18). Figure 12 shows relationship of parameters ω2

1 +Wm 
and Wβ +WvdW versus mid-point deflection. These curves 
are plotted for various combinations of voltage param-
eter and axial force. Single mode ROM (18) gives square 
of ωdf  equals to difference of parameter ω2

1 +Wm and 
Wβ +WvdW . The parameter ω2

1 +Wm is independent of DC 
voltage and depends on axial force. Therefore, there are 
two curves for the parameter related to different values of 
axial force. The parameter Wβ +WvdW does not depend on 
axial force directly. Hence, there are three curves for the 
parameter related to different values of voltage parameter. 
It can be observed from the Fig. 12 that the difference in 
parameters ω2

1 +Wm and Wβ +WvdW decreases as voltage 
parameter increases for variation in axial force. As shown 
in Fig. 12 difference in these parameters is very less when 
βV2

DC = 45 for the study with beam under vdW force. This 
indicates that for βV2

DC = 45, change in ωdf  is insignificant 
with change in axial force.

The stability of natural frequency at deflected state of 
beam with change in temperature is an important consid-
eration in nano-beam oscillators design. The dimensions of 
the beam should be selected in such a way that first natu-
ral frequency in deflected state of the beam is the desired 
resonant frequency instead of first natural frequency of 
the straight beam. Similar observation were reported by 
Bhushan et al. (2011) while studying the frequency stabil-
ity characteristic ignoring vdW force. As shown in Fig. 11, 
there is significant influence of vdW force on frequency sta-
bility characteristics. The appropriate voltage parameter is 
to be found from (11) and (18) to design beam which gives 
high frequency stability under variation of temperature.

5 � Conclusions

In this study, the two-point boundary value problem of 
clamped–clamped nano-beam subject to the electrostatic 
force and van der Waals force is investigated. The modelling 
of the electrostatic force takes into consideration the effect 
of fringing field. The obtained governing equation is non-
linear as a result of the geometric nonlinearity due to mid-
plane stretching, and also due to inherent nonlinearity of 
electrostatic force and van der Waals force. The governing 

Fig. 11   Relationship of dimensionless natural frequency at deflected 
state ωdf  with axial force ranging from compressive to tensile for dif-
ferent values of voltage parameter βV2

DC when α = 30, γ3 = 10

Fig. 12   Variation of parameters ω2

1
+Wm and Wβ +WvdW with mid-

point deflection ymid for various combination of voltage parameter 
and axial force when α = 30, γ3 = 10
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nonlinear differential equation is converted to non-linear 
algebraic equation using Galerkin based reduced order 
model. The effect of van der Waals force on static pull-in 
instability and free vibration characteristics of beams under 
axial force is investigated. The detailed investigations of the 
problem is deliberated by means of the single mode ROM 
which represents the single degree of freedom equation.

The presence of van der Waals force reduces pull-in 
voltage and pull-in displacement. The reduction in the pull-
in parameters due to van der Waals force is considerable for 
beam with high axial compressive force. The pull-in volt-
age decreases and mid-point deflection at pull-in increases 
as the tensile force becomes compressive. The existence 
of high compressive force increases tunability of natural 
frequency at deflected state of beam. However, this higher 
tunability of resonance frequency at high compressive 
force decreases when effect of van der Waals force is taken 
into account. In case of nano beam under high axial com-
pressive initial stress along with suitable combination of 
mid-plane stretching and van der Waals force parameters, 
frequency can be tuned for some hundred percent.

With variation in axial force, minimal frequency vari-
ation is observed at high value of voltage parameter. The 
presence of van der Waals force reduces the magnitude 
of voltage parameter at which frequency stability can be 
obtained. This stability of natural frequency with variation 
of axial force can be successfully employed in the design of 
oscillators. The results of the current study provide useful 
information for design of nano-beam oscillators, which is 
considered to be vital in understanding the application.
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