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2007), X-ray lithography and micro scanning (Indermue-
hle et al. 1994; Chen et al. 1992), etc. In recent years, 
more attention has been paid towards the performance 
improvement of the nanopositioning stages (Colinjivadi 
et al. 2008).

In view of the kinematic scheme, the mechanical 
designs of flexure-based nanopositioning mechanisms 
generally lie in two categories in terms of serial-kine-
matic and parallel-kinematic mechanisms. Concerning 
a serial-kinematic stage, the motion in each axis can 
be independently measured and easily controlled (Ken-
ton and Leang 2012). However, the assembly error and 
accumulated error caused by parasitic motion in different 
axes are the main weakness of serial-kinematic mecha-
nisms. By contrast, the parallel-kinematic mechanisms 
exhibit many advantages including structural compact-
ness, high stiffness, and high accuracy. Yet, the coupling 
of the cross-axis motion, complex kinematic equation, 
and small workspace block a wide application of the par-
allel-kinematic mechanism in nanopositioning field (Liu 
et al. 2014).

To mitigate the cross-axis error of the parallel-kin-
ematic stage, flexure joints have been widely applied. 
In addition, the flexure joints also have the advantages 
of negligible backlash, stick-slip friction and wear free, 
smooth and continuous displacement, an almost linear 
displacement relationship between input and output, and 
an inherently infinite resolution (Kang and Gweon 2013; 
Wang et al. 2011; Smith et al. 1997; Lobontiu et al. 2001). 
Generally, a monolithic structure is designed to achieve 
an XY stage. The monolithic design is easy to fabricate 
in practice. However, the maintenance work is not easy 
once one part of the stage is damaged. To overcome this 
limitation, a modular design concept is proposed to devise 
a nanopositioning stage in this work. Specifically, the 

Abstract This paper presents the mechanism and control 
design of a modular XY nanopositioning stage employ-
ing flexure mechanisms and piezoelectric actuators. A 
new compact parallel flexure stage with two transla-
tional degrees-of-freedom is presented. The dual-stacked 
bridge-type amplifier is employed by a serial connection 
of two amplifiers. Static and dynamic analytical mod-
eling of the XY stage are carried out, which are verified 
by performing finite element analysis simulations. Owing 
to a larger amplification ratio of the bridge-type amplifier 
and acceptable decoupling property, the stage exhibits a 
nearly decoupled two-dimensional large motion. Moreo-
ver, the adaptive discrete sliding mode control scheme is 
devised to achieve precise positioning for the stage. The 
performance and effectiveness of this presented design 
are verified by several experimental studies.

1 Introduction

Micro-/nanopositioning stages have been widely utilized 
in modern precision engineering applications demand-
ing the merits of high accuracy and fast response. Such 
applications involve atomic force microscopy (Park 
et al. 2010), micro/nano-assembly (Gozen and Ozdogan-
lar 2012), micro/nano-manipulation (Tian et al. 2010), 
lithography machining of semiconductors (Shinno et al. 
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comprehensive design of a novel parallel XY nanoposi-
tioning stage is proposed. By employing two modules, 
an XY nanopositioning stage is easily generated and 
maintained.

Usually, the piezoelectric actuators are employed 
to drive the flexure stages to achieve the merits of rapid 
response and ultra-high resolution of the displacement. 
Due to the stroke limit of piezoelectric actuators, the 
mechanical amplifier is widely applied in nanopositioning 
stages. Among various research efforts in this area, popular 
magnification approaches for flexure mechanism include 
level-principle amplifier (Qin et al. 2014) and bridge-
principle amplifier (Zhang and Xu 2015a). For instance, 
it has been shown that the flexure mechanism can obtain 
the output of 480 μm by integrating the bridge-principle 
amplifier into the flexure mechanism design (Zhang and 
Xu 2015b).

To achieve a precision positioning, the implementation 
of a control methodology is demanded to overcome the 
hysteresis and creep nonlinearities introduced by the pie-
zoelectric actuators. In the literature, sliding mode control 
(SMC) is widely used as a nonlinear control approach to 
deal with external disturbances. The discrete-time sliding 
mode control (DSMC) has been presented for the imple-
mentation on sampled-data systems (Bartoszewicz 1998; 
Xu 2015). In addition, the adaptive control of nonlinear 
systems has being developed rapidly in the past two dec-
ades (Yao and Tomizuka 1997). Numerous works com-
bining SMC and adaptive control have been conducted in 
recent years (Chen and Hisayama 2008; Goodwin et al. 
1980). However, most of these works only utilize con-
tinuous-time sliding mode control, or not all of unknown 
parameters are estimated. In this work, a new adaptive dis-
crete sliding mode control (ADSMC) is developed, where 
the adaptive law is devised to estimate the mass, damping 
coefficient, and stiffness parameters. The effectiveness of 
the reported control scheme has been validated by carrying 
out experimental studies.

The major contribution of this work is the new mecha-
nism and control design of an XY nanopositioning stage. 
The overall size of stage is only 68.5× 68.5× 68.5 mm3. 
To yield a large displacement, dual-stacked bridge-type 
amplifiers are employed. Actuated by two piezoelectric 
actuators, the stage can obtain the decoupled motion by 
combining the amplifier with the flexure prismatic (P) 
joints. The developed ADSMC scheme enables a position-
ing precision better than 20 nm for the nanopositioning 
stage.

The following parts of this paper are organized as fol-
lows. The mechanical design of the XY parallel stage is 
presented in Sect. 2. Then, FEA simulation is conducted 
in Sect. 3. Section 4 presents the open-loop testing results 
of prototype nanostage. Afterwards, the control design is 

outlined in Sect. 5 along with experimental studies. Finally, 
Sect. 6 concludes this paper.

2  Mechanical design and kinematics analysis

The use of the piezoelectric actuator (PZT) enables the 
stage an ultrahigh-resolution displacement. Due to the lim-
ited output stroke of the PZT actuator, two stacked amplifi-
ers are employed to magnify the actuator’s stroke. In order 
to achieve decoupled output motion in X and Y axes, a 
two-prismatic-prismatic (2-PP) parallel mechanism is con-
structed. The components of the XY stage are denoted in 
the CAD model, as shown in Fig. 1.

2.1  Bridge‑principle amplifier

Due to the double symmetry property, elastic deformation 
of one quarter model of bridge-type mechanism is picked 
out as shown in Fig. 2. This part can be considered as a 
beam which is simply supported in X and Y axes. The basic 
trigonometric amplification model for the bridge-princi-
ple amplifier can be generated by the following equation 
(Pokines and Garcis 1998)

Based on this model, the following theoretical derivations 
are deduced.

2.1.1  Kinematic relation analysis

First, the displacement amplification ratio of bridge-type 
mechanism can be derived by analyzing kinematic relations 

(1)R0 =

∣

∣

∣

sin α − sin(α −∆α)

cosα − cos(α −∆α)

∣

∣

∣

Fig. 1  CAD model of the designed XY nanopositioning stage
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and the instantaneous velocity of bridge-type mechanism 
(Ma et al. 2006). That is,

2.1.2  Analysis based on elastic beam theory

Based on the elastic beam theory, another simple model is 
given by (Qi et al. 2015):

2.1.3  Combination of elastic beam theory and kinematic 
relation analysis

The kinematic analysis for bridge-type amplifier is derived 
in combination with the elastic beam theory. The ideal dis-
placement amplification ratio of bridge-type mechanism 
was derived in Xu and Li (2011) using geometric relations 
of the input displacement and output displacement. An 
elastic analysis in consideration of the torsional stiffness Kr 
and translational stiffness Kt is given to verify the value of 
amplification ratio for bridge amplifier.

where the torsional stiffness Kr of the flexure hinges of the 
part can be computed as:

(2)R1 = tan α

(3)R2 =
3(h− t)(L1 + 2L2)

3(h− t)(h− t)+ t2

(4)

R3 =
kt(h− t)(L1 + 2L2)

3

2kr[(L1 + 2L2)2 + (h− t)2] + kt(h− t)2(L1 + 2L2)2

(5)Kr =
Ebt3

12(δ3L1 + 2L2)

By considering the beam to be a serially connected flexure 
of three parts, δ = t

h
, the translational stiffness Kt of the 

flexure is derived as:

After substituting Eqs. (5) and (6) into Eq. (4), the amplifi-
cation ratio can be derived as

2.1.4  FEA simulation result

Preliminary work of the nanopostioning stage design is pre-
sented in our previous work Zhang and Xu (2015a). FEA 
result of the amplification ratio is denoted by R4. By assign-
ing an input displacement of 14.5 μm which is the stroke 
limit of the piezo actuator, the bridge amplifier obtains the 
output of 110.4 μm as shown in the FEA result in Fig. 2b. 
The comparison of the amplification ratios is tabulated in 
Table 1. It is obvious that R3 is closer to the FEA result R4 . 

(6)Kt =
Ebt

(δ3L1 + 2L2)

(7)

R3 =
6(h− t)(L1 + 2L2)

3

t2[(L1 + 2L2)2 + (h− t)2] + 6(h− t)2(L1 + 2L2)2

(a)
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Fig. 2  a The parameters of the bridge amplifier (unit: mm), b comparison of results obtained by different methods

Table 1  Calculation results of the amplification ratio

Method Formula Ratio

R1 tan α 8.75

R2
3(h−t)(L1+2L2)

3(h−t)(h−t)+t2
8.5

R3 6(h−t)(L1+2L2)
3

t2[(L1+2L2)
2+(h−t)2]+6(h−t)2(L1+2L2)

2
7.22

R4 FEA 7.58
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But the deviation is still over 0.25. So, the amplifier ratio 
R4 is employed in the following equations.

It is notable that the analysis models can be employed 
to perform an optimum design of the stage parameters in a 
computationally effective manner.

2.2  Dual‑stacked bridge amplifier

The dual-stacked bridge amplifier can not only obtain a 
lager enlarged ratio but also change the direction of the out-
put. The principle of the dual-stacked amplifier is a little 
different from the single one due to the serial connection 
of the first and second amplifiers. The amplification ratio of 
the stacked amplifiers cannot be calculated as R2

amp directly, 
because the existence of the serial connection decreases the 
factor υ. An empirical factor υ can be obtained from the 
FEA simulation as analyzed in the previous work Wang 
et al. (2011). As shown in Fig. 2a, if the shaded part A is 
not taken into consideration, the amplification ratio Rt of 
the dual-stacked amplifier can be simplified as the follow-
ing equation by balancing the damping coefficient of the 
serial connection and the push force.

where υ = 0.154 as generated by FEA simulation.

2.3  Parasitic motion analysis

When the stage is only actuated by the PZT along X-axis 
with an input displacement δp as shown in Fig. 3, the output 
δa is enlarged by the amplifier. The output motion of the 
mobile platform along the X-axis will cause a small para-
sitic motion δy in the Y-aixs direction and hence a cross-talk 
error between the two working axes.

With reference to Fig. 3, the relationship between δp and 
δa can be obtained:

where δs is the displacement of the point A. δx and δy can be 
derived from the following equations based on geometric 
relationships:

where β = δs
L4

.
The percentage value of the cross-axis error ǫ can be 

expressed by:

(8)Rt = υR3
2

(9)δa = Rtδp = δs

(10)δx = L4 sin β

(11)δy = L4(1− cosβ)

(12)ǫ =
δy

δx
= tan

β

2
= tan

RtδP

2L4

The parameter L4 = 20 mm. And δp = 14.5 μm is the 
maximum output of the PZT. Thus, the percentage value 
of the cross axis error ǫ is only 0.011 %, which is calcu-
lated by combining Eqs. (8) and (12). It is obvious that 
the motion of this XY parallel stage is decoupled around 
point A.

2.4  Dynamics modeling

Owing to the decoupled property of the 2-PP parallel 
mechanism, the XY parallel stage is capable of produc-
ing decoupled motion in X and Y ases. For the conveni-
ence of analytical modeling, it is assumed that the XY 
stage is totally decoupled. Based on this assumption, if 
two PZT actuators produce the input displacements of 
q1 and q2, the platform yields the output motion dx and 
dy.

The kinetic energy function can be calculated as:

where each mass part is illustrated in Fig. 2a. In addition, 
m4 is the mass of the P joint and m5 represents the mass of 
the platform.

(13)

T =

[

m1
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Fig. 3  Parasitic motion representation
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Referring to Fig. 4, taking into account the analysis of 
the compound parallelogram flexure, yields the stiffness of 
one leaf flexure for the P joint can be derived as:

where L4 = 20 mm presents the length of the P joint as 
shown in Fig. 3.

In addition, the potential energy is derived as follows.

where

In view of the Lagrange’s equations, the dynamics model 
can be developed based on:

To solve the natural frequency of the stage, the external 
force Fo is assigned as zero. Then, by combining Eqs. (13), 
(15), and (16), the dynamic model can be derived as

So, the natural frequency of the stage in one working direc-
tion is computed in unit of Hertz as follows.

(14)Kp =
Ebt3

L4

(15)V = 16×
1

2
Kr(θ

2
1 + θ22 )+

1

2
Kp[(Rtq1)

2 + (Rtq2)
2]

θ1 =
(q1 + q2)R4

2(L1 + 2L2)
, θ2 =

(q1 + q2)Rt

2(L1 + 2L2)
.

(16)
d

dt

(

∂T

∂ q̇

)

−
∂T

∂q
+

∂V

∂q
= Fo

(17)Mq̈ +Kq = 0

(18)f =
1

2π

√

K

M

3  Finite element analysis simulation

Simulation study is conducted by using finite element anal-
ysis (FEA) method to verify the output of the XY paral-
lel stage. Figure 5a shows that the average output of the 
stage in Y-axis is 127 μm. As there is no distinct difference 
between the X and Y direction of the XY parallel stage, the 
output along X-axis is similar to the Y-axis motion when 
the X-axis PZT actuator is driven.

3.1  Cross‑axis error analysis

Figure 5b shows that the cross-axis errors of the stage in 
the X-axis distribute from 0.0078 to 7.01 μm, which are 
varied from 0.006 to 5.4 % of the output range of 129 
μm. The average error is calculated as 2.7 %. The FEA 

Fig. 4  Stiffness model of the XY stage

Fig. 5  FEA simulation results of static structural analysis. a Output 
along the Y axis, b cross-axis error in the X axis
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simulation result reveals that the displacement in Y-axis is 
partly decoupled from X-axis. The deviation between the 
analytical result and FEA simulation result is caused by the 
ignorance of the dual-staked amplifier and platform in the 
analytical analysis.

3.2  Stress analysis of the stage

When the Y-axis actuator is driven to produce an Y-axis 
motion, the stress distribution of the XY stage is shown in 
Fig. 6. It is observed from the FEA simulation results that 
the largest stress appears on the thinnest part of the ampli-
fier. The largest stress value is 67.2 MPa as shown on the 
top of the color bar, which is much less than the yield stress 
of 275 MPa of the Al-6061 material. The safety factor is 
4.1, which means that the flexure hinges can work stably in 
normal operation.

3.3  Dynamics analysis of the stage

Moreover, the modal analysis is performed by FEA to ver-
ify the dynamic performance. In the simulation, the mate-
rial parameters are assigned and the mesh model is created 
using the element size of 1 mm. The surface planes of the 
base are fixed.

From the modal analysis results as shown in Fig. 7, the 
first natural frequency of 222.2 Hz can be extracted. The 
derived dynamics model (18) predicts a natural frequency 
of 243.5 Hz. It is observed that the analytical model 
underestimates the resonance frequency of the mechanism 
with a derivation around 9.7 % relative to the FEA result.

In addition, the first-six resonant frequencies as pre-
dicted by the modal analysis with ANSYS are shown in 

Table 2, and the corresponding mode shapes are illustrated 
in Fig. 7. The FEA results reveal that the second and third 
mode shapes are contributed by the translations along the 
two working axes, respectively. This result is consistent 
with the analytical result.

4  Prototype development and testing

4.1  Prototype fabrication

The developed prototype of the XY stage is shown in 
Fig. 8. The stage is manufactured by the wire-EDM pro-
cess using the material of Al-6061 alloy. Two modules 
of PP link are employed to constructed the XY stage. As 
shown in Fig. 8, two low-voltage PZT actuators (TS18-
H5-202 from PIEZO SYSTEMS, Inc.) are adopted to drive 
the amplification mechanism. Each PZT actuator is inserted 
into the mechanical amplifier and preloaded through a 
screw mounted at the tip of the actuator. This produces 
interference fits between the PZT and the amplifier. Thus, 
no clearances exist during the operation thanks to elastic 
deformations of the flexure hinges.

In addition, each piezoelectric actuator is actuated by 
a linear voltage amplifier (model: EPA-104 from Piezo 
Systems, Inc). The voltage will be enlarged by ten times 
using the amplifier. For the measurement of output posi-
tion of the stage, two capacitive displacement sensors 
(model: D-510.050, from Physik Instrumente Co., Ltd.) 
are equipped. The resolution of the capacitive sensor is 
10 nm within a measuring range –62.5 to 62.5 μm. The 
control hardware is based on National Instruments (NIs) 
cRIO-9022 real-time (RT) controller integrated with 
cRIO-9118 reconfigurable chassis that contains a field-
programmable gate array core. Furthermore, the chassis 
also contains NI-9263 analog output module and NI-9215 
analog input module. NI LabVIEW software is employed 
to seamlessly integrate the control algorithm, sensor, and 
the communication with the XY parallel stage.

4.2  Decoupling experimental performance testing 
results

In order to confirm the decoupling performance of the par-
allel stage, an open-loop testing experiment is conducted. A 
10-V input triangle voltage with 0.5-Hz frequency is given 
to X-axis of the stage and enlarged to 100 V by the volt-
age amplifier, and the Y-axis is left free. The average dis-
placement of X-axis is almost 127 μm as shown in Fig. 9. 
The cross-axis error in extreme position along Y direction 
can be calculated. It is found that the maximum X-axis 

Fig. 6  The stress distribution of the stage
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Fig. 7  FEA simulation results of resonant modes for the XY stage. a First mode, b second mode, c third mode, d fourth mode, e fifth mode, 
 f sixth mode
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displacement induces an Y-axis displacement of 6 μm, 
which indicates a cross-axis error of 4.7 %.

The output displacement obtained by three approaches 
of analytical modeling, FEA simulation, and experiment 
are shown in Table 3. As compared with the experimental 

result, the analytical model underestimates the displace-
ment by 7.9 %. The reason lies in that a preloading is 
applied in the experimental setup to fix the PZT actuators, 
which causes a larger amplification of the bridge-type 
amplifier than calculated one. In addition, the deviation 
between the simulation and experimental results is only 
1.6 %.

Open-loop experimental testing shows that the stage 
exhibits a motion range of 127 μm in each working axis. 
However, the output-input relation reveals a clear hystere-
sis curve which is introduced by the piezoelectric actuators. 
To overcome the cross-axis error and the piezoelectric non-
linearity and to achieve a precision positioning, a control 
scheme is devised in the subsequent section.

5  Control design and experimental studies

In this section, an adaptive digital sliding mode position-
ing control scheme is proposed and the performance of the 
developed nanopositioning stage is verified by conducting 
several experimental studies. The block diagram of the con-
trol frame is shown in Fig. 10.

5.1  Design of adaptive reference model

In this paper, an adaptive reference model is adopted to 
compensate for the uncertain parameters in dynamical 
model such as mass, damping coefficient and stiffness. 
Definitely, these coefficients can be identified through 
system identification. However, the exact model is hard to 
identified due to the existence of disturbance and measur-
ing error. In order to avoid this kind of negative influence, 
an adaptive reference model is designed as follows.

The dynamic model of stage in one working direction 
accompanied with unknown disturbance can be conducted 
below:

where m, b, k and q represent the mass, damping coef-
ficient, stiffness, and displacement along X-axis, respec-
tively; d is the piezoelectric coefficient, and u denotes the 
input voltage. In addition, P stands for the overall per-
turbation of the system arising from model parameter 

(19)mq̈ + bq̇ + kq = du+ P

Table 2  The first-six resonant frequencies

Mode Frequency (Hz)

1 222.2

2 244.14

3 245.55

4 310.23

5 313.76

6 500

Fig. 8  Experimental setup of the XY nanopositioning stage

Table 3  Comparison of the maximum output displacement

Analytical Simulation Experiment

Output (μm) 117 129 127

Error (%) 7.9 1.6 –
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Fig. 9  Open-loop experimental testing results. Output along the X 
axis and cross-axis error in the Y axis

Fig. 10  Control block diagram of designed controller
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uncertainties, unmodeled dynamics, cross coupling effect, 
and other unknown terms.

The first step is to transform the second order equation 
to state-space equation. Rewriting Eq. (19), we have

Then, the state-space equation can be expressed as:

where A = 

[

0 1

− k
m

− b
m

]

, B = 
[

0, d
m

]T
, U = u, G = 

[

0, P
m

]T
, C 

= 
[

1, 0
]

, and X = 
[

q, q̇
]T.

Because A and B are unknown, it is practical to apply the 
following parallel model, which ignores the disturbance.

where Â, B̂ are the estimations of A, B at time t to be gener-
ated by an adaptive law, and X̂ is the estimate of the vector X.

The estimation error vector ǫ1 is defined as

which satisfies

where Ã = Â− A, B̃ = B̂− B.
In order to estimate the value of A and B, the general 

format of the adaptive law is assumed:

where f1 and f2 are functions of known terms that need to 
be chosen to make the equilibrium point to be

To satisfy the above requirements, first, the Lyapunov can-
didate function is considered:

where tr(A) denotes the trace of matrix A, γ1, γ2 > 0 are 
constant scalars, and � = �T > 0 is selected according to 
the solution of the Lyapunov equation

whose existence is guaranteed by the stability of A.
The time derivative of V is given by

(20)q̈ = −
k

m
q −

b

m
q̇ +

kd

m
u+

P

m

(21)
Ẋ = AX + BU + G

Y = CX

(22)˙̂
X = ÂX̂ + B̂U

(23)ǫ1 = X − X̂

(24)ǫ̇1 = Aǫ1 − ÃX̂ − B̃U

˙̂
A = f1(ǫ1,X, X̂ ,U),

˙̂
B = f2(ǫ1,X, X̂ ,U)

Âe = A, B̂e = B, ǫ1e = 0

(25)V(ǫ1, Ã, B̃) = ǫT1 �ǫ1 + tr

(

ÃT�Ã

γ1

)

+ tr

(

B̃T�B̃

γ2

)

(26)�A+ AT� = −I

Substituting ǫ̇1,
˙̃
A,

˙̃
B into Eq. (28), yields

Due to the properties of trace, one has

Consequently, the time derivative of V can be rewritten as

Obviously, in order to cancel the indefinite terms, the 
choices for f1, f2 are

Then, the time derivative V̇  satisfies

which implies that the equilibrium Âe = A, B̂e = B, ǫ1e = 0 
of the respective equations is uniform stable. Furthermore, 
the trajectory ǫ1(t), Â(t), B̂(t) is bounded for all t ≥ 0. Since 
ǫ1 = X − X̂ and X ∈ £∞, then, q̂ ∈ £∞. Besides, it can be 
deduced that

Therefore,

Hence, it can be concluded that ǫ1 ∈ £2, ǫ̇1 ∈ £∞ and

The convergence properties of Â, B̂ to their true values 
A, B, respectively, depend on the properties of the input u. 
Therefore, the estimations of A, B are given by

(27)

V̇ = ǫ̇T1 �ǫ + ǫT1 �ǫ̇1 + tr

(

˙̃
AT�Ã

γ1
+

ÃT�
˙̃
A

γ1

)

+ tr

(

˙̃
BT�B̃

γ2
+

B̃T�
˙̃
B

γ2

)

(28)

V̇ = ǫT1 (�A+ AT�)ǫ1 − 2ǫT1 �ÃX̂ − 2ǫT1 �B̃U

+ tr

(

2

˙̃
AT�F1

γ1
+ 2

B̃T�F2

γ2

)

ǫT1 �ÃX̂ = X̂T ÃT
�ǫ1 = tr(ÃT

�ǫ1X̂
T )

ǫT1 �B̃U = tr(B̃T
�ǫ1U

T )

(29)

V̇ = −ǫT1 ǫ1 + 2tr
( ÃT�F1

γ1
− ÃT�ǫ1X̂

T

+
B̃T�F2

γ2
− B̃T�ǫ1U

T
)

(30)˙̂
A = F1 = γ1ǫ1X̂

T
,
˙̂
B = F2 = γ2ǫ1U

T

(31)V̇ = −ǫT1 ǫ1 ≤ 0

lim
t→∞

V(ǫ1, Ã, B̃) = V∞ < ∞

∫ ∞

0

ǫ21(τ )dτ = −

∫ ∞

0

V̇ = V0 − V∞

|ǫ1(t)| → 0, ||
˙̂
A(t)|| → 0, ||

˙̂
B(t)|| → 0 as t → ∞
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However, A, B still cannot be estimated, because the input u 
is till unknown. In the following discussion, a sliding mode 
controller is designed in detail.

5.2  Discrete‑time sliding mode control design

Using sampling time T, the continuous-time system model 
(25) can be discretized as

where Xk = X(kT), Âk = A(kT), and B̂k = B(kT) are time 
series. In addition,

It is notable that Eq. (35) gives better approximation only 
when Âk is slowly varying.

In this paper, the lumped perturbation term Pk is esti-
mated by its one-step delay by employing the perturbation 
estimation technique (Xu 2015; Elmali and Olgac 1996).

Consequently, the dynamical model (34) can be rewritten 
into

where P̃k = P̂k − Pk is the perturbation estimation error, 
and it is assumed that the first derivative of the perturba-
tion term is bounded, i.e., |Ṗ(t)| ≤ �. Then, the following 
deduction holds:

which indicates that the perturbation error is also bounded.
Substituting Eq. (36) into Eq. (37), the discrete state can 

be calculated as

According to the position error ek = Yk − Yd,k, where 
Yd,k is the desired position at time KT, a proportional 

(32)Â =

∫ t

0

γ1ǫ1X
Tdτ

(33)B̂ =

∫ t

0

γ2ǫ1U
Tdτ

(34)
Xk+1 = GkXk + Hkuk + Pk

Yk = CXk

(35)

Gk = eÂkT = e
∫ kT
0

γ1ǫ1X
TT

Hk =

∫ T

0

eÂkτdτ B̂k

=

∫ T

0

e
∫ kτ
0

γ1ǫ1X
T τdτ

∫ kT

0

γ2ǫ1U
Tdτ

(36)P̂ = Pk−1 = Xk−1 − Gk−1Xk−1 − Hk−1uk−1

(37)XK+1 = GkXk + Hkuk + P̂k − P̃k

(38)|P̃k| ≤ �T

(39)
Xk+1 = GkXk + Hkuk + Xk−1

− Gk−1Xk−1 − Hk−1uk−1 − P̃k

integral (PI)-type sliding surface function can be defined 
as follows:

where Kp and KI are the proportional and integral gains, 
respectively. Besides, the integral error εk is

Assuming that the equivalent control ueq is the solution 
to �sk = sk − sk−1 = 0 (Furuta 1990), which can also be 
regarded as one-step delay of sk:

Then, substituting Eq. (39) into Eq. (42) and ignoring the 
estimation error P̃k leads to the equivalent control

This equivalent controller is effective when the position 
trajectory is kept on the sliding surface. Nevertheless, the 
standalone equivalent control is difficult to regulate the 
position trajectory towards the sliding surface when the ini-
tialization of the system is relatively far from sliding sur-
face or there are large uncertainties and disturbances occur-
ring during the sliding phase. Therefore, an extra control 
action usw is indispensable to keep the system stable.

In the paper, the control uk is selected as

where sgn(.) denotes the signum function and Ks is an arbi-
trary positive control gain.

5.3  Stability analysis

Theorem 1 For the system (34) with sliding function (40) 
and assumption (38), if the controller (45) is implemented, 
then the discrete sliding mode will occur after a finite num‑
ber of steps.

(40)sk = Kpek + KIεk

(41)εk =

k
∑

i=1

ei = ek + εk−1

(42)

sk = Kpek+1 + KIεk+1

= (Kp + KI)ek+1 + KIεk

= (Kp + KI)(Yk+1 − Yd,k+1)+ KIεk

= (Kp + KI)(CXk+1 − Yd,k+1)+ KIεk

(43)

u
eq
k = H−1

k Hk−1uk−1 + (CHk)
−1

(

sk

Kp + KI

−
KIεk

Kp + KI

+ Yd,k+1

)

+ H−1
k (Gk−1Xk−1 − GkXk)

(44)uk = u
eq
k + usw

(45)

uk = H−1
k Hk−1uk−1 + (CHk)

−1

(

sk

Kp + KI

−
KIεk

Kp + KI

+ Yd,k+1

)

+ H−1
k (Gk−1Xk−1 − GkXk)− H−1

k Kssgn(sk)
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Proof The sliding function (38) can be rewritten into the 
form according to �sk = sk − sk−1 = 0

Then, inserting Eq. (45) into Eq. (46), a relationship opera-
tion gives

Note that Kp, KI, and Ks are all positive scalars. In the case 
of sk1 ≥ 0, it can be derived that

Otherwise, if sk ≤ 0, then

Therefore, in view of (48) and (49), the following conclu-
sion can be drawn:

According to the assumption (38), the relationship (50) is 
verified, which indicates that sk decreases mono-tonously, 
and the discrete sliding mode is reached after a finite num-
ber of steps.  �

Remark 1 Even though Eq. (50) is sufficient for the exist-
ence of discrete sliding mode, because of the discontinu-
ity of the signum function sgn(.), chattering may occur in 
the control process. In order to alleviate the chattering phe-
nomenon, the saturation function is adopted to replace the 
signum function.

where the parameter δ of the boundary layer thickness.

5.4  Experimental results

The closed-loop experimental study is conducted using the 
implemented ADSMC controller. In order to make a com-
parison study, a DSMC controller with fixed value of A and 
B is implemented. The corresponding parameters in the 
dynamics model are obtained as:

Furthermore, a PID controller is also realized owing to 
its popularity. The PID control gains KP, KI, and KD are 

(46)

sk+1 = Kpek+1 + KI(ek+1 + εk)

= (Kp + KI)(Yk+1 − Yd,k+1)+ KIεk

= (Kp + KI)(CXk+1 − Yd,k+1)+ KIεk

(47)sk+1 = sk − (Kp + KI)[Kssgn(sk)+ P̃k]

(48)sk+1 ≤ sk if Ks ≥ |P̃k|

(49)sk+1 ≥ sk if Ks ≥ |P̃k|

(50)|sk+1| ≤ |sk| if Ks ≥ |P̃k|

sat(sk) =

{

sgn(sk), if |sk| > δ
sk
δ
, if | sk

δ
| ≤ δ

(51)

A =

[

0.7881 0.0025

−151.654 − 0.2236

]

,B =

[

0

977.36

]

,C =
[

1 0
]

optimally tuned through intensive tests with the values 
KP = 0.123, KI = 0.45, and KD = 0.0012 in this work.

5.4.1  Resolution testing results

The first step of this experiment is to test the minimum 
resolution of the stage using a consecutive-step signal. 
It is carried out with a step size of 20 nm, and the results 
are shown in Fig. 11. Obviously, the step could be clearly 
identified, and the error is less than 20 nm, which is almost 
the resolution level of capacitive sensor. Consequently, the 
experimental result indicates that the proposed ADSMC 
controller enables a positioning resolution better than 
20 nm for the system.

5.4.2  Set‑point positioning performance testing results

Second, the set-point positioning capability of the nano-
positioning system is examined using the three controllers. 
The step size of the input is 1 μm. As shown in Fig. 12, the 
overshoot of all the tree controllers is near 20 % larger than 
the input reference and the response time is about 0.03 s. 
It is observed that the PID control produces the maximum 
error (MAXE) and root-mean-square error (RMSE) of 0.048 
and 0.0387 μm, that is, 4.8 and 3.87 % of the motion range, 
respectively. Compared with PID control, the DSMC con-
troller reduces the MAXE and RMSE by 25 and 22.2 %, 
respectively. In addition, the ADSMC scheme mitigates the 
MAXE and RMSE to 0.023 and 0.0135 μm, i.e., 2.3 and 
1.35 % of the positioning range, respectively. The experi-
mental result indicates that ADSMC can effectively reduce 
the positioning error though it cannot boost the response 
speed.
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Fig. 11  a Resolution testing results using the 20-nm consecutive step 
input, b tracking error
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5.4.3  Sinusoid tracking performance testing results

Afterwards, the path tracking performance of the proposed 
nanopositioning stage is carried out using 2, and 10-Hz 
sinusoid reference inputs. The results are shown in Figs. 13, 
and 14, respectively. When the reference is 2 Hz with 
0.2 μm amplitude, the largest MAXE and RMSE are still 
produced by PID control, which are 0.044 and 0.0355 μm, 
respectively. Similarly, in comparison with PID and DSMC 
control, ADSMC control can effectively reduce the MAXE 
and RMSE to 0.024 and 0.0112 μm, that is, 12 and 5.6 % 
of the motion range, respectively.

Increasing the frequency and amplitude to 10 Hz and 
10 μm simultaneously, the superiority of ADSMC con-
trol becomes more obvious as compared with PID and 
DSMC results. Obviously, the performance of PID control 

decreases dramatically, whose MAXE is 0.1383 μm and 
RMSE is 0.0992 μm. In contrast, the DSMC scheme 
reduces the MAXE and RMSE by 47.8 and 52.2 %, respec-
tively. In addition, the ADSMC mitigates the MAXE to 
0.063 μm and RMSE to 0.035 μm, respectively. The exper-
imental results show that the ADSMC control has much 
better performance in high-speed operation and can aug-
ment the bandwidth effectively. The details of the experi-
mental results are shown in Table 4.

Furthermore, when estimating the adaptive reference, 
another limitation is that the estimation gains γ1 and γ2 can 
also influence the speed of system. In this work, γ1 = 0.386 
and γ2 = 0.754 are assigned in the experimental study. The 
optimal values will be generated in the future work.

5.4.4  Discussion

The obtained experimental results indicate that the nano-
positioning stage has satisfactory performance and the 
adaptive discrete-time sliding mode controller successfully 
eliminates the external disturbance and drives the stage to 
pre-designed reference position. A precise positioning with 
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Fig. 12  a Experimental results of set-point positioning testing with 
1-μm step input, b tracking error
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Table 4  The results of positioning control experiments

Input Performance (μm) PID DSMC ADSMC

Step MAXE 0.0485 0.0372 0.0233

RSME 0.0387 0.0295 0.0135

2-Hz sinusoid MAXE 0.0444 0.0363 0.0248

RSME 0.0355 0.0255 0.0112

10-Hz sinusoid MAXE 0.1383 0.0818 0.0638

RSME 0.0821 0.0415 0.0354
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a resolution of 20 nm is achieved, and the motion tracking 
results also show its advantages.

As aforementioned, the controller parameters are not 
optimally designed. The adaptive gain γ1 and γ2 are the 
constant values in these experiments. Further testing shows 
that a slight variance of the value would affect the steady-
state error finally. Therefore, it is recommended to adopt 
small adaptive gains which are less than one. Some optimal 
algorithm (such as, least squares) will be tried in the future 
work. In addition, parameter δ in the saturation function 
also influences the final steady-state error and the output 
value of u. A small value of δ is able to reduce the steady-
state error, but the chattering phenomenon will become 
obvious. To make a comprise, δ = 0.0004 is selected to 
obtain better results in this work.

6  Conclusion

This paper presents the design and control of a new XY 
parallel-kinematic flexure stage. It is found that a dis-
placement amplification ratio of 8.9 can be obtained for 
the stage. FEA simulation results show that the cross-axis 
error is suppressed to be lower than 1 %. A prototype is 
developed for experimental testing, which reveals a motion 
range of 127 μm in each working axis with the natural fre-
quency over 200 Hz. To suppress the cross-axis error and 
piezoelectric nonlinearity, an adaptive discrete-time sliding 
mode controller is proposed for position tracking control of 
the nanopositioning stage. Experimental results show that 
the chattering-free control enables a rapid response and 
low-level of positioning error of the XY stage with a reso-
lution of 20 nm with appreciated motion tracking results. In 
the future, displacement sensors with better resolution will 
be employed to further improve the positioning accuracy of 
the developed stage. Moreover, the proposed modular con-
ceptual design can be easily extended to devise nanoposi-
tioning stages with multiple-axis motion.
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