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1  Introduction

Thermal fly-height control (TFC) and heat-assisted mag-
netic recording (HAMR) have been proposed as new mag-
netic recording techniques in order to increase the record-
ing density of hard disk drives (HDDs) (Kurita et  al. 
2005; Peng et  al. 2005; Dahl and Bogy 2014). In addi-
tion, He-enclosed HDDs can significantly reduce windage 
loss, disk flutter, and temperature increase, because He 
has a lower density and a higher heat conductivity than air 
(Ohkubo et al. 1989; Liu et al. 2011; Fukui et al. 2014a, 
b).

In the present paper, using the thermo-molecular gas-
film lubrication (t-MGL) equation, we first examine the 
static and dynamic air-film characteristics of a plane 
inclined slider by a heat spot (Case 1), and then a step slider 
flying in either air or He over a running boundary wall with 
local temperature distributions and thermal deformation 
(projection) (Case 2) are analyzed. The aims of Cases 1 and 
2 are to understand the physics of pressure generation pro-
duced by boundary temperature (Case 1) and to examine 
more realistic flying characteristics in modern HDD (Case 
2), respectively. In this paper, the heat transfer at the inter-
face is neglected.

2 � Fundamental equations

2.1 � Equations of motion

The equations of motion for a slider with two DOF are 
expressed as:

(1)mz̈ + kz =
∫ b

0

∫ l

0

�pdxdy,
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where z and θ are the translational and pitching displace-
ments, respectively, m and J are the mass and the moment 
of inertia for pitching motion, respectively, l and b are the 
slider’s length and width, respectively, k and kθ are the 
translational and pitching stiffnesses of the suspension, 
respectively, and Δp is the dynamic pressure, as shown in 
Fig. 1.

2.2 � Thermo‑molecular gas‑film lubrication (t‑MGL) 
equation

The thermo-molecular gas-film lubrication (t-MGL) equa-
tion with time-dependence to examine dynamic character-
istics is given by (Fukui et al. 2001, 2014a, b):

where P (=p/pa, pa ambient pressure) is the non-dimen-
sional pressure, H (=h/h0, h0 minimum spacing) is the non-
dimensional spacing, t̃(=ω0t, ω0 normalizing angular fre-
quency) is the non-dimensional time, X (=x/l) and Y (=y/b) 
are non-dimensional coordinates, D is the inverse Knudsen 
number defined as D = ph/µ

√
2RT , Λb(≡6μUb2/pah0

2l) 
is the bearing number, and σb(≡12μω0b

2/pah0
2) is the 

squeeze number. The quantities Q̃P(D) (≡QP/QPcon) and 
Q̃T (D) (≡QT/QPcon) are the pressure flow rate ratio and 
the thermal creep flow rate ratio, respectively. The rela-
tionships between Qp and D and between QT and D when 

(2)J θ̈ + kθ θ =
∫ b

0

∫ l

0

�p · (xG − x)dxdy,

(3)

(
b

l

)2
∂

∂X

{
Q̃p(D)

PH3

1+ τW

∂P

∂X
− Q̃T (D)

P2H3

(1+ τW )2

∂τW

∂X

}

+
∂

∂Y

{
Q̃p(D)

PH3

1+ τW

∂P

∂Y
− Q̃T (D)

P2H3

(1+ τW )2

∂τW

∂Y

}

= Λb

∂

∂X

(
PH

1+ τW

)
+ σb

∂

∂ t̃

(
PH

1+ τW

)
,

accommodation coefficients of the slider, αs, and the 
disk, αd, are both unity (αs = αd =  1), that is, molecules 
reflect diffusely at boundaries, are presented by means 
of a database in references (Fukui and Kaneko 1990b; 
Fukui et  al. 2014a, b). The non-dimensional temperature 
τW(=T/T0 − 1) in Eq. (3) is defined as the average tempera-
ture of the slider surface, τWs, and the disk surface, τWd, i.e., 
τW = (τWs + τWd)/2.

For a different gas, such as helium, the pressure gen-
eration can be obtained by solving Eq. (3) using the same 
database of QP and QT values and the corresponding val-
ues of viscosity μ and the gas constant R. The mean free 
path values used in the calculations are �air = 64 nm for air 
and �He = 190 nm for He, whereas the viscosity values are 
1.81 × 10−5 Pa s for air and 1.96 × 10−5 Pa s for He. The 
gas constants R are 287.03 J/(kg K) for air and 2077.15 J/
(kg K) for He.

2.3 � Thermal creep flow

When the Knudsen number, Kn, is not negligible (or when 
the molecular mean free path is not negligible compared 
with the spacing) and temperature gradients exist along 
the boundary walls, a special type of flow, referred to as 
thermal creep flow or thermal transpiration flow, is induced 
from the colder regions to the hotter regions. When the 
boundary temperature has a symmetric distribution, levi-
tation pressure (force) occurs under the slider (Fukui and 
Kaneko 1988; Fukui et al. 2001).

Pressure generated by the thermal creep flow is evident 
when the boundary is stationary or moves very slowly, 
because the wedge effect is insignificant (Fukui et  al. 
2014a). In contrast, when the boundary (disk) is running, 
pressures generated by the wedge effect overwhelm those 
generated by the thermal creep flow (Fukui et  al. 2014b). 
Therefore, in the latter part of the present study (Case 2), 
we neglect the thermal creep flow terms:

2.4 � Van der Waals (vdW) force equation

The vdW pressure PvdW between the slider and the disk is 
expressed as (Israelachivili 1992; Matsuoka et al. 2005):

where Ã132(=A132/pah
3
0) is the non-dimensional Hamaker 

constant determined from the refractive indices of the sol-
ids. When both the disk and the slider have diamond-like 

(4)

(
b

l

)2
∂

∂X

{
Q̃p(D)

PH3

1+ τW

∂P

∂X

}
+

∂

∂Y

{
Q̃p(D)

PH3

1+ τW

∂P

∂Y

}

= Λb

∂

∂X

(
PH

1+ τW

)
+ σb

∂

∂ t̃

(
PH

1+ τW

)
.

(5)PvdW = −Ã132

/
6πH3,

Fig. 1   Two-DOF model slider with local boundary temperature dis-
tribution
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carbon (DLC) coatings, A132 will be 3.26 × 10−19 J. From 
this equation, we obtain the static force (attractive pressure) 
and dynamic pressure (negative stiffness).

3 � Analysis method

3.1 � Perturbation method

In order to analyze the static and dynamic slider charac-
teristics, we used the perturbation method while assuming 
that the spacing fluctuation Δh is small compared with the 
minimum spacing h0. We obtained the following equation 
for the static pressure P0 and the infinitesimal dynamic 
pressure ψ (=Δp/pa):

The spacing between the slider and the disk, H, consists 
of the time-independent spacing, H0, and time-dependent 
infinitesimal variations, η (=Δh/h0):

By substituting Eqs. (6) and (7) into Eqs. (3) (or Eq. (4)) 
and (5), we obtain the static equilibrium equation and the 
linearized dynamic equation.

3.2 � Fundamental equation giving dynamic pressure ψ

In order to obtain a simple relationship between σb and Λb, 
the characteristic frequencies are determined to be

where U is the disk speed.
This frequency (fL) is the frequency that gives the geo-

metric restriction of the spacing fluctuation caused by a 
running wavy wall. The non-dimensional frequency Ω is 
given by

The relationship between σb and Λb, from their defini-
tions and Eq. (9), is expressed as

For a wavy mode, Ω is equivalent to the slider ratio, RS, 
which is the ratio of the slider length, l, to the wavelength 
of a wavy wall, L, i.e.:

The small spacing fluctuation η in Eq.  (7) consists of 
the translational and pitching displacements of the slider, 
ζ(=z/h0), Θ(=θl/h0), and the displacement of the disk sur-
face ζd:

(6)P
(
X, Y , t̃

)
= P0(X, Y)+ ψ

(
X, Y , t̃

)
, ψ ≪ P0.

(7)H
(
X, Y , t̃

)
= H0(X, Y)+ η

(
X, Y , t̃

)
, η ≪ H0.

(8)fL ≡ U/l and ω0 = 2π fL,

(9)Ω = ω/ω0 = f /fL .

(10)
σb = Λb (2lω0/U)

= 4πΛb.

(11)Ω = f /fL = l/L ≡ RS .

where the disk displacements for a wavy mode are as 
follows:

Therefore, the dynamic pressure can be divided into 
components of each displacement and is given by:

where Gk (k = 1–3) are the dynamic pressure coefficients 
generated by the translational displacement, the pitching 
displacement, and the displacement of the disk surface, 
respectively. We performed numerical analysis using the 
finite volume method for a two-dimensional linear differen-
tial equation, which gives the dynamic pressure coefficient 
Gk, in the frequency domain (Ono 1975).

Substituting Eq. (14) into Eqs. (1) and (2), the equations 
of motion are expressed as:

and

where κij and γij (i = 1, 2, j = 1,2) are the stiffnesses and 
damping coefficients obtained from G1 and G2, respectively 
(Fukui et al. 1985).

The real and imaginary parts of quantities −G1 and 
−G2  ·  (XG −  X) are the stiffnesses and damping coeffi-
cients for translational and pitching motions, respectively.

4 � Two approximate solutions for limiting cases

4.1 � Static and dynamic approximate solutions for an 
infinite bearing number (Λb → ∞)

For a spacing of several nanometers, the conventional bear-
ing number Λ, and, therefore, Λb and σb also increase dra-
matically (see Eq.  (10)). For an infinite bearing number, 
Eq. (3) is expressed as

Note that in Eq. (17) for Λb → ∞, the temperature dis-
tribution τW is arbitrary.

The static solution of Eq. (17) is as follows:

(12)η = ζ +Θ · (XG − X)− ζd ,

(13)ζd = ã sin(2πΩX −Ω t̃).

(14)ψ = G1(X , Y) · ζ(t̃)+ G2(X , Y) ·Θ(t̃)+ G3(X , Y) · ã sin(Ω t̃),

(15)
m̃ζ̈ + γ11ζ̇ + γ12Θ̇ + (κ11 + k̃)ζ + κ12Θ

= ã (δs1 · sinΩ t̃ + δc1 · cosΩ t̃)

(16)
J̃Θ̈ + γ21ζ̇ + γ22Θ̇ + κ21ζ + (κ22 + k̃θ )Θ

= ã (δs2 · sinΩ t̃ + δc2 · cosΩ t̃),

(17)
∂

∂X

(
PH

1+ τW

)
+ 4π

∂

∂ t̃

(
PH

1+ τW

)
= 0.

(18)
P0|Λb→∞ = (1+ τW ) · P0|Λb→∞

τW=0
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where

The quantity P0|Λb→∞
τW=0

 is the conventional approxima-

tion solution for an infinite bearing number without a local 
temperature distribution (Fukui and Kaneko 1990a).

The dynamic solutions for Eq. (17) are as follows:

where

The quantities Gk |Λb→∞
τW=0

 (k =  1–3) shown in Eq.  (21) 

are also conventional approximation solutions for an infi-
nite bearing number without a local temperature distribu-
tion (Fukui and Kaneko 1990a).

The static and dynamic pressure increases produced by 
the boundary temperature for Λb → ∞ are as follows:

These static and dynamic pressure increases can be 
the theoretical maximum values produced by the applied 
temperature.

4.2 � Static and dynamic solutions by incompressible 
short bearing approximation (Λb → 0)

This approximation is based on the assumptions that:

1.	 The slider width b is much smaller than slider length l: 
b/l ≪ 1.

(19)P0|Λb→∞
τW=0

= H ′
1/H0 (H ′

1 is the inlet spacing)

(20)Gk |Λb→∞ = (1+ τW ) · Gk|Λb→∞
τW=0

, k = 1, 2, 3

(21)

G1|Λb→∞
τW=0

=
1

H0

{
cos (4πΩX)−

H1

H0

}
− i

1

H0
sin (4πΩX),

G2|Λb→∞
τW=0

=
1

H0

{
XG cos (4πΩX)−

H1

H0
(XG − X)

}

− i
XG

H0
sin (4πΩX),

G3|Λb→∞
τW=0

=
1

H0

{
cos (4πΩX)−

H1

H0
cos (2πΩX)

}

− i
1

H0

{
sin (4πΩX)−

H1

H0
sin (2πΩX)

}
.

(22)

δP0|Λb→∞
τW

≡ P0|Λb→∞ − P0|Λb→∞
τW=0

= τW (X, Y) · P0|Λb→∞
τW=0

(23)

δGk |Λb→∞
τW

≡ Gk|Λb→∞ − P0Gk|Λb→∞
τW=0

= τW (X, Y) · Gk|Λb→∞
τW=0

(k = 1− 3).

2.	 The bearing number is small: Λb ≪ 1.
3.	 Neither the spacing H nor the applied temperature τW 

depend on Y:

Under these conditions, Eq. (3) is simplified to

where Q̃p

∣∣∣
D0

= Q̃p

(
D0H/

√
1+ τW

)
.

The static pressure, P0, is expressed as;

Moreover, the complex dynamic component, Gk, is 
given by

where Ω = f/f0 and

In the incompressible short bearing approximation, the 
stiffness κij is independent of the frequency and the damp-
ing Ωγij is proportional to the frequency.

5 � Static and dynamic characteristics with local 
boundary temperature

5.1 � Applied temperature

The temperature distributions at the slider or disk surface 
are considered to be Gaussian distributions, the maximum 
temperature of which is given by the parameter τwo, as 
follows:

H = H(X, t̃ ), τW = τW (X).

(24)

Q̃p

∣∣∣
0

H3

1+ τW

∂2P

∂Y2
= Λb

∂

∂X

(
H

1+ τW

)
+ σb

1

1+ τW

∂H

∂ t̃

(25)P0 = Λb · g1 ·
d

dX

(
H0

1+ τW

)
· Y(Y − 1)/2+ 1.

(26)

Gk = Λb ·
{
g2Fk + g1

d

dX

(
Fk

1+ τW

)
+ i · 4πΩg1

Fk

1+ τW

}

· Y(Y − 1)/2, (k = 1− 3)

(27)

F1 = 1, F2 = XG − X , F3 = cos (2πΩX)− i · sin (2πΩX)

g1 = (1+ τW )

��
Q̃p

���
D0H0

· H3
0

�

g2 = −g21



 Q̃p

���
D0H0

3H2
0

1+ τW
+

D0H
3
0

(1+ τW )3/2
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�����
D0H0





·
d

dX

�
H0

1+ τW

�
.

(28)

τW (X ,Y) = τW0 exp


−1

2



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where σx and σy
′(=(b/l) · σy) are the standard deviations and 

XC and YC are the centers of the distribution in the x and 
y directions, respectively. The standard parameters in the 
temperature distribution are set to be σx = σy

′ = 0.005 and 
XC = 0.98, YC = 0.5.

5.2 � Fundamental characteristics for a plane inclined 
slider (Case 1)

We first examine the fundamental air-film characteristics 
by the heat spot for a plane inclined slider (see Fig. 2).

5.2.1 � Static pressure generation in air produced by the 
heat spot

Figure  3 shows typical pressure distributions in an air 
atmosphere with a Gaussian heat spot near the trailing edge 
with a minimum spacing of h0 = 5 nm, with a correspond-
ing modified bearing number Λ̃b of 2.2 × 103, and a slider 
inclination of h1/h0 = 2. A pressure spike can be observed 
near the trailing edge produced by the heat spot (τW0 = 0.5, 
which corresponds to a disk temperature increase of 
300 K).

Figure  4a, b show the pressure distributions along the 
centerline (Y = 0.5) with the maximum temperature τW0 as 
a parameter and minimum spacings of h0 = 5 and 20 nm. 
Figure 4a shows a general view for X = 0–1, and Fig. 4b 
shows an enlarged view for X = 0.9–1. For a smaller spac-
ing, say 1 or 2 nm, the pressure distributions approximately 
coincide to the approximate solutions for Λb → ∞ (see 
Eq. (18)) corresponding to each maximum temperature τW0.

Figure 5a, b show pressure contour plots in an air atmos-
phere with a Gaussian heat spot near the trailing edge with 
minimum spacings of h0 = 5 and 20 nm and the correspond-
ing modified bearing numbers of Λb = 2.2 × 103 and 705, 
respectively. The pressure profile for h0 = 5 nm is greater 
and steeper than that for h0 =  20  nm. Since the modified 
bearing number Λ̃b is very large for h0 =  5  nm, the non-
dimensional value of the pressure peak for h0 =  5  nm is 
0.88, which is close to the value of ΔP0HT (=1), where 
ΔP0HT denotes the theoretical maximum value of the addi-
tional pressure given by Eq. (A1) (see “Appendix 1”).

Figure  6 shows the relationships between the load 
carrying capacity, W, and the modified bearing num-
ber, Λ̃b (=Λb/Q̃P0), where Q̃P0 corresponds to the Poi-
seuille flow rate ratio for the minimum spacing, h0. For 
very large Λ̃b, W is approximately constant and coincides 
with the approximate value for Λ̃b → ∞ (Eq.  (18)). For 
10−1 < Λ̃b < 102, W decreases and approximately coin-
cide with the incompressible short bearing approxima-
tion (Λ̃b → 0, Eq.  (25)), which is proportional to Λ̃b. For 
Λ̃b < 10−1, numerical solutions approach constant val-
ues, whereas the short bearing approximation (Λ̃b → 0)  

continues to decrease. These differences between the 
numerical solutions and the short bearing approximation 
occur because numerical solutions that include the thermal 
creep flow term yield pressures produced by the thermal-
wedge effect. (Fukui et  al. 2014a). Note that in the short 
bearing approximation equation (Λ̃b → 0), the thermal 
creep flow term vanishes automatically.)

5.2.2 � Dynamic pressure generation in air produced by the 
heat spot

Figure  7 shows the typical translational stiffness com-
ponent {−Re(G1)} for the flying state of Ω = 1 in an air 

Fig. 2   Plane inclined slider with boundary temperature distribution 
(Case 1)

Fig. 3   Static pressure distributions with temperature distribu-
tion (in air). h0 =  5  nm, U =  10  m/s (Λ̃b = 2.2× 103), h1/h0 =  2, 
hstep1 = hstep2 = 0. Xc = 0.98, Yc = 0.5, σx = σy’ = 0.05, l = b = 1 m, 
τW0

= 0.5
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atmosphere with a Gaussian heat spot near the trailing edge 
with a minimum spacing of h0 = 5 nm, that corresponds to 
Fig. 3. Moreover, in Fig. 7, a dynamic pressure spike can be 
observed near the trailing edge produced by the heat spot. 
Figure  8a, b show the translational stiffness distributions 
along the centerline (Y = 0.5) with the maximum tempera-
ture τW0 as a parameter and minimum spacings of h0 = 5 
and 20 nm. Figure 8a shows a general view for X = 0–1, 
and Fig.  8b shows an enlarged view for X =  0.9–1. For 
smaller spacings, the pressure distributions approximately 
coincide with the approximate solutions for Λb → ∞ (see 
Eq. (20)) corresponding to each maximum temperature τW0.

Figure 9 shows the translational stiffness contour plots in 
an air atmosphere with a Gaussian heat spot near the trailing 
edge with minimum spacings of h0 = 5 and 20 nm and the 
corresponding modified bearing numbers of Λb = 2.2 × 103 
and 705, respectively. The stiffness contours for h0  =  5 
and 20  nm are approximately the same. Since the modi-
fied bearing number Λ̃b is very large for h0 =  5  nm, the 

Fig. 4   Static pressure distribu-
tions for different spacings (in 
air). a General view (X = 0–1), 
b enlarged view (X = 0.9–1)

(a) (b)

Fig. 5   Contour plots of additional static pressure produced by the heat spot for different spacings (in air). a h0  =  5  nm 
(Λ̃b = 2.2× 103, δP0HT = 1), b h0 = 20 nm (Λ̃b = 705, δP0HT = 1)

Fig. 6   Load carrying capacity W vs. modified bearing number Λ̃b 
(b/l = 0.1)
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non-dimensional value of the pressure peak for h0 = 5 nm 
is 0.55, which is comparable to the value of ΔG1HT(=1), 
where ΔG1HT denotes the theoretical maximum value of the 
additional pressure given by Eq. (30) (see “Appendix 1”).

Figure 10a shows the relationships between translational 
stiffness, κ11, and frequency ratio, Ω(=f/f0), and Fig.  10b 
shows the relationships between the translational damping 
coefficient, Ωγ11, and the frequency ratio, Ω, with minimum 
spacing h0 as a parameter. The definitions of stiffness, κij, 
and damping coefficients, Ωγij, are shown in “Appendix 2”. 
The tendency for h0 = 20 and 5 nm and the infinite bearing 
number solution (Λb → ∞) are approximately the same.

Figure  11 shows the relationships between the trans-
lational stiffness, κ11, and the modified bearing number 
Λ̃b (= Λb/Q̃P0). For very large Λ̃b, κ11 is approximately 

constant and coincides with the approximate value for 
Λ̃b → ∞ (Eq.  (20)). For 10−2 < Λ̃b < 102, κ11 decreases 
and approaches the incompressible short bearing approxi-
mation (Λ̃b → 0, Eq.  (26)), which is proportional to Λ̃b. 
For Λ̃b < 10−2, the numerical solutions approach constant 
values, whereas the short bearing approximation (Λ̃b → 0 ) 
continues to decrease. These differences between the 
numerical solutions and the short bearing approximation 
occur because numerical solutions for κij that include the 
thermal creep flow term yield dynamic pressures produced 
by the thermal-wedge effect. [Note that in the short bearing 
approximation equation (Λ̃b → 0), the thermal creep flow 
term vanishes automatically.]

5.3 � Flying characteristics analysis of a step slider 
with the TFC effect (Case 2)

Next, we used a slider having steps of two different 
depths (five-pad negative-pressure slider) with a length l 
of 1.25 mm, a width b of 1 mm, and step depths hstep1 and 
hstep2 of 0.35 and 3 μm, respectively. In addition, the slider 
is equipped with an embedded heater at the end, as shown 
in Fig.  12a. When the heater is powered off (heater off), 
the pressure generated by MGL effects and vdW attrac-
tive pressure acts on the slider. On the other hand, when the 
heater is powered on (heater on), the flying height is finally 
reduced by the effect of additional repulsive t-MGL pres-
sure and vdW attractive pressure, due to the temperature 
distribution and the thermal deformation.

The temperature distribution at the slider surface is con-
sidered to be Gaussian with a non-dimensional maximum 
temperature τW0 of 0.1 and a maximum thermal defor-
mation (projection) dmax of 5.5  nm, as shown in Fig.  12a 
(standard deviation σx = σ’y = 0.005, center of distribution 
XC = 0.98, YC = 0.5). The essential parameter for estimat-
ing the pressure generation is the modified bearing number 

Fig. 7   Translational stiffness component {−Re(G1)} with tempera-
ture distribution (in air). h0 = 5 nm, U = 10 m/s (Λ̃b = 2.2× 103), 
h1/h0 = 2, hstep1 = hstep2 = 0. Gas: Air, Ω = f/f0 = 1, τW0

= 0.5

Fig. 8   Translational stiffness 
component {−Re(G1)} for dif-
ferent spacings (in air). a Gen-
eral view (X = 0–1), b enlarged 
view (X = 0.9–1)

(a) (b)
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Λ̃b = (b/l)2 ·Λ/Q̃P0 (Fukui et al. 1996), where Q̃P0 is the 
pressure flow rate ratio in the reference state.

5.3.1 � Static flying characteristics

Figure 13 shows the flying heights, h0 and hmin, for a load 
of w = 9.8 mN and a pressure center of X̄ = 0.5 as a func-
tion of the disk velocity U. Here, h0 and hmin are, respec-
tively, the spacing at the trailing edge and the minimum 
spacing with heating, as shown in Fig. 12a. The flying char-
acteristics are examined for the following conditions: (a) 
with and without laser heating (heater on/off), (b) with and 
without van der Waals pressure, and (c) in air and He.

Table  1 gives the static flying states (h0 or hmin and the 
inclination of the slider h1/h0) of Fig. 13 for U = 30 m/s. Even 
if we consider the pressure generated by the thermal deforma-
tion and the increase in the vdW attractive force, the mini-
mum spacing hmin is smaller than the case without heating by 

Fig. 9   Contour plots of additional dynamic pressure {−Re(G1)} produced by the heat spot for different spacings (in air), τW0
= 0.5. a 

h0 = 5 nm (Λ̃b = 2.2× 103, QTP = 0.356, −Re[G1HT ] = 0.5), b h0 = 20 nm (Λ̃b = 705, QTP = 0.290, −Re[G1HT ] = 0.5)

Fig. 10   Translational stiff-
ness and damping coefficient 
for different spacings (in air), 
τW0

= 0.5. a Translational stiff-
ness, b translational damping 
coefficient

(a) (b)

Fig. 11   Translational stiffness vs. modified bearing number Λ̃b for 
different spacings (in air) (b/l = 0.1)
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the heater, because the slider surface is protruded by the effect 
of heating (dmax = 5.5 nm). When the ambient gas is He, the 
slider inclination h1/h0 is larger than in the case with air.

Figure  14a, b show the static pressure for the flying 
state of Fig. 13 with heating by the heater for U = 30 m/s. 
Figure  14a shows the static pressure in air corresponding 
to the symbol, ×, and Fig.  14b shows that in He corre-
sponding to the symbol, ● in red. A pressure spike occurs 
in the applied temperature area by the effect of heating. 
Figure  15a, b show the pressure distributions along the 
centerline (Y = 0.5) with and without the temperature dis-
tributions (heater on/off) and in air and He, respectively. 
Figure 15a shows a general view for X = 0–1, and Fig. 15b 
shows an enlarged view for X = 0.9–1.

5.3.2 � Dynamic flying characteristics

Figure 16a, b show the translational stiffness components 
{−Re(G1)} for the flying state of the frequency ratio Ω = 1 

(a) (b)

Fig. 12   Two-step-depth-type slider with thermal flying height (TFC) effect (Case 2) (negative-pressure-type, five-pad slider). a Side view, b bot-
tom view

Fig. 13   Spacings h0 and hmin vs. disk speed U (heater on/off, 
τW0

= 0.1, in air/He)

Table 1   Static flying states 
for ambient gas (air/He) and 
heater condition (heater-on/off, 
τW0

= 0.1)

Heater Effects
t-MGL pressure

Thermal distribution
Slider projection

vdW pressure
MGL pressure h 0 (nm) 15.54 3.68
vdW pressure h 1/h 0 14.14 44.61

h 0 (nm)
h 1/h 0

15.58
14.11

Air

14.21

13.97

4.13
39.58

Helium

1.65

40.85
on

off
MGL pressure

h min (nm)

h 1/h 0

(Flying condition: w=9.8 mN, X =0.5, U=30 m/s) 
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Fig. 14   Static pressure distributions corresponding to symbols, times 
symbol and filled circle in Fig. 13 and Table 1 (heater-on, τW0

= 0.1,  
in air/He, U =  30  m/s). a In air (hmin =  14.21  nm, h1/h0 =  13.97, 

symbol times symbol). b In helium (hmin = 1.65 nm, h1/h0 = 40.85, 
symbol filled circle) (color figure online)

Fig. 15   Cross section (Y = 0.5) 
of static pressure distributions 
corresponding to symbols, 
times symbol, filled circle, 
filled triangle, and filled square 
(heater-on/off, τW0

= 0.1, in 
air/He, U = 30 m/s). a General 
view (X = 0–1), b enlarged 
view (X = 0.9–1)

(a) (b)

Fig. 16   Translational stiffness components {−Re(G1)} correspond-
ing to symbols, times symbol and filled circle (heater-on, τW0

= 0.1

, in air/helium, U =  30  m/s, Ω =  1). a In air (hmin =  14.21  nm, 

h1/h0 = 13.97, symbol times symbol). b In helium (hmin = 1.65 nm, 
h1/h0 = 40.85, symbol filled square)
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(f = f0 = 24 kHz) shown in Fig. 14a, b. Figure 17a, b show 
the translational stiffness distributions along the center-
line (Y =  0.5) with and without temperature distributions 
(heater on/off) and in air and Helium. Figure 17a shows a 
general view for X = 0–1, and Fig. 17b shows an enlarged 
view for X =  0.9–1. A pressure spike also occurs in the 
dynamic pressure coefficient as a result of heating as well 
as the static pressure in Fig. 14a, b. Moreover, the effect of 
the vdW attractive force is remarkable because the mini-
mum spacing decreases locally as a result of thermal defor-
mation due to heating by the heater.

Figure  18 shows the relationships between the transla-
tional stiffness, κ11, the translational damping coefficient, 
Ωγ11, which are integral values of the dynamic pressure 

coefficient, G1, and the frequency ratio, Ω. The curves in 
Fig.  18 correspond to the symbols ×, ●, ▲, and ■ in 
Fig. 13 and Table 1. When the ambient gas is replaced with 
He, Fig.  18 shows that κ11 and Ωγ11 decrease compared 
with the case of air. Figure  19 shows the relationships 
between the spacing fluctuation ratio |Δh/a| and the fre-
quency ratio Ω (Fukui et al. 1985). By replacing the ambi-
ent gas with He, the spacing fluctuation ratio at the trail-
ing edge (X = 1) is reduced compared with the case in air 
because the inlet-to-outlet spacing ratio (h1/h0) increases. 
In this calculation condition, the influence of the heating 
on the translational stiffness, κ11, the translational damping 
coefficient, Ωγ11, and the spacing fluctuation ratio, |Δh/a|, 
is negligible.

Fig. 17   Cross section (Y = 0.5) 
of translational stiffness distri-
butions {−Re(G1)} correspond-
ing to symbols, times symbol, 
filled circle, filled triangle, 
and filled square (heater on/
off, τW0

= 0.1, in air/He, 
U = 30 m/s, Ω = 1). a General 
view (X = 0–1), b enlarged 
view (X = 0.9–1)

(a) (b)

Fig. 18   Stiffnesses and damping coefficients corresponding to sym-
bols, times symbol, filled circle, filled triangle, and filled square 
(heater on/off, τW0

= 0.1, in air/He, U = 30 m/s)

Fig. 19   Spacing fluctuations corresponding to symbols, times sym-
bol, filled circle, filled triangle, and filled square (heater on/off, 
τW0

= 0.1, in air/He, U = 30 m/s)
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6 � Conclusion

In the present paper, the characteristics of a plane inclined 
slider (Case 1) and a step slider flying in either air or He 
(Case 2) over a running boundary wall with local tempera-
ture distributions are analyzed using the thermo-molecular 
gas-film lubrication (t-MGL) equation. For a plane inclined 
slider (Case 1), the fundamental static and dynamic char-
acteristics are analyzed numerically and are examined 
through two limiting approximations: the approximation 
for infinite bearing number and the incompressible short 
bearing approximation. For a step slider (Case 2), the 
decreases in the minimum spacing for a slider flying in 
He are significant because the mean free path of He, λHe, 
is approximately three times that of air, λair. The increases 
in the minimum spacing due to laser heating are negligible 
in both air and He because the heat spot size is very small. 
Moreover, the decrease in the minimum spacing produced 
by thermal deformation (projection height, dmax) by laser 
heating in the thermal fly-height control (TFC) slider is 
reduced by the total additional pressure of (1) MGL pres-
sures produced by the air-film wedge effect, (2) t-MGL 
pressures produced by the applied temperature distribution, 
and (3) van der Waals attractive pressure due to the ultra-
small spacing. The spacing fluctuation in He caused by a 
running wavy disk is smaller than that in air, because the 
inlet-to-outlet spacing ratio (h1/h0) in He is larger than that 
in air.

Appendix 1: Theoretical maximum pressure 
increase produced by boundary temperature

For a plane inclined slider with a minimum spacing of 
several nanometers, the pressure increase produced by the 
boundary temperature distribution can be estimated using 
the following index. In this estimation, the heat spot is 
considered to be approximately the same as the minimum 
spacing point on the centerline.
For a static pressure increase:

For a dynamic pressure increase:

(29)

δP0HT ≡
{
P0τW − P0|τW=0

}∣∣
X=XC , Y=YC

∼=
{
P0τW − P0|τW=0

}∣∣
X=1, Y=YC

(for YC = 0.5)

= H ′
1 · τW0.

(30)

δG1HT ≡
{
G1τW − G1|τW=0

}∣∣
X=XC , Y=YC

∼=
{
G1τW − G1|τW=0

}∣∣
X=1,Y=YC

(for YC = 0.5)

= τW0 ·
[{
cos (4πΩ)− H ′

1

}
− i · sin (4πΩ)

]

Appendix 2: Definitions of stiffness, κij, 
and damping coefficients, Ωγij
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